圆的周长和面积组合图形练习
- 格式:ppt
- 大小:5.19 MB
- 文档页数:36
章节测试题1.【答题】把一张圆形纸片剪成两个相等的半圆,它的周长增加了10厘米,这个圆的面积是______平方厘米.【答案】19.625【分析】此题考查的是求组合图形的面积.【解答】如图,把一张圆形纸片剪成两个相等的半圆,它的周长增加的两条直径的长,所以这个圆的直径是10÷2=5(厘米),则它的面积是(5÷2)2×3.14=19.625(平方厘米).故此题的答案是19.625.2.【答题】大圆的圆周率大于小圆的圆周率. ()【答案】×【分析】此题考查的是圆周率的认识.【解答】任何圆的周长总是它的直径的3倍多一些,这个倍数是一个固定不变的数,我们把它叫做圆周率,所以大圆的圆周率与小圆的圆周率相等.故此题是错误的.3.【答题】两个圆的面积相等,周长肯定相等;两个圆的周长相等,面积肯定相等. ()【答案】✓【分析】此题考查的是圆的周长、面积的计算.【解答】根据圆面积公式()可知,两个圆的面积相等,则它们的半径相等,因为圆的周长=,所以半径相等的圆,周长也相等;根据圆周长公式()可知,两个圆的周长相等,则它们的半径相等.因为圆的面积,所以半径相等的圆,面积也相等.故此题是正确的.4.【答题】一个圆的半径扩大到原来的3倍,周长和面积也会扩大到原来的3倍. ()【答案】×【分析】此题考查的是圆的周长、面积的计算.【解答】根据圆周长公式()可知,一个圆的半径扩大到原来的3倍,周长也会扩大到原来的3倍;根据圆面积公式()可知,一个圆的半径扩大到原来的3倍,面积会扩大到原来的3×3=9倍.故此题是错误的.5.【答题】半圆形的面积是它的整个圆面积的一半. ()【答案】✓【分析】此题考查的是求组合图形的面积.【解答】如图,半圆形的面积是它的整个圆面积的一半.故此题是正确的.6.【答题】半径是2厘米的圆的周长和面积是相等的. ()【答案】×【分析】此题考查的是求圆的周长和面积.【解答】这个圆的周长是2×2×3.14=12.56(厘米),圆的面积是2×2×3.14=12.56(平方厘米),圆的周长测量的是长度,面积测量的是大小,它们不是同类量,不能比较大小.故此题是错误的.7.【答题】用同样长的4根绳子分别围成长方形、正方形、平行四边形和圆,其中面积最大的是().A. 平行四边形B. 长方形C. 正方形D. 圆【答案】D【分析】此题考查的是面积的大小比较.【解答】周长相等的长方形、正方形和圆,面积最大的是圆,面积最小的是长方形.选D.8.【答题】草地中央拴着一只羊,绳长为5米,这只羊最多可吃到的草地面积是()平方米.A. 25B. 31.4C. 78.5【答案】C【分析】此题考查的是求圆的面积.【解答】根据题意,这只羊最多可吃到的草地是一个以5米为半径的圆,这个圆的面积是5×5×3.14=78.5(平方米).选C.9.【答题】下面两个图形,它们的().A.周长相等B.面积相等C.周长和面积都不相等【答案】A【分析】此题考查的是求组合图形的周长和面积.【解答】观察可知,左边图形的周长=长方形的宽+2×长方形的长+圆周长÷2,左边图形的面积=长方形的面积-圆面积÷2;右边图形的周长=长方形的宽+2×长方形的长+圆周长÷2,右边图形的面积=长方形的面积+圆面积÷2,所以这两个图形周长相等,面积不相等.选A.10.【答题】圆的半径由4厘米变成7厘米,圆的面积增加了().A.9平方厘米B.33平方厘米C.103.62平方厘米【答案】C【分析】此题考查的是圆面积的计算.【解答】根据题意,圆的面积增加了7×7×3.14-4×4×3.14=103.62(平方厘米).选C.11.【答题】如图,有两枚硬币A和B,硬币A的半径是硬币B半径的2倍,将硬币A固定在桌上,硬币B绕硬币A无滑动地滚动一周,则硬币B自转的圈数是().A.1圈B.1.5圈C.2圈D.3圈【答案】D【分析】此题考查的是圆周长的计算.设B硬币的半径为r,A硬币的半径为2r,那么B硬币圆心的运动轨迹同样是圆,但是B硬币圆心的运动轨迹的圆的半径为2r+r=3r(因为它是以A硬币的圆心为圆心进行运动的),B硬币的周长为,而B硬币圆心的运动轨迹的长为:,进而用除以即可.【解答】设B硬币的半径为r,A硬币的半径为2r,所以硬币B自转的圈数是3圈.选D.12.【题文】求出下面图形的周长.【答案】(1)40.82分米;(2)17.7厘米.【分析】此题考查的求圆的周长和组合图形的周长.(1)根据圆周长公式()求解即可.(2)看图可知,这个图形的周长=外圆周长÷2+内圆周长÷2+2×1.【解答】(1)2×3.14×6.5=40.82(分米)答:这个圆的周长是40.82分米.