电化学发光测定原理
- 格式:doc
- 大小:8.65 MB
- 文档页数:6
一、概念发光免疫测定(Electrochemiluminescence immunoassayECLI)。
ECLI 是继放射免疫、酶免疫、荧光免疫、免疫测定以后的新一代标记免疫测定技术。
电化学发光法源于电化学法和化学发光法,而ECLI 是电化学发光(ECL)和免疫测定相结合的产物,是一种在电极表面由电化学引发的特异性化学发光反应,包括了电化学和化学发光二个过程。
ECL 不仅可以应用于所有的免疫测定,而且还可用于/RNA探针检测。
二、反应底物ECL 反应底物有两种:1.三氯联吡啶钌[Ru(bpy)3] 2+络合物:钌(Ruthenium Ru),原子序数44,原子量101.07。
元素名来自拉丁文,原意是“俄罗斯”。
1827年俄国化学家奥赞在铂矿中发现钌;1844年俄国化学家克劳斯肯定它是一种新元素。
钌在地壳中的含量约为十亿分之一,是铂系元素中含量最少的一个。
钌常与其它铂系元素一起分散于冲积矿床和砂积矿床中。
钌有7种天然稳定:钌96、98、99、100、101、102、104。
钌为银白色金属,熔点2310℃,沸点3900℃,密度12.37×103/m3 。
钌的化学性质不活泼,在空气和潮湿环境中稳定;不溶于酸和王水,溶于熔融的强碱、碳酸盐、氰化物等;到900℃,时能与氧反应;加热时能与氟、氯、溴反应;钌有形成配位的强烈倾向,还有良好的催化性能。
钌是铂和钯的有效硬化剂;金属钛中加入0.1%的钌就可大大提高耐腐蚀性;钌钼合金是一种超导体;含钌的催化剂多用于石油化工。
2.三丙胺(Tripropylamine,TPA)三、电化学发光反应原理电化学反应过程:在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+ 释放电子发生氧化反应而成为三价的三氯联吡啶钌 [Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+ ,并迅速自发脱去一个质子而形成三丙胺自由基 TPA·,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA·。
电化学发光相关知识1、电化学发光概述电化学发光(electrochemiluminescence,ECL)是指将一定的电压或电流信号施加到电极上使得电化学反应发生,在电极表面产生物质,这些电极反应产物之间或电极产物与体系中其它共存组分之间发生化学反应产生激发态物质,当激发态物质从激发态返回基态时释放能量产生光辐射的一种现象[1,2]。
电化学发光反应发生的条件如图1。
电化学发光是化学发光方法与电化学方法结合的一种方法,因此其综合了化学发光灵敏度高和电化学反应容易被控制的优点。
另外由于电化学发光分析方法线性范围宽、分析快速、重现性好、操作简便等,使得其越来越受到研究者的关注[2-5]。
图1电化学发光反应发生的条件图对电化学发光现象的详细研究是在20世纪60年代,随着电子科技技术的飞速发展以及灵敏度很高的光电传感器的出现,为电化学发光的研究提供了有力的依据,Kuwana等最先利用脉冲电压研究了铂电极上鲁米诺的电化学发光机理,使人们对电化学发光及其机理有了初步的认识,同时人们也研究发现除了鲁米诺以外还有一些稠环芳烃也可以在一定的条件下产生电化学发光现象,为接下来对芘类化合物、呋喃、吲哚类、蒽及其衍生物的电化学发光研究奠定了有力的基石。
到20世纪80年代,电化学发光的研究范围更加广泛,相关报道也逐渐增多,并且电化学发光分析开始与高效液相色谱、毛细管电泳等分离技术联用,为其在实际中的应用提供了有力的依据,并且使得发光信号的稳定性有了一定的提升。
