自动控制实验报告二-二阶系统阶跃响应
- 格式:doc
- 大小:229.50 KB
- 文档页数:16
实验二二阶系统阶跃响应一、实验目的(1)了解典型二阶系统模拟电路的构成方法及二级闭环系统的传递函数标准式。
(2)研究二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ζ对过渡过程的影响。
(3)掌握欠阻尼二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。
观察和分析二阶闭环系统的欠阻尼, 临界阻尼, 过阻尼的瞬态响应曲线, 及在阶跃信号输入时的动态性能指标Mp、tp、ts值, 并与理论计算值对比。
二、实验设备(1)XMN-2型学习机;(2)CAE-USE辅助实验系统(3)万用表(4)计算机三、实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。
二阶闭环系统模拟电路如图2-1所示, 它由两个积分环节(OP1和OP2)及其反馈回路构成。
图2-1 二阶闭环系统模拟电路图OP1和OP2为两个积分环节, 传递函数为(时间常数)。
二阶闭环系统等效结构图如图2-2所示。
图2-2 二阶闭环系统等效结构图四、该二阶系统的自然振荡角频率为, 阻尼为。
五、实验步骤(1)调整Rf=40K, 使K=0.4(即ζ=0.2);取R=1M, C=0.47μ, 使T=0.47秒(ωn=1/0.47), 加入阶跃输入信号x(t)=1V, 记录阶跃响应曲线①;(2)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1.47μ, 使T=1.47秒(ωn=1/1.47), 记录阶跃响应曲线②;(3)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1μ, 使T=1秒(ωn=1/1), 记录阶跃响应曲线③;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=200K, 使K=2(即ζ=1), 记录阶跃响应曲线④;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=300K, 使K=3(即ζ=1.5), 记录阶跃响应曲线⑤。
六、数据采集及处理七、实验报告1、推导模拟电路的闭环传递函数Y(s)/X(s)?确定R、C.Rf、Ri与自然振荡角频率和阻尼比之间的关系。
实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。
2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。
3. 进一步了解数字控制的基本原理和实现方法。
实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。
通过向系统输入一个单位阶跃信号,可以使系统达到稳态。
在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。
二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。
欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。
在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。
具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。
2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。
3. 记录系统的超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。
实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。
2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。
3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。
5. 分析实验结果,并总结出二阶系统的阶跃响应特性。
实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。
通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。
我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。
《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。
二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。
2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。
3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。
根据系统的阶数不同,其响应形式也不同。
实验仪器:电动力控制实验台,控制箱,计算机等。
三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。
2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。
4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。
5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。
四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。
根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。
2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。
根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。
五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。
通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。
实验一 一、二阶系统的阶跃响应 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T 对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容(一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。
惯性环节的模拟电路及其传递函数如图1-1。
(二)构成下述二阶系统的模拟电路,并测量其阶跃响应。
典型二阶系统的闭环传递函数为 ()2222nn n s s s ωζωωϕ++=(1) 其中ζ和n ω对系统的动态品质有决定的影响。
图1-1 一阶系统模拟电路图R1R2构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应:电路的结构图如图1-3系统闭环传递函数为()()()()222/1//11/2TS T K s T s U S U s ++==ϕ 式中 T=RC ,K=R2/R1。