(2)3.14×(4+1+1)÷2+3.14×4÷2+2×1=17.7(厘米)答:这个图形的周长是17.7厘米.13.【题文】求阴影部分的面积.(1)(2)【答案】(1)9.63平方厘米;(2)200.96平方厘米.【分析】此题考查的是求组合图形的面积.(1)看图可知,阴影部分的面积=半圆面积-三角形面积(底和高都等于半径);(2)根据圆环面积公式()求解即可.【解答】(1)(6÷2)2×3.14÷2-(6÷2)2÷2=9.63(平方厘米)答:阴影部分的面积是9.63平方厘米.(2)3.14×(102-62)=200.96(平方厘米)答:阴影部分的面积是200.96平方厘米.14.【题文】一个圆形的铁环,直径是40厘米,做这样的一个铁环需要用多长的铁条?【答案】125.6厘米【分析】此题考查的是求圆的周长.【解答】40×3.14=125.6(厘米)答:做这样的一个铁环需要用125.6厘米长的铁条.15.【题文】一辆汽车的轮胎外直径为0.8米,车轮每分钟转500圈,汽车一分钟能前进多少米?【答案】1256米【分析】此题考查的是求圆的周长.【解答】0.8×3.14×500=1256(米)答:汽车一分钟能前进1256米.16.【题文】一块圆形铁皮,半径是30厘米,若铁皮每平方厘米的质量是0.72克,则这块铁皮有多重?【答案】2034.72克【分析】此题考查的是求圆的面积.【解答】302×3.14×0.72=2034.72(克)答:这块铁皮重2034.72克.17.【题文】小区内有一个圆形养鱼池,半径是6米,围着养鱼池有一条宽2米的石子路,这条石子路的面积是多少平方米?【答案】87.92平方米【分析】此题考查的是求圆环的面积.根据题意,这个环形小路的外圆半径是6+2=8(米),内圆半径是6米,根据求出面积即可.【解答】3.14×[(6+2)2-62]=87.92(平方米)答:这条石子路的面积是87.92平方米.18.【答题】将一张圆形纸片平均分成若干等份,拼成一个近似的长方形.则这个长方形和原来的圆相比较,()不变.A.周长B.面积 C.周长和面积【答案】B【分析】此题考查的是求圆的面积.【解答】看图可知,长方形的宽相当于圆的半径,长方形的长相当于圆周长的一半,则长方形的周长=圆的周长+2×圆的半径;长方形的面积相当于圆的面积.所以这个长方形和原来的圆相比较,面积不变,周长增加了.选B.19.【题文】求半圆形的周长.【答案】25.7厘米【分析】此题考查的是求组合图形的周长.半圆的周长=圆的周长÷2+2×圆的半径.【解答】3.14×5×2÷2+5×2=25.7(厘米)答:这个半圆形的周长是25.7厘米.20.【题文】在一块长是5分米,宽是2分米的长方形铁板上剪下一个最大的半圆形铁板,剪下的半圆形铁板的面积是多少平方分米?【答案】6.28平方分米【分析】此题考查的是求组合图形的面积.如图,在一块长是5分米,宽是2分米的长方形铁板上剪下一个最大的半圆形铁板,这个半圆的面积是半径是2分米的圆面积的一半.【解答】2×2×3.14÷2=6.28(平方分米)答:剪下的半圆形铁板的面积是6.28平方分米.。
圆周长和圆面积的练习一、填空1.半径4分米的圆,它的周长是( ),面积是( )。
2.一个圆的周长是50.24厘米.它的直径是( ),这个圆的面积是( )。
3.一个圆的直径是2米,这个圆的面积是( )。
如果这个圆的周长扩大5倍,那么圆的面积将是( )平方米。
4.圆形操场的半径是60米,绕操场2周是( )米。
5.一个圆的直径由4厘米增加到5厘米.周长增加了( )%。
6.用一根铁丝围成一个边长是3.14分米的正方形,如果用这根铁丝围成一个圆,这个圆的半径是( )分米.面积是( )平方分米。
7.一个环形,外圆直径是8分米.内圆半径是2分米,这个环形的面积是( )平方分米.8.如果一个圆的半径增长1厘米.它的直径增长( )厘米,周长增长( )厘米。
9.一个半圆的半径是6分米,它的周长是( )分米。
10.圆是( )图形,一个圆有( )条对称轴。
二、选择题1.周长相等, ( )的面积最大.A. 长方形B.正方形 C .圆 D.平行四边形2.A圆的直径与B圆的半径相等,则B圆的周长与A圆的周长( )。
A.一样长B.A圆长 C .B圆长 D.无法比较3.一个圆的半径扩大5倍,面积扩大( )倍。
A.5B.10C.2.5D.254.大圆的半径是4厘米,小圆的半径是2厘米,则圆环的面积是( )平方厘米。
A.2 D.125.周长相等的圆和正方形,圆的面积( )正方形的面积。
A.大于B.小于C.等于D.无法比较6.小圆的直径等于大圆的半径,小圆的面积等于大圆面积的( )。
A. B. C. D.7.车轮滚动一周,所行的路程是求车轮的( )。