三联吡啶钌是这个时期的重大发现,它可以用于草酸、氨基酸等多种物质的测定,为电化学发光的研究提出了新的思路。
20世纪90年代以后,电化学发光已经成为一个非常活跃的领域,对其机理的认识已经更加深入,电化学发光的装置、电极材料等都得到了大的发展,并且电化学发光的应用已经扩展到免疫分析、DNA分子检测、生物活体分析等领域。
总之,电化学发光一直在朝着独特、灵敏度高、分析范围广的方向发展。
电化学发光是一种在电极表面由电化学引发的特异性化学发光反应,包括了电化学和化学发光两个部分。
在该反应中N-羟基琥珀酰胺(NHS)与三丙胺(TPA.两种电化学活性物质可同时失去电子发生氧化反应,由激发态回复到基态的过程中发射光子(hv),这一过程中在电极表面的循环反应产生多个光子,使光信号增强。
电化学发光分析法具有灵敏度高、仪器设备简单、操作方便、易于实现自动化等特点,广泛地应用于生物、医学、药学、临床、环境、食品、免疫和核酸杂交分析和工业分析等领域。
在21世纪中必将继续为解决人类面临的各种重大问题发挥更加显著的作用。
本书主要讲述了电化学发光基本原理、基本类型、检测技术、应用、毛细管电泳电化学发光应用实例等内容。
电化学发光的应用:1、电极表面活性分布的表征2、电极表面粗糙度的表征3、流体动力学研究4、固态电子传输研究5、反应动力学研究6、观察酶活性的变化7、分析化学上的应用电化学发光应用的前景电化学发光由于结合化学发光方法和电化学方法的优点,一方面可以从光学和电化学两个侧面对一些体系进行更全面的研究,这样可以更加有利于揭示许多单独用一种方法难以深入了解的问题。
另外一方面,电化学发光分析方法的灵敏度常常只取决于电极表面附近分析物的浓度,极大地方便了分离与富集,使电化学发光分析方法迅速发展成为未来免疫分析和DNA分析最具竞争力的方法之一。
因此我们完全有理由相信:电化学发光方法将成为一个独具魅力的研究方向。
今后电化学发光研究的热点主要有下面几个方向:(1)电化学发光生物芯片的研究与开发。
主要要解决以下几个问题。
第一个问题是DNA在电极上的固定。
第二个问题是高效的电化学发光探针的制备。
第三个问题是电化学发光仪器的微型化,智能化和遥控化。
(2)继续完善现有的电化学发光免疫分析方法,使该方法成为一种常规的分析方法。
(3)电化学发光方法与其它分离技术的联用与开发。
使电化学发光方法成为一种广谱的分析方法。
特别是将吡啶钌电化学发光用于氨基酸等胺类物质的测定。
电化学发光免疫检测原理电化学发光免疫测定的基本原理 (Electrochemiluminescence immunoassay,ECLI)是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。
它的标记物的发光原理与一般的化学发光(CL)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。
ECL与CL的差异在于ECL是电启动发光反应,而CL是通过化合物混合启动发光反应。
ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA,RNA探针检测。
2+其检测原理(以TSH检测为例):第一步:结合了活化的三联吡啶钌衍生物即[Ru(bpy)] + N3羟基琥珀酰胺酯(NHS)的TSH抗体和结合了生物素的TSH抗体与待测血清同时加入一个反应杯中孵育9分钟。
第二步:将被链霉亲和素包被的磁珠加入反应杯中,再次孵育9分钟,使生物素通过与亲和素的结合将磁珠、TSH抗体连接为一体,形成双抗体夹心法。
