联吡啶钌,发光
- 格式:ppt
- 大小:2.87 MB
- 文档页数:16
联吡啶钌体系电致化学发光测定精胺的研究赵丹;赵叙;徐恩宇;杨梅【摘要】基于精胺对Ru(bpy)23+电化学发光的显著增强效应,利用池内停流技术,建立了精胺的电化学发光测定法.本方法具有灵敏度高,线性范围宽和分析速度快的特点.在最优条件下,相对电化学发光值与精胺浓度在5×10-8~5×10-5mol/L范围内呈现良好的线性关系,对5×10-8mol/L浓度的精胺进行11次平行测定,其相对标准偏差为3.03%,检出限为2.31×10-8mol/L.【期刊名称】《广州化工》【年(卷),期】2011(039)008【总页数】3页(P64-65,82)【关键词】电化学发光;精胺;联吡啶钌【作者】赵丹;赵叙;徐恩宇;杨梅【作者单位】辽宁师范大学化学化工学院,辽宁大连116029;辽宁师范大学化学化工学院,辽宁大连116029;辽宁师范大学化学化工学院,辽宁大连116029;辽宁师范大学化学化工学院,辽宁大连116029【正文语种】中文精胺 (spermine,Spm)属多胺类化合物,化学名称为[N,N-双 -3丙氨基 ]-1,4-双胺,广泛存在于真核细胞和原核细胞中,在人体新陈代谢过程中发挥着重要作用[1]。
研究发现,精胺水平与肿瘤增长密切相关[2]。
所以,分析和检测精胺具有极其重要的意义。
精胺的检测方法主要有紫外检测法[3]、荧光检测法[4]、色谱法[5]和电泳法[6-7]等。
电化学发光 (ECL)是利用电解技术在电极表面产生某些氧化还原物质而导致的化学发光,所以该方法具有装置简单、重现性好、可进行原位检测以及高灵敏度和高选择性等优点[8]。
联吡啶钌 [Ru(bpy)2+3]是一种常见的 ECL试剂,由于其在水溶液中具有良好的可逆性和稳定性,在生化分析和生物传感器领域得到了广泛的应用[9]。
本实验研究发现精胺对 Ru(bpy)2+3电化学发光有显著的增强效应,且增强程度与精胺浓度呈线性关系。
三联吡啶钌和草酸共反应电化学发光反应步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三联吡啶钌和草酸共反应电化学发光反应步骤介绍在化学分析领域,电化学发光(ECL)技术因其高灵敏度和选择性而备受关注。
三联吡啶钌发光原理
三联吡啶钌是一种发光材料,其发光原理主要是通过激发态的
电子回到基态释放出光子能量。
具体来说,三联吡啶钌分子在受到
激发能量的作用下,电子从基态跃迁到激发态,当电子回到基态时,会释放出光子,产生发光现象。
三联吡啶钌发光原理的核心在于其分子结构和电子能级结构。
三联吡啶钌分子的结构中含有钌离子,该离子具有特殊的电子能级
结构,使得在受到外界激发能量作用下,电子能够跃迁到高能级的
激发态。
当电子处于激发态时,会处于不稳定状态,随后电子会迅
速回到基态,释放出光子能量,产生发光现象。
在实际应用中,三联吡啶钌作为发光材料被广泛应用于有机发
光二极管(OLED)等光电器件中。
通过控制激发能量的输入和分子
结构的设计,可以调控三联吡啶钌的发光颜色和亮度,从而实现不
同颜色的发光效果。
这为OLED显示屏、照明等领域的发展提供了重
要的技术支持。
除了在光电器件中的应用,三联吡啶钌发光原理还被应用于生
物成像、化学分析等领域。
通过将三联吡啶钌标记在生物分子或化
合物上,利用其发光特性可以实现对生物样本或化合物的检测和成像,为生命科学和化学研究提供了重要的工具。
总的来说,三联吡啶钌发光原理是基于其特殊的分子结构和电
子能级结构,通过激发态的电子回到基态释放出光子能量而实现的。
其在光电器件、生物成像、化学分析等领域的应用,为科学研究和
技术发展带来了重要的推动作用。
随着对其发光原理的深入研究和
技术的不断创新,相信三联吡啶钌发光材料将会在更多领域展现出
其重要的应用价值。
硕士学位论文论文题目三联吡啶钌电化学发光在药物分析中的应用研究研究生姓名饶海英指导教师姓名李建国专业名称分析化学研究方向分离科学与谱学分析论文提交日期2014年5月三联吡啶钌电化学发光在药物分析中的应用研究中文摘要三联吡啶钌电化学发光在药物分析中的应用研究中文摘要三联吡啶钌,一种新兴的发光试剂,具有良好的物理和化学性质。
近年来,已经广泛地应用于化学、生物、医学、材料、电子等学科领域。
而电致化学发光(ECL)技术集成了发光分析高灵敏度和电化学可控性好的优点,是一种有效的痕量分析技术。
将两者结合,三联吡啶钌电化学发光分析技术具有广阔的应用前景。
本论文以三联吡啶钌为发光试剂,构建了不同的三联吡啶钌电化学发光检测方法,分别对术前用药酚磺乙胺、阿托品、曲马多、利多卡因进行了检测。