A.直径B.周长C.面积D.半径和8.圆心角是40O的扇形面积是所在圆面积的( )。
A. B. C. D.9.圆的半径扩大4倍,周长和面积分别扩大( )倍。
A. 4,8B.4,4 C .4,16 D .8,1610.一个圆的半径扩大3倍,周长( )。
A.扩大3倍B.扩大6倍C.扩大9倍D.扩大3.14倍11.用圆规画一个周长是25.12厘米的圆,那么圆规两脚之间的距离应是( )厘米。
有关圆的组合图形的面积问题【典型例题】1、求下列组合图形阴影部分的面积。
2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】1、求下列各图中阴影部分的面积。
(单位:厘米)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长5、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为.6、右图中正方形周长是20厘米。
图形的总面积是 平方厘米7、如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?8、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=πS 1S 210、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
EDCB AGF。
专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。
××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。
2.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
【分析】观察图形可知,阴影部分的周长=大圆的周长+小圆的周长,再根据圆的周长公式:C=πd或C =2πr,据此进行计算即可。
【解答】3.14×2×4+3.14×4=6.28×4+3.14×4=25.12+12.56=37.68(cm)则阴影部分的周长为37.68cm。
3.计算下面图形的周长与面积。
【分析】周长等于大圆周长的一半加上两个半圆的周长(即一个小圆的周长);面积等于大圆面积的一半减去两个小圆面积的一半(即一个小圆的面积),据此解答。
【解答】周长:3.14×40÷2+3.14×(40÷2)=125.6÷2+3.14×20=62.8+62.8=125.6(cm)面积:3.14×(40÷2) 2÷2-3.14×(40÷4) 2=3.14×202÷2-3.14×10 2=3.14×400÷2-3.14×100=1256÷2-314=628-314=314(cm2)4.计算下边图形的周长和面积。
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF 的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。
一、选择题1. 如图,圆的直径是10cm,阴影部分的面积是()。
A.50cm2B.78.5cm2C.28.5cm2D.21.5cm22. 图中,阴影部分的面积是()。
A.21.5dm2B.25dm2C.78.5dm2D.314dm23. 下面两幅图中阴影部分的面积相比()。
A.图①中的大B.图②中的大C.一样大D.无法确定4. 如图,两个正方形的边长相等,正方形中空白部分的面积相比较()。
A.①大B.②大C.同样大D.无法确定5. 如图是一个“禁止驶入”的交通标志,图中有一个70cm×12cm的白色长方形,其余部分为阴影(实际为红色)。
这个图形中阴影部分的面积是()cm2。
A.5024 B.20096 C.4184 D.19256二、填空题6. 如图,阴影部分的周长是________cm,面积是________cm2。
7. 如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内大正方形面积是小正方形面积的________倍。
8. 如图所示,圆的直径是20cm,阴影部分的面积是( )cm²。
9. 如图,圆的面积等于长方形的面积。
如果圆的面积是,阴影部分的面积是( )。
10. 图中阴影部分的面积相当于正方形面积的%三、解答题11. 如下图,一个半圆中有一个直角三角形,直角三角形的顶点与圆心重合,求阴影部分的面积。