2+下一步,蠕动泵将形成的 [Ru(bpy)],抗体,抗原,抗体,磁珠复合体吸入流动测量室,此3时,磁珠被工作电极下面的磁铁吸附于电极表面。
同时,游离的TSH抗体(与生物素结合的和2+与[Ru(bpy)]结合的抗体)也被吸出测量室。
3紧接着,蠕动泵加入含三丙胺(TPA)的缓冲液,同时电极加电压,启动ECL反应过程。
发光2+剂 [Ru(bpy)]和电子供体TPA在阳极表面可同时各失去一个电子而发生氧化反应,使二价的32++?[Ru(bpy)]被氧化成三价,后者是一种强氧化剂;另一方面,TPA 被氧化成阳离子自由基TPA,3+?后者很不稳定,可自发失去一个质子(H),形成自由基TPA,这是一种很强的还原剂,可将3+2+一个电子给三价的[Ru(bpy)],使其形成激发态的[Ru(bpy)],而TPA自身被氧化成二丙胺332+和丙醛。
b型钠尿肽前体测定电化学发光法一、概述在医学领域中,b型钠尿肽前体(ProBNP)是一种重要的生物标志物,用于帮助诊断和评估心力衰竭等心血管疾病。
而测定ProBNP的方法中,电化学发光法是一种常用且有效的技术手段。
二、ProBNP的生物学意义ProBNP是一种前体蛋白,它在心脏肌肉细胞中合成并释放。
在心脏受损或心血管疾病发生时,ProBNP会被分解成其活性形式b型钠尿肽(BNP)和N端—b型钠尿肽(NT-proBNP)。
测定ProBNP水平可以帮助医生及时发现和评估心力衰竭、心肌梗死等疾病,对患者的诊断和治疗具有重要的临床意义。
三、电化学发光法原理电化学发光法是一种将化学发光和电化学技术相结合的测定方法。
在ProBNP的测定中,通常会使用特定的抗体来捕获样品中的ProBNP,然后利用标记有发光物质的二抗来进行检测。
当ProBNP与抗体结合时,形成免疫复合物,二抗就能够检测到这种复合物,并产生发光信号。
通过测定发光信号的强度,就可以确定样品中ProBNP的浓度。
四、电化学发光法的优势相比于传统的免疫测定方法,电化学发光法具有很明显的优势。
它的灵敏度高,可以检测到非常低浓度的ProBNP,这对于早期诊断和疾病监测非常重要。
电化学发光法还具有较宽的线性范围和良好的准确性和重复性,能够满足临床上对于ProBNP测定的各项要求。
五、结语在心血管疾病的临床诊断和治疗中,ProBNP的测定扮演着重要角色,而电化学发光法作为一种先进的测定技术,为医生提供了可靠的工具。
通过对ProBNP测定电化学发光法的深入了解,我们可以更好地理解这一重要的生物标志物,以及如何运用先进的技术手段来提高诊断和治疗的水平。
六、个人观点和理解作为一名医学领域的文章写手,我深知ProBNP测定在临床诊断中的重要性,并对电化学发光法的原理和优势有着充分的了解。
在未来的医疗发展中,我相信随着技术的不断进步和完善,ProBNP测定电化学发光法一定会发挥更加重要的作用,为医生和患者提供更可靠的诊断和监测手段。
化学发光和电化学发光的区别免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。
现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定技术,发光免疫分析技术顺应了这一潮流,开创了免疫诊断的新纪元。
发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。
70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,主流方法学上可以分为:化学发光、电化学发光(也称场致发光和电致发光)两种。
代表的一线品牌有:美国雅培公司、瑞士罗氏公司、美国贝克曼公司、德国西门子公司。