本论文主要包括三个方面内容:1.阐述了三联吡啶钌的性质,三联吡啶钌电化学发光的原理,以及三联吡啶钌电化学发光在药物分析中的应用。
2.通过层层组装技术,制备了一种三联吡啶钌电化学发光传感器(Ru(bpy)32+ -Nafion-CPE),结合流动注射电致化学发光法对酚磺乙胺胺进行检测。
基于三联吡啶钌和酚磺乙胺在传感器表面的氧化反应,传感器的ECL信号与待测液酚磺乙胺的浓度成比例关系,由此建立了一种简单、灵敏测定酚磺乙胺的流动注射电致化学发光新方法,最低检出限为0.57ng/mL。
该方法可以减少昂贵试剂Ru(bpy)32+的使用,无试剂损耗,增强ECL信号和简化实验装置,大大拓宽了Ru(bpy)32+电化学发光的应用范围。
3.基于Ru(bpy)32+体系的阳极ECL信号,以β-环糊精(β-CD)为添加剂的毛细管电泳电致化学发光法实现对尿样中的阿托品,酚磺乙胺,曲马多和利多卡因的高灵敏,高选择性同时检测。
β-CD在一定浓度下,能使阿托品,酚磺乙胺,曲马多和利多卡因得到较好的分离效果,并且发光强度与四种药物的浓度在一定范围内呈线性关系,由此建立一种简单、快速、灵敏的同时检测术前用药的新方法。
三联吡啶钌发光原理三联吡啶钌是一种发光材料,其发光原理主要是通过激发态的电子回到基态释放能量而产生的。
三联吡啶钌作为一种重要的发光材料,在生物标记、光电器件和光催化等领域有着广泛的应用。
下面将从其结构、发光原理和应用领域等方面进行详细介绍。
首先,三联吡啶钌的结构是由钌离子和三联吡啶配体组成的配合物,其结构稳定,能够在激发态下释放光。
在激发态下,钌离子的电子能级发生变化,电子从基态跃迁到激发态,形成激发态的电子。
在这个过程中,电子吸收了外界能量,处于一个不稳定的状态。
当激发态的电子回到基态时,会释放出能量,产生发光现象。
其次,三联吡啶钌发光的原理是通过荧光和磷光两种方式来实现的。
荧光是指激发态的电子在短暂的停留后回到基态释放能量,产生短暂的发光现象。
而磷光是指激发态的电子在停留的时间较长,能够在停留期间与周围的分子发生相互作用,产生长时间的发光现象。
这两种发光方式都是通过激发态的电子回到基态释放能量而实现的。
三联吡啶钌作为一种重要的发光材料,在生物标记、光电器件和光催化等领域有着广泛的应用。
在生物标记方面,三联吡啶钌可以作为荧光探针用于细胞成像和蛋白质检测等领域。
在光电器件方面,三联吡啶钌可以作为有机发光二极管(OLED)的发光层,用于制备高效的有机发光器件。
在光催化方面,三联吡啶钌可以作为光催化剂,用于光催化水分解和有机物的光催化反应等。
综上所述,三联吡啶钌发光原理是通过激发态的电子回到基态释放能量而实现的,其发光方式包括荧光和磷光两种方式。
三联吡啶钌作为一种重要的发光材料,在生物标记、光电器件和光催化等领域有着广泛的应用。
通过对三联吡啶钌的发光原理和应用领域的了解,我们可以更好地利用这一材料,推动其在各个领域的应用和发展。
三联吡啶钌发光原理
三联吡啶钌的发光原理是基于电化学发光反应。
在电化学发光免疫分析(ECLIA)中,三联吡啶钌作为发光底物,通过与抗体或抗原的结合,被用于标记抗体或抗原。
在反应过程中,强还原剂将二价三联吡啶钌还原为三联吡啶钌,同时释放光子恢复为基态发光底物。
在这个过程中,电子转移使得三联吡啶钌和TPA(三丙胺)在电极表面发生特异性化学发光反应。
此外,在免疫分析中,磁性微粒被用作固相载体包被抗体或抗原。
在结合了特异性抗体或抗原之后,磁性微粒、抗体-待测抗原-抗体、三联吡啶钌复合物被吸入流动室。
在流动室中,磁性微粒被电极下的磁铁吸附在电极表面,而未结合的物质被缓冲液冲走。
随后,电极加压,三联吡啶钌和TPA在电极表面进行电子转移,从而产生光信号。
这些光信号的强度与待测抗原的浓度成正比,从而实现对待测抗原的定量检测。
第25卷第4期2011年7月山东理工大学学报(自然科学版)Journal of Shandong University of Technology (Natural Science Edition )Vol.25No.4J ul.2011收稿日期:2011204214基金项目:山东省自然科学基金资助项目(ZR2009BM029)作者简介:张周凡,女,zhanggf168@ ;通讯作者:孙雪梅,女,xuemsun @文章编号:1672-6197(2011)04-0026-04碳纳米管/Nafio n 2联吡啶钌修饰的ITO 固相电化学发光电极张国凡,孙雪梅(青岛科技大学化学与分子工程学院,山东青岛266042)摘 要:将Nafio n 膜、多壁碳纳米管和发光试剂联吡啶合钌固定在ITO 电极上,制成可以运用到毛细管电泳和微流控芯片电化学发光检测中的微型电致化学发光固定化电极.