12. 如图,由以O1为圆心半圆和以O2为圆心的直角扇形重叠而成.线段AB=12厘米,三角形AO2B的面积是36平方厘米,求图中阴影部分的面积.(π取3.14)13. (1)如图1中,甲、乙两个图形重叠部分的面积相当于甲面积,相当于乙面积的.甲、乙两个图形的面积比是多少?(2)如图2,AO3= AB,AO2= AO3,阴影甲与阴影乙的面积的比多少?(3)如图3,AB= AD,EC= ED,图中阴影部分与空白部分面积的比多少?(4)如图4,S甲=16,S乙=12,S丙=10,阴影部分的面积是多少?14. 求下面操场的周长和面积.(单位:米)。
北师大版数学六年级上册第一单元圆的周长与面积图形计算专项练习卷一、图形计算1.根据下面的条件,求各圆的周长或半径。
(1)C=?cm(2)C=?cm(3)C=47.1cm2.求阴影部分的面积.(单位:厘米)3.求如图中阴影部分的周长和面积.(单位:厘米)4.求阴影部分的面积.5.求阴影部分的面积.6.求下列图形的周长。
(单位:厘米)7.如图,圆的周长是25.12厘米,圆的面积正好和长方形的面积相等,这个长方形的长是多少厘米?8.求阴影部分的面积.(单位:cm)(1) (2)9.求阴影部分的面积.(1)(2)10.求阴影部分的面积.(单位:cm)11.在半径是4厘米的圆内画一个最大的正方形,求正方形的面积.12.想一想:下面图形的周长是多少?(单位:cm)13.下图是一个由半圆和一条直径所组成的图形,求这个图形的周长。
14.求下图中阴影部分的面积(a=10厘米).15.计算阴影部分的面积16.计算阴影部分的面积17.计算阴影部分的面积。
(单位:平方厘米)18.求下面各图中涂色部分的面积。
19.求右图中阴影部分的周长.20.求下图中阴影部分的面积.参考答案:1.(1)25.12cm(2)4.71cm(3)7.5cm【解析】【详解】(1)C=2πr=2×3.14×4=25.12(cm)(2)C=πd=3.14×1.5=4.71(cm)(3)r=C÷π÷2=47.1÷3.14÷2=7.5(cm)2.56.52;2.86【解析】【详解】解:(1)3.14×(12÷2)2÷2,=3.14×36÷2,=56.52(平方厘米),答:阴影部分的面积是56.52平方厘米.(2)3×2﹣3.14×(2÷2)2,=6﹣3.14,=2.86(平方厘米),答:阴影部分的面积是2.86平方厘米.【点评】此题考查组合图形的面积的计算方法,一般都是转化规则图形中,利用面积公式计算解答.3.33.12厘米,25.12平方厘米【解析】【详解】试题分析:观察图形可知,阴影部分的周长等于半径是8厘米的圆的周长的与直径是8厘米的半圆的周长的和;阴影部分的面积等于半径是8厘米的圆的面积的与直径是8的半圆的面积的差;据此即可解答问题.解:3.14×8×2×+3.14×8÷2+8=12.56+12.56+8=33.12(厘米)3.14×82×﹣3.14×(8÷2)2÷2=50.24﹣25.12=25.12(平方厘米)所以阴影部分的周长是33.12厘米,面积是25.12平方厘米.4.(7-5)×5÷2+3.14×52×=24.625(dm2)7×5-24.625=10.375(dm2)【解析】【详解】略5.(12×2+30)×12÷2-3.14×122÷2=97.92(cm2)【解析】【详解】略6.24.56厘米【解析】【分析】图形的周长等于圆的周长加长方形的两个长,长方形的长和圆的直径已知,从而问题可解。
例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例 3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米) 例9.求阴影部分的面积。
(单位:厘米) 例10.求阴影部分的面积。
(单位:厘米) 例11.求阴影部分的面积。
(单位:厘米) 例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)例18.求阴影部分的面积。
(单位:厘米)例19.正方形边长为2厘米,求阴影部分的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.如图,正方形边长为8厘米,求阴影部分的面积。
例21.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
.例22求阴影部分的面积例23求阴影部分的周长与面积例24求阴影部分的周长与面积例25求阴影部分的周长与面积例26求阴影部分的周长与面积例27求阴影部分的周长与面积例28求阴影部分的周长与面积例29求阴影部分的面积例30求阴影部分的面积例31正方形面积是7平方厘米,求阴影部分的面积和周长。