比较(1)、(2)二式,可得 n ω=1/T=1/RCξ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC 值可以改变无阻尼自然频率n ω。
今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。
图1-2 二阶系统模拟电路图图1-3 二阶系统结构图R2电阻R取100KΩ,电容C分别取1fμ和0.1fμ,可得两个无阻尼自然频率ω。
n 操作步骤:1.启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
广州大学学生实验报告开课学院及实验室:工程北531 2014年 11 月 30日学院机械与电气工程学院年级、专业、班电气123 姓名陈海兵学号1207300045实验课程名称自动控制原理实验成绩实验项目名称实验二二阶系统阶跃响应及性能分析指导老师姚菁一、实验目的1、掌握控制系统时域响应曲线的绘制方法;2、研究二阶系统特征参数对系统动态性能的影响,系统开环增益与时间常数对稳定性的影响。
3、能够计算阶跃响应的瞬态性能指标,对系统性能进行分析。
二、实验内容实验1、典型二阶系统闭环传递函数(1) 试编写程序,绘制出当ωn=6, ζ分别为0、1,0、4,0、7,1,1、3 时的单位阶跃响应;(2)试编写程序,绘制出当ζ=0、7, ωn 分别为2,4,6,8,10 时的单位阶跃响应;(3) 对上述各种单位阶跃响应情况加以讨论、实验2、设单位反馈系统的开环传递函数为若要求系统的阶跃响应的瞬态性能指标为σp=10%,t s (5%) = 2s、试确定参数K 与a 的值, 并画出阶跃响应曲线,在曲线上标出σp、t s(5%)的数值。
实验3、设控制系统如图2-1所示。
其中(a)为无速度反馈系统,(b)为带速度反馈系统,试(1)确定系统阻尼比为0、5 时的K1值;(2) 计算并比较系统(a)与(b)的阶跃响应的瞬态性能指标;(3)画出系统(a)与(b)阶跃响应曲线,在曲线上标出σp、t s(5%)的数值,以验证计算结果。
图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等) 1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。
涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。
进一步,为清楚起见,用legend 指令在图中加注释。
部分结果如图2-2所示。
图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。
二阶系统阶跃响应实验报告.doc
本文基于实验箱网络实现了二阶系统阶跃响应的实验。
实验的研究内容主要包括:系
统的各参数的测量、阶跃响应的时间特性的观察以及二阶系统的特性研究等。
实验步骤与
结果如下:
1. 参数测量:首先测量了二阶系统的各参数,包括系统的系数K和T,以及阶跃函数
的时间常数T0,测量后得出了以下测量值:K=3.99196,T=0.09203,T0=0.092612。
2. 阶跃响应观察:接着,观察了系统在各不同输入阶跃函数下的单位阶跃响应,实验结果表明其反应满足二阶系统单位步跃响应特性,该系统的时间常数为T0,超调比为K/T。
3. 特性研究:最后,对该二阶系统的性能进行了实验试验,以确定它的超调比K/T及其对应的频率范围,实验结果表明该二阶系统的超调比K/T为0.432,其对应的频率范围
在0.368-0.478Hz之间,实验效果令人满意。
综上,通过实验成功研究了一个二阶系统的阶跃响应特性,确定了有关系统参数和特性,实验结果符合理论预期,实验效果令人满意。
实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
实验二 二阶系统的阶跃响应实验报告1.实验的目的和要求1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术;2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响;3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质;4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。
2.实验内容1)分析典型二阶系统2222)(n n n s s s G ωξωω++=的ξ(ξ取值为0、0.25、0.5、1、1.2……)和n ω(n ω取值10、100……)变化时,对系统阶跃响应的影响。
2)典型二阶系统,若0.707ξ=,110n s ω-=,确定系统单位阶跃响应的特征量%σ、r t 和s t 。
3.需用的仪器计算机、Matlab6.5编程软件4.实验步骤1)利用MA TLAB 分析n ω=10时ξ变化对系统单位阶跃响应的影响。
观察并记录响应曲线,根据实验结果分析ξ变化对系统单位阶跃响应的影响。
2)利用MA TLAB 分析ξ=0时n ω变化对系统单位阶跃响应的影响。
观察并记录响应曲线,根据实验结果分析n ω变化对系统单位阶跃响应的影响。
3)利用MA TLAB 计算特征量%σ、r t 和s t 。
5.教案方式讲授与指导相结合6.考核要求以实验报告和实际操作能力为依据7.实验记录及分析1)程序:》t=[0:0.01:10]。
y1=step([100],[1 0 100],t)。
y2=step([100],[1 5 100],t)。
y3=step([100],[1 10 100],t)。
y4=step([100],[1 20 100],t)。
y5=step([100],[1 80 100],t)。
subplot(3,2,1)。
plot(t,y1,'-')。
gridxlabel('time t')。
ylabel('y1')。
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
实验二二阶系统的阶跃响应及频率特性实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的处理及其与理论计算分析比较的能力。
适用课程:控制工程基础实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。
B 学习二阶系统阶跃响应曲线的实验测试方法。
C 研究二阶系统的两个重要参数ζ、ωn对阶跃瞬态响应指标的影响。
D 学习频率特性的实验测试方法。
E 掌握根据频率响应实验结果绘制Bode图的方法。
F 根据实验结果所绘制的Bode图,分析二阶系统的主要动态特性(MP ,ts)。
面向专业:机械类实验性质:综合性/必做知 识 点:A《模拟电子技术》课程中运算放大器的相关知识;B《数字电子技术》课程中采样及采样定理的相关知识;C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。
学 时 数:2设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。
材料消耗:运算放大器,电阻,电容,插接线。
要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。
B推导图2所示积分放大器的输出输入时域关系和传递函数。
C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出)和S<1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。
<2>.画出系统方框图。
<3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的传递函数,写出求解过程。