考察了电极的循环伏安特性、扫描速度对电极发光强度的影响,研究了该电极在检测三丙胺TPA 中的电化学发光行为,得到了具有良好重现性的微型碳纳米管/Nafion 复合膜修饰ITO 电极.实验得到检测TPA 的线性范围为(1.0×10-8~5.0×10-6mol .L -1),线性回归系数为0.9986,以电化学发光强度与噪声比值(S/N )为3时得到浓度检测限为2.6×10-9mol .L -1.关键词:固相电化学发光传感器;ITO 电极;联吡啶钌;修饰电极中图分类号:O657.8文献标识码:AA solid 2state electroch emiluminescence sensor o f carbon fib er microdisk bu nd le electrod ebased on carbon nanotube/N af ion 2Ru(bpy)32+modif icationZHAN G Guo 2fan ,SUN Xue 2mei(College of Chemistry and Molecular Engineering ,Qingdao University ofScience and Technology ,Qingdao 266042,China )Abstract :Carbon nanot ube/Nafion 2Ru (bpy )32+were immobilized on ITO elect rode for t he solid 2state electrochemiluminescence sensor which can be used in capillary elect rop horesis or microflu 2idic chip s elect rochemiluminescence detection.The cyclic voltammet ric characterization of immo 2bilized Ru (bpy )32+and t he effect of scan rate on ECL intensity in p ho sp hate buffer solution have been st udied.The ECL behavior of Ru (bpy )32+immo bilized into t he CN T/Nafion composite 2modified elect rode was very good when TPA was detected.The linear range of TPA was 1.0×10-8~5.0×10-6mol L -1.The correlation coefficient of t he met hod was 0.9986.The limit of de 2tection (S/N =3)was 2.6×10-9mol ・L -1.K ey w ords :solid 2state electrochemiluminescence sensor ;ITO elect rode ;t ris (2,2’2bipyridyl )ru 2t henium ;modified electrode 电致化学发光由于其可控性好、灵敏度高、选择性好、仪器简单和分析速度快等特点引起了人们的广泛注意,并发展成为一种重要的分析检测方法,广泛应用于免疫测定和DNA 分析、化学传感和光学研究等领域,同时还被用于色谱和毛细管电泳检测等领域.联吡啶钌是一种普遍采用的发光效率较高的电化学发光活性物质,近年来得到了广泛的应用.常规采用的溶液型电化学发光体系是将一定浓度的联吡啶钌加入到缓冲液中,这种方式会由于试剂的不断消耗带来很多问题,如发光试剂消耗多、运行成本高以及环境污染.在电化学发光反应中可以把发光试剂联吡啶钌固定在工作电极表面,这样制成的电化学发光电极既保留了电化学发光的优点,又可以使联吡啶钌在电极表面得到循环使用.这可以克服溶液型电化学发光试剂在电化学发光分析中存在的问题,拓宽电化学发光分析法的应用面,实现仪器的小型化和增加方法的实用性.1980年Rubinstein和Bard[1]首先报道了Nation膜包埋Ru(bpy)32+修饰电极ECL.目前将联吡啶钌固定在电极上的方法有很多,如溶胶2凝胶法[225],Nafion膜法[628],L2B(Langmuir2 Blodgett)膜法[9210]和自组装(SA)膜法[11213].