(单位:厘米)例32求图中阴影部分的面积和周长。
(单位:厘米)例33求图中阴影部分的面积和周长。
(单位:厘米)例34求图中阴影部分的面积和周长。
(单位:厘米)例35求图中阴影部分的面积和周长。
(单位:厘米)例36求图中阴影部分的面积和周长。
平面图形面积————圆的面积班级 姓名 上课时间专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的3.144 ,而在圆内的最大正方形占所在圆的面积的23.14,这些知识点都应该常记于心,并牢牢掌握!.例题1。
求图中阴影部分的面积(单位:厘米)。
【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。
62×3.14×1/4=28.26(平方厘米) .练习1求下面各个图形中阴影部分的面积(单位:厘米)。
例题2。
求图中阴影部分的面积(单位:厘米)。
【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14×42×1/4-4×4÷2÷2=8.56(平方厘米)练习2: 计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
例题3。
在正方形ABCD中,AC=6厘米。
求阴影部分的面积。
【分析】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。
但我们可以看出,AC是等腰直角三角形ACD的斜边。
根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。
这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)答:阴影部分的面积是3.87平方厘米。
五年级《圆的面积及组合图形》周末练习一、填空1、圆规两脚之间的距离是5厘米,用它画出的圆的面积是()平方厘米。
2、直径4厘米的圆,周长是()厘米,面积是()平方厘米。
3、大圆的半径是3厘米,小圆的半径是1厘米,大圆的面积是小圆的()倍。
4、小圆的半径是2厘米,大圆的半径是3厘米,小圆的周长是大圆的,小圆的面积是大圆的。
5、一根铁丝正好围成一个直径4厘米的圆。
如果把这根铁丝围成正方形,正方形的边长是()厘米。
6、甲圆的半径是乙圆的2倍,甲圆的面积是乙圆的()倍。
7、一个圆的半径由3厘米增加到5厘米,它的周长增加了()厘米,面积增加了()平方厘米。
8、一个钟面上的分针长10厘米。
分针走1小时,针尖走过的路程是()厘米。
9、在一个边长是6厘米的正方形中画一个尽可能大的圆。
圆的周长是()厘米,面积是()平方厘米。
10、用一根铁丝正好可以围成边长9.42厘米的正方形。
如果把这根铁丝改围成一个圆,圆的面积是()平方厘米。
11、一块周长是40分米的正方形铁板,剪下一个最大的圆,圆的面积是()平方厘米。
12、把圆沿着半径分成若干等份,然后拼成一个近似的长方形。
拼成的长方形的宽是1厘米,圆的周长是()厘米,面积是()平方厘米。
长方形的长是()厘米。
二、选择题1、一个圆的直径与正方形的边长相等。
比较他们的面积,结果是()。
A、圆的面积大B、正方形面积大C、圆和正方形面积相等2、甲圆的半径是乙圆的,甲圆的面积是乙圆的()。
A、B、C、3、把一个直径2厘米的圆形纸片沿直径对折后,得到一个半圆。
这个半圆的周长是()。
A、3.14B、5.14C、6.284、在一个长10dm,宽7dm的硬纸板里剪半径是2dm的圆,可剪()个。
A、2B、6C、15三、判断1、所有的圆的直径都相等。
()2、周长相等的两个圆,它们的面积也一定相等。
()3、直径2厘米的圆与半径1厘米的圆相比,周长相等,面积也相等。
()4、把一张圆形纸片对折,沿折痕剪开,得到两个半圆。