和ζ。
<4>.求取该系统的ωn实验地点:教一楼327室实验照片:实验装置及仪器。
自动控制实验报告二-二阶系统阶跃响应
本实验以三角波输入作为扰动源,考察了二阶系统的阶跃响应。
本实验共分为准备和实验两部分,具体过程如下:
1. 准备:
(1)准备理论分析
根据二阶系统的理论分析,比例的系统的输出响应可以用“先过斜坡,后弹跳”的曲线来描述。
当输入为阶跃信号时,最终的输出也应随之发生阶跃。
(2)安装系统设备
系统的设备由负反馈比例控制器与多功能电路板组成,本实验采用比例控制实现,用一个三角波发生器后装置来产生三角波控制信号。
2. 实验:
(1)稳态响应
调整三角波周期参数,使系统实现稳态响应,测量得出输出与输入的闭环增益值,满足系统的稳态要求;
(2)阶跃响应
设定参数使得系统实现阶跃响应,测量得出系统的时间常数值以及输出响应与输入阶跃幅度之比,画图分析出输出在某一个阶跃时刻趋近系统的稳态响应值时所需的时间。
以上就是本次实验的概况。
本实验将三角波应用于二阶系统,进行阶跃响应实验,尝试测量、分析系统阶跃响应的指标,可见本实验对对比例系统的指标的测量及系统性能的分析有很大的意义。
实验二 二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;三、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. ζ为一定时,观测系统在不同n ω时的响应曲线。
四、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 开环传递函数2()(2)n n G s S S ωξω=+ (2-2)闭环特征方程:0222=++nn S ωζω 其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:()1()n t d C t Sin t ζωωβ-=+ 式中21ζωω-=n d ,ζζβ211-=-tg 。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S ,此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比?和无阻尼自然频率3n对系统动态性能的影响,定量分析g和3n 与最大超调量o p和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1) 欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振(1) 性能指标:调节时间ts:单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的最小时间。
超调量0% ;单位阶跃响应中最大超出量与稳态值之比。
峰值时间tp:单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。
结构参数§ :直接影响单位阶跃响应性能。
(2) 平稳性:阻尼比§越小,平稳性越差(3) 快速性:§过小时因振荡强烈,衰减缓慢,调节时间ts长,§过大时,系统响应迟钝,调节时间ts也长,快速性差。
=0.7调节时间最短,快速性最好。
4 =0.7时超调量。
%〈5%, 平稳性也好,故称4 =0.7为最佳阻尼比。
2) 临界阻尼二阶系统(即4 =1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的, 不存在稳态误差。
3) 无阻尼二阶系统(§= 0时)此时系统有两个纯虚根。
4) 过阻尼二阶系统(§>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误 差,上升速度由小加大有一拐点。
三、实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:7?(5) s 2 + 2 事叫 s + 其中,?和con 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:皿应式中,T 二RC, K=R2/R1 o 比较上面二式,可得:wn =1/T=1/RC g 二K/2二R2/2R1。
二阶系统阶跃响应实验报告实验报告:二阶系统阶跃响应一、实验目的1.了解二阶系统的阶跃响应特点;2.掌握二阶系统阶跃响应的测量方法;3.理解参数对二阶系统阶跃响应的影响。
二、实验原理二阶系统是指一个包含两个能量存储元件(电容、电感)的系统。
其传递函数可以表示为:Ts(s)G(s)=--------------(s^2 + 2ζωns + ωn^2)其中,Ts(s)为控制信号输入,G(s)为系统传递函数,ζ为阻尼比,ωn为自然频率。
当输入为单位阶跃信号时,输出的响应称为系统的阶跃响应,其数学表达式为:y(t)=-----------τ^2[1-e^(-t/τ)-t/τ*e^(-t/τ)]其中,τ为系统的时间常数,τ=1/ωn式中ωn为自然频率。
实验步骤1.搭建二阶电路系统,并接入信号发生器和示波器。
2.调节信号发生器产生单位阶跃信号,并将信号接入二阶电路系统中。
3.调节示波器进行观测,并记录输出信号的波形。
4.根据记录的波形数据,计算系统的时间常数τ、阻尼比ζ和自然频率ωn。
5.改变二阶电路系统中的参数(如电感或电容值),重新进行实验并记录数据。
6.分析不同参数对二阶系统阶跃响应的影响。
四、实验结果实验数据如下表所示:电感值(L),电容值(C),时间常数τ,斜率(t/τ),阻尼比ζ,自然频率ωn------,-------,------,-------,-----,-------L1,C1,τ1,t1/τ1,ζ1,ωn1L2,C2,τ2,t2/τ2,ζ2,ωn2L3,C3,τ3,t3/τ3,ζ3,ωn3(插入阶跃响应图像)五、实验分析根据实验结果的波形数据,计算得到不同参数下的时间常数τ、阻尼比ζ和自然频率ωn,并填入上表。
通过对比不同参数下阶跃响应的图像,可以得出以下结论:1.时间常数τ:时间常数τ代表系统响应到达稳态所需的时间。
一般来说,时间常数越小,系统的响应速度越快。
根据实验数据的对比可以发现,当电感或电容值增加时,时间常数τ也相应增大,表示系统的响应速度减慢。
实验一 二阶系统阶跃响应一、实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、预习要求(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=0.5,ξ= 0.25,σp=44.43% ,t s=6s;T=0.5,ξ= 0.5,σp=16.3% ,t s=3s;T=0.5,ξ= 0.75,σp=2.84% ,t s=2s;(2)分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS。
ξ= 0.25,T=0.2,σp=44.43% ,t s=2.4s;ξ= 0.25,T=0.5,σp=44.43% ,t s=6s;ξ= 0.25,T=1.0,σp=44.43% ,t s=12s;四、实验步骤(1)通过改变K,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:(1)T=0.5,通过改变R0的大小改变K值(2)ξ=0.25,改变C的大小改变T值理论值与实际值比较:(1)T=0.5(2)ξ=0.25对比理论值和测量值,可以看出测量值基本和理论值相符,绝对误差较小,但是有的数据绝对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。
实验二二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。