我们在研究中发现,文献中所报道的将发光试剂Ru(bpy)32+固定在电极上的电化学发光传感器尺寸往往都比较大,无法将其运用到我们现在所采用的毛细管电泳和微流控芯片的电化学发光检测上,因此我们希望能够制备电极尺寸与毛细管内径或微流控芯片出口通道内径相近的微型电化学发光固定化电极,以便在毛细管电泳和微流控芯片上使用.1 实验部分1.1 实验仪器、材料与试剂M PI2A型毛细管电泳电化学发光检测仪(西安瑞迈分析仪器有限公司,西安);离心机(TDL2 40B,上海安亭科学仪器厂);超声波清洗器(KQ2 500B,昆山市超声仪器有限公司,昆山,江苏);三电极体系采用自制ITO电极(深圳南玻伟光导电膜有限公司,广东)为工作电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极.K3[Fe(CN)6](天津市瑞金特化学品有限公司,AR);Na H2PO4・2H2O(上海亨达精细化工有限公司,上海);Na2H PO4・12H2O(天津市博迪化工有限公司,天津);联吡啶钌(Ru(bpy)32+,Sigma 公司).多壁碳纳米管(Multiwalled carbon nano2 t ubes,MWCN Ts,纯度>95%,内径10~20nm,长度~30um,深圳纳米港有限公司,广东).Nafion 试剂(Aldrich公司,美国)1.2 实验方法1.2.1 ITO电极的处理用玻璃刀将整块ITO电极切割成2.00cm×1.00cm大小,用丙酮溶液、二次水分别超声清洗15 min,然后在饱和NaO H溶液中浸泡30min,电极使用前用二次水超声清洗5min,用镜头纸擦干备用.1.2.2 CN T/Nafion复合膜修饰ITO电极的制备取0.2mg MWCN T超声分散在0.4mL0.5 wt%的Nafion溶液中,得到0.5mg・mL-1的碳纳米管悬浮液.在ITO电极上滴加 5.00μL 0.5mg・mL-1的碳纳米管/Nafion悬浮液,室温晾干,再滴加5.00μL 1.00×10-2mol・L-1的Ru (bpy)32+溶液,室温晾干后在2.00×10-2mol・L-1磷酸盐缓冲溶液中进行循环伏安扫描至信号稳定.2 结果与讨论2.1 碳纳米管/Nafion复合膜修饰ITO电极的循环伏安行为 用循环伏安法考察了固定在碳纳米管/Nafion2联吡啶钌修饰电极表面Ru(bpy)32+的电化学行为,如图1所示.图1中曲线1、2、3分别为在p H=7.4的0.02mol・L-1磷酸缓冲溶液中裸的ITO电极(1),碳纳米管/Nafion膜修饰的ITO电极在浸入Ru(bpy)32+溶液之前(2)和浸入Ru(bpy)32+溶液并达到吸附饱和以后(3)的循环伏安曲线.由图1可以看出,曲线1几乎没有电化学响应,而曲线2充电电流增加,这可能是由于碳纳米管的加入使电极表面积增加的原因.在相同条件下的曲线3,在1.25 V左右有一个很大的氧化还原电流峰,这是联吡啶钌典型的氧化还原特征峰.这个结果说明通过简单地将复合物膜修饰的电极浸入联吡啶钌溶液后可以有效地固定联吡啶钌.由于Nafion含有一个由碳氟骨架和离子化的磺酸基团构成的憎水区,所以有阴离子交换能力的Nafion和碳纳米管构成的复合物膜可以很容易通过离子交换过程、憎水作用和静电吸引作用而吸附憎水性阳离子,如联吡啶钌.只需简单地用联吡啶钌溶液浸泡复合物膜修饰电极,联吡啶钌就会被吸附在复合物膜中.2.2 扫描速度对碳纳米管/Nafion复合膜修饰ITO电极的影响 通过考察电极扫描速度对电极电化学发光强度的影响,发现电化学发光对扫描电位曲线的整体形状与扫描速度有较大关系.在p H=7.4的0.02 mol・L-1磷酸缓冲溶液中考察了扫描速度对该碳72第4期 张国凡,等:碳纳米管/Nafion2联吡啶钌修饰的ITO固相电化学发光电极图1 裸的ITO电极(1)和碳纳米管/Nafion膜修饰的ITO电极在浸入Ru(bpy)32+溶液之前(2)浸入Ru(bpy)32+溶液以后(3)在p H=7.4,0.02mol・L-1磷酸盐缓冲溶液中的循环伏安曲线纳米管/Nafion复合膜修饰ITO电极循环伏安行为的影响,所得到的电极电化学发光强度与扫描速度的关系曲线如图2所示.当扫描速度在0.005~0.02V/s范围内时,随着扫描速度的增加电极的电化学发光强度降低,当扫描速度在0.02~0.2V/s范围内时,电化学发光强度相对保持恒定.由于碳纳米管/Nafion复合物膜的开放结构,电化学发光反应中间体的形成会影响相对电化学发光强度随扫描速度的变化.