1、化学发光化学发光是指在化学反应过程中发出可见光的现象。
通常是指有些化合物不经紫外光或可见光照射,通过吸收化学能(主要为氧化还原反应),从基态激发至激发态。
退激时通过跃迁(或将激发能转移至受体分子上),释放能量产生光子,以光形式放出能量从而导致的发光现象。
其主要特点为消耗发光剂。
同时量子效率相对较低。
1.1 按化学反应类型分类:可分为酶促化学发光和非酶促化学发光两类。
其中酶促化学发光主要包括辣根过氧化物酶(HRP)系统、碱性磷酸酶(ALP)系统、黄嘌呤氧化酶系统等。
酶促发光的共同特点为发光过程中作为标记物的酶基本不被消耗,而反应体系中发光剂充分过最,因此发光信号强而稳定,且发光时间较长。
因此可采用速率法测量,故检测方式简单、成本较低。
酶促反应的主要缺点为工作曲线可能随时间漂移,而且低端斜率容易呈非线性下移。
而非酶促化学发光包括吖啶酯系统、草酸酯系统、三价铁一鲁米诺系统等。
非酶促发光的共同特点为发光过程中标记物被消耗。
1.2 按发光持续时间分类:可分为闪光和辉光两类,闪光型发光时间在数秒内,如吖啶酯系统。
其检测方式一般采用原位进样和时间积分法测量,即在检测器部位加装进样器,并保证加入发光剂和检测2个过程同步进行;同时以整个发光信号峰的面积为发光强度。
罗氏电化学发光化学发光检测结果罗氏电化学发光化学发光检测(Roche electrochemiluminescence immunoassay,ECLIA)是一种基于化学发光原理的生化检测技术,广泛应用于临床诊断、药物筛选、环境监测等领域。
该技术具有灵敏度高、特异性好、操作简便、结果稳定等优点,因此受到了广泛关注和应用。
本文将从技术原理、应用范围和发展趋势等方面对罗氏电化学发光化学发光检测进行详细介绍。
一、技术原理罗氏电化学发光化学发光检测技术是基于电化学发光和化学发光原理的一种生化检测技术。
其基本原理是通过特定的抗体-抗原反应,将感兴趣的生物分子标记上特定的发光分子,当这些标记分子与特定底物反应时,产生化学反应产生发光。
通过检测产生的化学发光信号大小来定量分析待测物质的浓度。
罗氏电化学发光化学发光检测技术主要包括三个关键步骤:标记、洗脱和检测。
首先,将待检测物质与特定的抗体结合,并标记上发光物质。
然后,利用特定的洗脱方法将未反应的物质除去,最后通过检测设备对发光的强度进行测定。
二、应用范围罗氏电化学发光化学发光检测技术在临床诊断、药物筛选、环境监测等领域有着广泛的应用。
在临床诊断领域,该技术被应用于各种疾病的早期筛查、疾病的诊断与分型、治疗效果的监测等方面。
例如,在肿瘤标志物、感染性疾病、免疫相关疾病等方面都有广泛的应用。
在药物筛选方面,罗氏电化学发光化学发光检测技术可以用于快速检测潜在药物的毒性、药效、药代动力学等参数,帮助研究人员更快速地筛选出有效的药物。
在环境监测方面,该技术可以用于水质、空气、土壤等环境样品中有毒有害物质的检测,为环境保护提供有力的技术支持。
三、发展趋势随着生物技术的不断发展和进步,罗氏电化学发光化学发光检测技术也在不断创新和发展。
未来,该技术将有以下几个发展趋势:1.高通量化:随着自动化技术的发展,罗氏电化学发光化学发光检测技术将更加高效、快速,实现高通量的检测。
2.多参数检测:未来的罗氏电化学发光化学发光检测技术将可以同时检测多种生物标志物,实现多参数的综合分析。
电化学发光免疫测定
电化学发光免疫测定
电化学发光反应:电化学发光(electro-chemiluminescence,ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光两个过程。