奥数训练 圆的周长和面积附答案 A m 阪文 第4题 O A A 第5题 图中阴影部分 的面积等于 平方厘 米 平 16平方厘平方厘米(取 C 第8题 C 点•那么 20厘米为直径画一个半圆,阴影部分①的面积比②的面积小 厘米,其中,圆弧BD 的圆心是 6 .两个半径为2厘米的二圆如右图摆放 第2题 则阴影部分的面积是 其中四边形 OABC 是正方形,图中阴影部分的面积是 如果圆的半径为1厘米,那么,阴影部分的面积是 5 •如图,ABCD 是正方形,边长是 a 厘米 10•如图,以直角三角形的直角边长 米.BC= ___________ . B 点移动到B'点,则阴影 第3题 _____ 平方厘米 3•如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 取 3.14 ) 4.如图是半径为6厘米的半圆,让这个半圆绕 A 点按顺时针方向旋转 30°,此时 部分的面积是 _______________________ 平方厘米. 2.如图是 第1题 个边长为 4厘米的正方形 ,吟 n =3). 7.如右图,正方形DEOF 在四分之一圆中 方厘米.(n 取3.14 .) &如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径•已知 AB=BC=10厘米,那么阴影部分 的面积是 _______________ 平方厘米.(n 的值取3.14 ) 9.如图,其中AB=10厘米,C 点是半圆的中点.那么,阴影部分的面积是 平方厘米.(n 取3.14 ) 平方厘米.(n 其中 P 点是半圆的中点,点 Q 是正方形一 (取 n =3.14) (共 11小题) 10厘米的正方形和直径是 10厘米的半圆组成如图所示 则阴影部分的面积为 __________________ 平方厘米 一.填空题 1 .边长是 边的中点, A I c 第6题 B E 9 第7题第9题 第10题第11题 11 •如图,阴影部分的面积是 _ _ 平方厘米. 二•解答题(共7小题)12•如图是一个圆心为 0,半径是10厘米的圆•以C 为圆心,CA 为半径画一圆弧,求阴影部分的面积.13•求下列各图中阴影部分的周长.(1) 图1中,两个小半圆的半径均为 3厘米.(2)图2中,四边形为平行四边形圆弧形对的圆心角为 60°,半径为6厘米.(3)图3中,正方形内有一个以正方形的边长为半径的 二圆弧和两个以正方形边长为直径的 二圆弧,已知正 4 215・如图,有一只狗被缚在一建筑物的墙角上,这个建筑物是边长都等于6米的等边三角形,绳长是 8米•求绳被狗拉紧时,狗运动后所围成的总面积. 方形边长为4厘米.(4)图4中,在半径为14•下面是由一个平行四边形和一个半圆形组成的图形,已知半圆的半径是 10厘米,计算图中阴影部分的面16.左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作二圆弧,再分别以ABAC为直径作半圆弧.求阴影部分面积.17•如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?18•如图所示,正方形ABCD等腰三角形ADE及半圆CAE若AB=2厘米,则阴影部分的面积是多少平方厘米?B A10x - 314* 2=16, x=17.3 ;答: 10x -157=16, BC 的长度是17.3厘米.故答案为: 10x=173 17.3厘米. 参考答案与试题解析一•填空题(共11小题)一 2 解:正方形和半圆的面积之和:10X 10+3.14 X ( 10*2) -2, =100+39.25=139.25 (平方厘米),三 角形PAB 的面积是:10X 15*2=75 (平方厘米),三角形PBQ 的面积是5X 5*2=12.5 (平方厘米), 则阴影部分的面积是:139.25 - 75 - 12.5=51.75 (平方厘米);答:阴影部分的面积是51.75平方厘米. 故答案为:51.75 . 此题考查了三角形、正方形和圆的面积公式的综合应用;连接 BP,找出这两个白色三角形的高,求出 空白部分的面积是解决本题的关键. 解:如图,4X 4X 1+3.14 X ( % 2*2=4X 4x2+3.14 X2 2*2=4+6.28=10.28 (平方厘米), 4 図 4 答:阴影部分的面积是 10.28平方厘米;故答案为:10.28 . 2 解:连接BE,如图:半圆面积:3.14 x ( 10*2) *2=39.25 (平方厘米), 2 三角形ABE 面积:10 *2*2=25 (平方厘米),月牙面积:(39.25 - 25)* 2=7.125 (平方厘米), 阴影面积: 25 - 7.125=17.875 (平方厘米).故答案为:17.875 . 解: S 阴影=S 扇形ABB'+S 半圆ADB'- S 半圆ADB',又S 半圆ACB=S^圆ADB', 所以S 阴影=S 扇形ABB'.扇形部分应该半径为 6X 2=12 (厘米),二X 3.14 X22-二x 2X 上x 2, =3.14 - 2=1.14 (平方厘米), 4 2 2 答:阴影部分的面积是 1.14平方厘米.故答案为:1.14 . 