在随后的实验中我们选择的电极扫速为0.1V/s.图2 不同扫速下碳纳米管/Nafion2Ru(bpy)32+修饰电极的ECL强度2.3 碳纳米管/Nafion复合膜修饰ITO电极的电化学发光行为 在此实验中,我们考察了碳纳米管/Nafion复合膜修饰ITO电极的电化学发光行为.在p H=7.4的0.02mol・L-1磷酸缓冲溶液中,在0.5~1.4V 范围内对电极作循环伏安扫描所得到的电化学发光强度对电位曲线如图3所示.由图3可以看出,在电位为1.1V附近开始有发光信号,随后随着电极电位的增加,电极的电化学发光信号急剧增强,在1.25V附近电极的电化学发光强度达到最大,说明在该电极电位下电极上的联吡啶钌被电化学氧化而发生电化学发光反应,从而得到较强的电化学发光信号.图3 在循环伏安扫描时相应的ECL强度-电位曲线2.4 碳纳米管/Nafion复合膜修饰ITO电极对三丙胺的电化学发光行为 图4中曲线1、2分别为扫描速度为0.1V/s 时,固定有联吡啶钌的CN T/Nafion复合膜修饰电极在不含三丙胺和含有1.00×10-7mol・L-1三丙胺的电化学发光曲线.由图4可以看出,三丙胺的加入引起了联吡啶钌电化学发光信号的大大增强,这是由联吡啶钌和三丙胺之间发生电化学发光反应所致.图4 碳纳米管/Nafion复合膜修饰ITO电极在不含(1)和含有(2)1.00×10-7mol.L-1三丙胺的0.02mol.L-1磷酸盐缓冲溶液中在扫速为0.1V/s时的电化学发光图2.5 碳纳米管/Nafion复合膜修饰ITO电极检测三丙胺的线性范围、检测限及电极的重现性 在p H=7.4的0.02mol・L-1磷酸缓冲溶液中,在扫速为0.1V/s时用碳纳米管/Nafion复合物修饰ITO电极测定TPA.配置了一系列不同浓度的TPA标准溶液,测定不同浓度下的电化学发光强度值,以lg c对lg(ECL intensity)作图,示于图5,得到TPA的线性范围为(1.0×10-8~5.0×10-6 mol・L-1),线性回归系数为0.9986,并以电化学发光强度与噪声比值(S/N)为3时得到浓度检测限为82山东理工大学学报(自然科学版)2011年 2.6×10-9mol ・L -1.图5 三丙胺的lgc (mol ・L -1)与ECL intensity (a.u.)的对数关系图对CN T/Nafion 复合膜修饰电极用于电化学发光测定三丙胺时的重现性进行了研究,连续循环电位扫描7圈,在复合物修饰电极上所记录的电化学发光信号示于图6.7次电位扫描对应的电化学发光信号的相对标准偏差小于2.3%,说明CN T/Na 2fion 复合物膜修饰电极用于电化学发光测定TPA 具有很好的重现性.这个结果可能是复合物膜中电荷传递比较快和复合物膜比较稳定的原因.图6 碳纳米管/Nafion 复合膜修饰ITO 在1.00×10-7mol ・L -1三丙胺溶液中连续循环扫描7圈的ECL 信号3 结束语碳纳米管/Nafion 复合膜是一种有效、稳定地固定联吡啶钌的新材料,本文利用碳纳米管/Na 2fion 复合膜将钌有效固定在ITO 电极上,制成了微型的电化学发光固定化电极.由于碳纳米管有较大的表面积和电催化作用,固定化的联吡啶钌的氧化还原电流大大增加,电化学发光信号也有很大的增强,且具有良好的稳定性.综合考虑这种电化学发光传感器的稳定性及响应时间快、易于制备和基质的生物相容性好等优点,此体系在毛细管电泳和微流控芯片电化学发光检测方面具有潜在的应用前景.参考文献:[1]Rubinstein I ,Bard A J.Polymer 2films on electrodes.4.Nation 2coated electrodes and electrogenerated chemiuminescence of sur 2face 2attached tris (2,2’2bipyridine )rut henium (2+)[J ].J.Am.Chem.Soc.,1980,102:664126642[2]Wang H Y ,Xu G B ,Dong S J.Electrochemiluminescence sen 2sor using tris (2,2’2bipyridyl )rut henium (Ⅱ)immobilized in East man 2AQ55D 2silica composite t hin 2films [J ].Anal.Chim.Acta.,2003,480:2852290.