化学发光剂三联吡啶钌[Ru(bpy)3]2+(图1)和电子供体三丙胺(TPA)在阳电极表面同时各失去一个电子发生氧化反应(图2)。
二价的[Ru(bpy)3]2+被氧化成三价,后者是一种强氧化剂。
TPA 被氧化成阳离子自由基TPA+*(参见图2),后者很不稳定,自发地失去一个质子(H+),形成自由基TPA*,这是一种非常强的还原剂。
这两个高反应基团在电极表面迅速反应,三价的[Ru(bpy)3]3+被还原形成激发态的二价
[Ru(bpy)3]2+*,能量来源于[Ru(bpy)3]3+和TPA*之间存在的高电化学电位差。
TPA*自身被氧化成二丙胺和丙醛。
接着激发态的 [Ru(bpy)3]2+*衰减成基态的[Ru(bpy)3]2+,同时发射一个波长620nm的光子。
这一过程在电极表面周而复始地进行,产生许多光子,使光信号得以增强。
图1 三联吡啶钌NHS
Ru2+*
-H+光子
TPA* Ru3+ Ru2+
TPA+*
TPA
+ -e -e +
图2 在电极表面的ECL反应
Ru2+: [ Ru(bpy)3] 2+基态
Ru3+: [Ru(bpy)3]3+氧化态
Ru2+*: [Ru(bpy)3]2+* 激发态
二、电化学发光免疫测定
以三联吡啶钌作为标记物,标记抗原或抗体,通过免疫反应及ECL反应,即可进行电化学发光免疫测定(ECLIA)。
在实际应用中则尚有特定的仪器和试剂。
瑞士罗氏公司(ROCHE)的Elecsys ECLIA系统,综合了各种先进技术,具有独特的优越性,已在医学检验中取得广泛应用。
Elecsys全自动分析仪分成两个部分:在试管内化学反应部分和在流动池内的ECL反应部分。
(一)试管内的化学反应
1、试剂的组成
在Elecsys试剂的制备中,包括电化学发光剂的标记和抗原或抗体的固相化,应用了多种先进技术,简述如下:
(1)电化学发光剂的标记
[Ru(bpy)3]2+需经化学修饰形成活化的衍生物后才能与抗体或抗原形成结合物。
有多种活性基团可与[Ru(bpy)3]2+分子中的砒啶基反应。
在Elecsys试剂中采用的是N羟基琥珀酰胺酯(NHS)(图1)。
该衍生物具有水溶性,可与抗体、蛋白质抗原、半抗原、激素、核酸等各种分子结合形成稳定的标记物。
而且[Ru(bpy)3]2+NHS分子量很小,与免疫球蛋白结合的分子比超过20仍不会影响抗体的可溶性和免疫活性。
(2)固相载体
Elecsys中采用的固相载体是带有磁性的直径约2.8μm的聚苯乙烯微粒。
其特点是表面积极大,吸附效率高;在液体中形成均匀的悬液,参与反应时类似液相,反应速度快。
由于带有磁性,在游离标记物与结合标记物分离时,只需用磁铁吸引,方便迅速。
(3)链霉亲和素与生物素系统的应用
链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的一对化合物。
一分子SA 可与4分子B相结合。
在Elecsys的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体。
另一试剂为与经活化的B衍生物化合的抗原或抗体。
两种试剂混合时,B化合的抗原或抗体即结合在磁性微粒上。
2、在试管中的反应
反应分两个步骤。
以双抗体夹心法测抗原为例,试剂含以下组分:
a、[Ru(bpy)3]2+标记的抗体
b、生物素化合的抗体
c、SA磁性微粒
d、TPA溶液
e、洗涤液
(1)步骤一
在试管中加试剂a、b及待测标本(含抗原),反应式如下(图3)。
反应在液相中进行,37o C下5-10分钟内完成。
(2)步骤二:在上述反应液中加入试剂c,反应式如下(图4)。
反应在接近液相的条件中进行,37OC下5-10分钟内完成。