解:如图,正方形的面积=对角线x 对角线x 弊1U (平方厘米)四分之一圆的面积 -X 3.14 XI 2=0.785 (平方厘米)阴影部分的面积 =0.785 - -=0.285 (平方厘米)故填 0.285 . 4 2 =25 (平方厘米),SAFDB 梯形ABEF 的面积+半圆BDE 的面积, 梯形ABEF 的面积=(10* 2+10)X ( 10* 2)* 2= (平方厘米),半圆BDE 的面积=扌/哼冗 阴影部分的面积=AFDB 的面积-三角形 AFD 的面积,=(—+二n )- 25, =32.125 (平方厘米). 答:阴影部分的面积是 32.125平方厘米.故答案为:32.125 . 解: : 3.14 X 102 - 10X 」*2,=二X 3.14 X 100- 10X 5*2, =39.25 - 25, =14.25 (平方厘米) 360 2 S 答:阴影部分的面积是 14.25 (平方厘米).故答案为:14.25 . 1 九? 解: BC 的长度为 x 厘米,-X 20X x -3.14 X *2=16 2 1.解答:点评:2.解答:3.解答:4.解答:5.解答:6.解答:7.解答:8.解答:9.解答:10.解答: 即: 解: 360 1 2 5a x 3a 2+a x 卫 360 -2(吩a ) =37.68 (平方厘米).故答案为:37.68 . (平方厘米). 答: 图中阴影部分的面积等于 0.45a 平方厘米.故答案为: 2 0.45a . 解:阴影部分的面积是: 2 Xnr 解:因为 AFD=X 10x ( 10*2) 10x - 3.14 X 100* 2=16, a= 2 2 a =0.45aX 3.14 X2 2 - 2X 2-2, =3.14 - 2 , =1.14 (平方厘米);阴影部分的面积是 1.14平方厘米•故答案为:1.14 . (共 7小题)2 三角形 ABC 的面积为:所以 AC -2=ABK OO2=10X 2X 10*2=100 (平方厘米),2由上面计算可得: AC=100X 2=200,所以阴影部分的面积是:3.14 X 10X 10-2-( -X 3.14 X 200- 100) =157-( 157 - 100),4=157 - 57, =100 (平方厘米),答:阴影部分的面积是 100平方厘米.13. 解答:解:(1)大半圆的圆弧长:2X 3.14 X ( 3+3)* 2=18.84 (厘米);小半圆的圆弧长:2X 3.14 X 3-2=9.42 (厘米);阴影部分周长:18.84+9.42 X 2=37.68 (厘米).(2) 圆弧长:2X 3.14 X 6X 一=6.28 (厘米);平行四边形周长:6X 4=24 (厘米);360 阴影部分周长:6.28+24=30.28 (厘米).(3) 一个以正方形的边长为半径的丄圆弧长:2X 3.14 X 4X 二=6.28 (厘米); 4 4 两个以正方形边长为直径的丄圆弧长:3.14 X 4=12.56 (厘米);阴影部分周长:6.28+12.56=18.84 (厘米).(4) 阴影部分周长:2X 3.14 X 4=25.12 (厘米). 14. 解:如图,解答:把半圆内的阴影部分从左边割下补到左边,阴影部分即成为一个底为半圆半径的2倍,高是半圆半径-X 10X 2X 10=100(平方厘米);答:图中阴影部分的面积是 100平方厘米 215. 解:根据图可知:解答:大扇形的圆心角为:360 - 60=300 (度), 小扇形的圆心角为:180 - 60=120 (度),故总面积为: ^ . (平方米),360 360 答:狗运动后所围成的总面积为 175.84平方米.点评:此题考查如何求扇形的面积,还要注意圆心角度数的求法.11解: •解答: 答: •解答题 12.解答: 解:16. 左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作一圆弧,再分别以AB AC为直径作半圆弧.求考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:如图所示,作出辅助线,则4个小弓形的面积相等,将①、②经过旋转、平移到③、④的位置,贝V阴影部分的面积=以正方形的边长为半径的丄乙的面积-三角形ABC的面积,代入数据即可求解.解答•丹2解答解:3.14 X2 X 2X 2-2,4=3.14 - 2,=1.14 (平方厘米);答:阴影部分的面积是1.14平方厘米.点评:此题主要考查了正方形的性质以及旋转的性质,难度适中,关键是将所求的阴影部分的面积转化为与圆和正方形的面积有关的图形的面积.17•如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?