背包问题、多阶段生产安排问题
- 格式:ppt
- 大小:3.21 MB
- 文档页数:40
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题报告小组成员:张灿、吴雪涛、高坤、占强、习慧平小组分工情况小组成员查找资料制作ppt 编写程序讲解ppt 制作报告张灿ⅴⅴⅴⅴⅴ吴雪涛ⅴ高坤ⅴⅴ占强ⅴ习慧平ⅴ背包问题一、背包问题的历史由来它是在1978年由Merkel和Hellman提出的。
它的主要思路是假定某人拥有大量物品,重量各不同。
此人通过秘密地选择一部分物品并将它们放到背包中来加密消息。
背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。
附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。
背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。
在解决大量的复杂组合优化问题时,它常常作为一个子问题出现,从实际的观点看,许多问题可以用背包问题来描述,如装箱问题,货仓装载,预算控制,存储分配,项目选择决策等,都是典型的应用例子。
随着网络技术的不断发展,背包公钥密码在电子商务中的公钥设计中也起着重要的作用。
然而当问题的规模较大时,得到最优解是极其困难的。
但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。
二、背包问题的描述背包问题(Knapsack problem)是一种组合优化的NP完全问题。
问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。
也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V?三、背包问题的定义我们有n种物品,物品j的重量为w j,价格为p j。
我们假定所有物品的重量和价格都是非负的。
背包所能承受的最大重量为W。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以用公式表示为:maximizesubject to如果限定物品j最多只能选择b j个,则问题称为有界背包问题。
例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。
(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。
对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。
这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1to n do readln(w[i],v[i]);f[0]:=0;for i:=1to m dofor j:=1to n dobeginif i>=w[j]then t:=f[i-w[j]]+v[j];if t>f[i]then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。
货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。
他们对货币的数值感到好奇。
传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。
母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。
使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。
写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。
【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。
2022年硕士研究生复试考试大纲学科名称: 软件工程 学科代码:[0835] 本考试科目考试时间120分钟,满分200分。
包括:面向对象设计(30分)、计算机网络(40分)、系统分析与设计(30分)、操作系统(30分)、软件过程与项目管理(40分)、算法设计与分析(30分)面向对象设计(30分)一、考试要求1. 要求考生系统地掌握面向对象的基本概念和基于面向对象技术的软件系统分析与设计技术,掌握统一建模语言(UML)及常用软件建模工具等方面的知识。
2. 针对实际问题能建立有应用价值的软件系统模型,即需求模型、分析模型、设计模型等,并进行优化。
3. 掌握对软件模型进行评价及验证的方法和过程。
二、考试内容1)面向对象与系统建模概述a:系统和软件系统,软件开辟模型和开辟各个阶段模型b:软件系统的结构化和面向对象的两种建模方法c:软件系统的建模过程2) 面向对象的建模概念与建模表示法a: 面向对象的概念b: 面向对象的建模c: 统一建模语言UML的含义、模型和结构3)基于用例技术的需求分析a: 需求与需求的活动b: 用例的建模思想和过程c:用例模型元素及其关系4)面向对象的分析技术a: 分析方法和分析原则b: 对象模型的建立,包括:确定类和对象、确定属性和操作、确定关联。
c: 动态模型的建立,包括:事件与消息,交互图、协作图,状态图、活动图。
5)面向对象设计a: 面向对象的设计方法,设计建模的原则。
b: 面向对象设计的软件体系结构c: 包图及设计包的原则,组件图、实施图三、试卷结构选择题(30分)四、参考书目1.Grady Booch, Robert A. Maksimchuk, et al. Object-Oriented Analysis and Design with Applications (3rd edition) (王海鹏,潘加宇译,人民邮电出版社2022)2.Joey George, Dinesh Batra, Joseph Valacich, Jeffrey Hoffer. Object-Oriented Systems Analysis and Design (2nd edition). (龚晓庆;张远军;陈峰译. 面向对象系统分析与设计(第2版). 清华大学出版社. 2022)《计算机网络》(40分)一、考试要求1.掌握计算机网络的基本概念、基本原理和基本方法。
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。