下一个步骤为结合的标记抗体与游离的标记抗体相分离,此步骤及以下的电化学发光反应,在Elecsys的流动池中进行。
(二)流动池中的电化学发光反应
1、流动池的基本结构
流动池是电化学发光过程中所有电化学发光反应进行的场所(图5)。
反应液由蠕动泵运送入流动池,反应后由流动池流出。
一个激发电极在流动池的下方,两个测定电极安装在激发电极上方的两侧,留出一个清晰的窗口以便使发射的光子被光电倍增管收集。
在流动池下装置可移动的用以吸引磁性微粒的磁铁。
2、电化学发光反应的步骤
(1)将试管内两步反应结束的反应液输入流动池,由于磁铁吸引,磁性微粒被吸着在电极上,其余反应物流出流动池,完成游离的和结合的标记抗体的分离。
(2)将TPA溶液送入流动池,将残余的游离标记抗体排出流动池,在流动池中充满TPA溶液。
(3)撤下磁铁,电极上通电,三联吡啶钌与TPA发生电化学发光反应,发出的光被光电倍增管收集,测定光强度。
(4)通过换算得出待测标本中的抗原浓度。
(5)在流动池中送入清洗液,将反应物彻底冲洗,即可测定下一个标本。
一、主要技术特点
1、电化学发光反应原理
化学发光剂三联吡啶钌[Ru(bpy)3]2+和电子供体(TPA)在阳极表面可同时失去一个电子而发生氧化反应。
二价的[Ru(bpy)3]2+被氧化成三价,这是一种很强的氧化剂。
TPA失去电子后被氧化成阳离子自由基TPA+*,它很不稳定,可自发地失去一个质子(H+),形成自由基TPA*,这是一种很强的还原剂,可将一个电子递给三价的[Ru(bpy)3]3+使其形成激发态的[Ru(bpy)3]2+*。
激发态的三联吡啶钌[Ru(bpy)3]2+*不稳定,很快发射出一个波长
620nm的光子,回复成基态的三联吡啶钌[Ru(bpy)3]2+。
这一过程可以在电极表面周而复始地进行,产生许多光子,使光信号增强。
2、电化学发光的标记物
电化学发光的标记物-三联吡啶钌的分子结构简单,分子量小,可以标记于任何抗原、抗体及核酸,在一个抗体等分子上可同时标记>20个标记物分子,不影响抗体的活性,用于核酸标记亦不影响探针杂交活性。
三联吡啶钌是水溶性,高稳定的小分子,它可以确保电化学发光的高效性和稳定性,并无噪音干扰。
3、专利的包被技术
罗氏公司应用了专利的链霉亲和素-生物素包被技术。
链霉亲和素-生物素是最牢固特异的结合,因此可以达到牢固和均一的包被效果。
一个链霉素亲和素可以和四个生物素结合,因此可以成倍增加生物素化抗体(抗原)的包被量,具有信号放大的作用,提高了检测灵敏度。
4、独特的载体
由聚苯乙烯包被的直径为2.8微米的磁性微球作为载体,大而均一的表面积能包被最大量的链霉亲和素,载体悬浮在反应体系中,使异相反应类似均相反应,大大加快反应速度。
5、磁性分离技术
使用磁铁将结合标记抗原抗体复合物的磁性微粒(结合相)吸附于电极上,而游离相则由缓冲液冲走,电极表面的电化学发光的信号检测完成后,磁铁移走并使用系统清洗液冲走电极表面的结合标记抗原抗体复合物的磁性微粒(结合相),为下一次测定做准备,由于测量池清洗彻底,避免了交叉污染,实现了结合相和游离相的全自动化分离。
6、超越7个数量级的测定线性
发光信号检测的宽线性加上电化学发光独特的标记物本身(发光底物)循环发光和专利的链霉亲和素-生物素包被技术的信号放大做用使电化学发光测定的线性范围最大超越7个数量级。
7、电化学发光试剂的稳定性
电化学发光的标记物三联吡啶钌在无电场和递电子体(三丙胺)存在的自然环境下非常稳定,因此用它标记的抗原(抗体)试剂也非常稳定。
8、超高的测定灵敏度和线性
先进的检测原理和应用技术配合高特异和高亲和力的抗体试剂,在待测抗原(抗体)极微量或达到期病理极限时,均能准确测定,避免了样本稀释重测定。