考占: P 八、、•组合图形的面积.专题:平面图形的认识与计算.分析:从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC的面积.又已知①的面积比②的面积小14.88平方厘米,故半圆面积比三角形ABC的面积小14.88平方厘米•求出半圆面积,再加上14.88即为三角形的面积,再根据三角形的面积公式解答即可.阴影部分面积.解答:2解:半圆面积为3.14 X(8—2)*2=25.12 (平方厘米),三角形ABC的面积为:25.12+14.88=40 (平方厘米).BC的长为:40X 2* 8=10 (厘米).答:BC长10厘米.点评:此题考查了学生三角形以及圆的面积公式及其应用,同时考查了学生观察图形的能力.18. 如图所示,正方形ABCD等腰三角形ADE及半圆CAE若AB=2厘米,贝V阴影部分的面积是多少平方厘米?考占: p 八、、•组合图形的面积.专题:平面图形的认识与计算.分析:把原图ADE以及圆弧AE移补到ADC以及圆弧AC,那么阴影部分的面积就是正方形的面积的一半,然后再进一步解答.解答:解:正方形的面积:2X 2=4 (平方厘米);阴影部分的面积:4-2=2 (平方厘米). 答:阴影部分的面积是2平方厘米.点评:分析图形,根据图形特点进行割补,寻求问题突破点.。
有关圆的组合图形的面积问题【典型例题】1、求下列组合图形阴影部分的面积。
2、①圆的周长是18.84cm,求阴影部分面积。
②长方形的面积和圆的面积相等,已知圆的半径是3cm,求阴影部分的周长和面积。
③求直角三角形中阴影部分的面积。
(单位:分米)④图中阴影①比阴影②面积小48平方厘米,AB=40cm,求BC的长。
⑤一个圆的半径是4cm,求阴影部分面积。
【变式训练】1、求下列各图中阴影部分的面积。
(单位:厘米)2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、求下列阴影部分面积和周长5、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为.6、右图中正方形周长是20厘米。
图形的总面积是 平方厘米7、如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?8、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?9、如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=πS 1S 210、有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图). 图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.11、已知ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .12、如图32,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
---精心整理,希望对您有所帮助EDCB AGF。
六年级圆的组合图形阴影面积与周长计算work Information Technology Company.2020YEAR例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米) 例 3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)例18.求阴影部分的面积。
(单位:厘米)例19.正方形边长为2厘米,求阴影部分的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.如图,正方形边长为8厘米,求阴影部分的面积。
例21.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
.例22求阴影部分的面积例23求阴影部分的周长与面积例24求阴影部分的周长与面积例25求阴影部分的周长与面积例26求阴影部分的周长与面积例27求阴影部分的周长与面积例28求阴影部分的周长与面积例29求阴影部分的面积例30求阴影部分的面积例31正方形面积是7平方厘米,求阴影部分的面积和周长。
(单位:厘米)例32求图中阴影部分的面积和周长。
(单位:厘米)例33求图中阴影部分的面积和周长。
(单位:厘米)例34求图中阴影部分的面积和周长。