[3]Zhu L D ,Li Y X ,Zhu G Y.A novel flow t hrough optical fiberbiosensor for glucose base on luminal electrochemiluminescence [J ].Sensors and Actuators B ,2002,86:2092214.[4]Yun W ,Xu Y ,Dong P.et al ,Solid 2state electrochemilumines 2cence sensor t hrough t he electrodeposition of Ru (bpy )32+/AuN Ps/chitosan composite film onto electrode [J ].Analytica Chimica Acta ,2009,635:58262.[5]Choi H N ,Cho S H ,Lee W Y.Electrogenerated chemilumines 2cence from tris (2,2’2bipyridyl )rut henium (Ⅱ)immobilized in Titania 2perfluorosulfonated lonomer composite films[J ].Anal.Chem.,2003,75(16):425024256.[6]郭志慧,唐隆健,章竹君,碳纳米管/Nafion 2吡啶钌修饰电极电化学发光法测定激动素[J ].分析化学研究报告,2009,37(1):13218.[7]Guo Z ,Dong S.Elect rogenerated chemiluminescence from Ru(bpy )32+ion 2exchanged in carbon Nanotube/Perfluoorsulfonat 2ed ionomer composite films [J ].Anal.Chem ,2004,76:268322688.[8]Zhang L B ,Li J ,Xu Y H ,et al .Solid 2state electrochemilumi 2nescence sensor based on t he Nafion/poly (sodium 42styrene sul 2fonate )composite film [J ].Talanta ,2009,79:4542459.[9]Miller C J ,McCord P ,Bard A J.Study of Langmuir monolayersof rut henium complexes and t heir aggregation by electrogenerat 2ed chemiluminescence [J ].Langmuir ,1991,7:278122787.[10]Blodgett K B ,Langmuir I ,Built 2up films of barium stearateand t heir optical properties [J ].Phys.Rev ,1937,51:9642982.[11]Denany L ,Forster R J ,Rusling J F.Simultaneous direct elec 2trochemiluminescence and catalytic voltammetry detection of DNA in ultrat hin films [J ].J.Am.Chem.Soc ,2003,125:521325218.[12]Bi L H ,Wang H Y ,Shen Y ,et al .Multifunctional ograinc 2in 2ogranic multilayer films of tris (2,2’2bipyrldine )rut henium and decatungstate [J ]m ,2003,5:9132918.[13]Sun C Y ,Lu W ,Gao Y F.Electrochemiluminescence from Ru(bpy )32+immobilized in poly (3,42et hylenedioxyt hiophene )/poly (styrenesulfonate )poly (vinyl alcohol )composite films [J ].An 2alytica Chimica Acta ,2009,632:632167.(编辑:姚佳良)92第4期 张国凡,等:碳纳米管/Nafion 2联吡啶钌修饰的ITO 固相电化学发光电极。