预埋件及化学锚栓计算
- 格式:doc
- 大小:1.09 MB
- 文档页数:19
化学螺栓计算喜利得公司-——-HAS-R不锈钢螺杆孔深螺杆长度最大固定厚度N V 最大扭矩H1(mm) L(mm)T(mm) (Kn) (Kn) NmM8 80 110 14 7.4 7.9 12M10 90 130 21 9.9 9.0 25M12 110 160 28 14.1 13.1 40M16 125 190 38 20.6 24.7 100M20 170 240 48 37.4 38.6 200M24 210 290 54 53.9 55.6 200喜利得公司-——-镀锌螺杆孔深螺杆长度最大固定厚度N V 最大扭矩H1(mm) L(mm)T(mm) (Kn) (Kn) NmM8 80 110 14 7.4 5.6 18M10 90 130 21 9.9 9.2 35M12 110 160 28 14.1 13.1 60M16 125 190 38 20.6 24.7 120M20 170 240 48 37.4 38.6 260M24 210 290 54 53.9 55.6 450注:1、N=混凝土强度25N/MM^2的安全静拉力;2、V=混凝土强度25N/MM^2的安全静拉力.化学螺栓计算采用慧鱼5.8级镀锌钢螺杆,C30砼单个螺杆抗拉承载力设计值M24=80.3KN,M16=31.9KN,单个螺杆抗剪承载力设计值为M24=73.5KN,M16=32.6KN。
相关参数为:M=78.63KN.m N=4KN V=79KN选取最危险反力,按有剪力、法向拉力和弯矩共同作用验算预埋件(公式见《钢结构设计规范》GB50017-2003的公式7.2.1-8~9)1.在弯距M的作用下,最外排螺栓1的拉力最大,N1= = =56.2KN因此,在弯距M和法向拉力N的作用下,最外排螺栓1的拉力为Nt= N1+N=56.2+4=60.2KN<[ Nt ]=80.3KN,满足要求。
每个螺栓承受的剪力NV = = =9.9KN〈[ ]=73.5KN,满足式7.2.1-9的要求。
后置埋件及化学螺栓计算一、设计说明与本部分预埋件对应的主体结构采用混凝土强度等级为C30.在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。
本部分后置埋件由4—M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下:埋件示意图当前计算锚栓类型:后扩底机械锚栓;锚栓材料类型:A2—70;螺栓行数:2排;螺栓列数:2列;最外排螺栓间距:H=100mm;最外列螺栓间距:B=130mm;螺栓公称直径:12mm;锚栓底板孔径:13mm;锚栓处混凝土开孔直径:14mm;锚栓有效锚固深度:110mm;锚栓底部混凝土级别:C30;二、荷载计算V x :水平方轴剪力; V y :垂直方轴剪力; N :轴向拉力;D x :水平方轴剪力作用点到埋件距离,取100 mm ; D y :垂直方轴剪力作用点到埋件距离,取200 mm ; M x :绕x 轴弯矩; M y :绕y 轴弯矩;T :扭矩设计值T=500000 N·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mmM x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mmM y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值:1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5。
2.1条)式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数;1k :锚栓受力不均匀系数,取1。
化学锚栓计算:采用四个5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef=110mm,A S=58mm2,f u=500N/mm2 ,f y=300N/mm2。
荷载大小:N=5.544 KNV=2.074 KNM=2.074×0.08=0.166 KN·m一、锚栓力分析1、受力最大锚栓的拉力设计值因为361221 5.544100.166105042250My N n y ⨯⨯⨯-=-⨯⨯∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值:12i h Sd My NN n y =+∑ 3625.544100.166105042250⨯⨯⨯=+⨯⨯ =2216 N2、承受剪力最大锚栓的剪力设计值化学锚栓有效锚固深度:ef h '=ef h -30=60 mm锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。
承受剪力最大锚栓的剪力设计值:2hSd VV ==2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力锚栓钢材受拉破坏承载力标准值: ,5850029000Rk s s stk N A f ==⨯=N 锚栓钢材破坏受拉承载力分项系数:1.0-1.55 锚栓钢材破坏时受拉承载力设计值:,,,29000145002.0Rk sRd s RS NN N γ===N >h SdN=2216 N锚栓钢材受拉承载力满足规要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。
单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:=8248.64 N混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界间距:,33(9030)180mm cr N ef s h '==⨯-=混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界边距: , 1.5 1.5(9030)90mm cr N ef c h '==⨯-= 基材混凝土劈裂破坏的临界边距:,22(9030)120mm cr sp ef c h '==⨯-=则,c 1=150 mm >,90cr N c =mm ,取c 1=90 mm 边距c 对受拉承载力降低影响系数:,,900.70.30.70.390s N cr Nc c ψ=+=+⨯=1.0表层混凝土因密集配筋的剥离作用对受拉承载力降低影响系数:,90300.50.5200200efre Nh ψ-=+=+=0.8荷载偏心对受拉承载力的降低影响系数:,,111.012/120ec N N cr Ne s ψ===++⨯其中,0Ne =开裂混凝土, 1.0ucr N ψ=单根锚栓受拉,混凝土理想化破坏锥体投影面面积:0222,,18032400mm c N cr NA s ===s 1=100 mm <,取,180cr N s mm =s 1=100 mms 2=200 mm >,180cr N s mm =,取s 2=180 mmc 1=150 mm >,90mm cr N c =,取c 1=90 mm ,c 2=90 mm群锚受拉,混凝土破坏锥体投影面面积,c N A :,11,22,(c 0.5)(0.5)c N cr N cr N A s s c s s =++++(901000.5180)(901800.5180)=++⨯++⨯=100800 mm 2混凝土锥体破坏时的受拉承载力分项系数,, 2.15Rc N γ=群锚混凝土锥体受拉破坏时的受拉承载力标准值:,0,,,,,,0,c N Rk c Rk cs N re N ec N ucr N c NA N NAψψψψ=1008008248.64 1.00.8 1.0 1.032400=⨯⨯⨯⨯⨯=20529.95 N群锚混凝土锥体受拉破坏时的受拉承载力设计值:,,,20529.959548.812.15Rk cRd c Rc NN N γ===N >N=5544 N混凝土锥体受拉承载力满足规要求! 3、混凝土劈裂破坏承载力基材混凝土劈裂破坏的临界边距:,22(9030)120mm cr sp ef c h '==⨯-=则,c 1=150 mm >,120mm cr sp c =,取c 1=120 mm ,c 2=120 mm,,22120240mm cr sp cr sp s c ==⨯=s 1=100 mm <,240cr sp s mm =,取s 1=100 mms 2=200 mm >,240cr spsmm =,取s 2=200 mm0222,,24057600mm c N cr spA s === ,11,22,(c 0.5)(0.5)c N cr sp cr sp A s s c s s =++++(1201000.5240)(1202000.5240)=++⨯⨯++⨯=149600 mm 2构件厚度h 对劈裂承载力的影响系数:2233h,250()()2260spef h h ψ==⨯=1.631>1.5,取h, 1.5sp ψ=单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:,0 3.0(30)Rk cef N h =-1.53.0(9030)=⨯- =8248.64 N群锚混凝土锥体受拉破坏时的受拉承载力标准值:,0,,,,,,0,c N Rk c Rk cs N re N ec N ucr N c NA N NAψψψψ=1496008248.64 1.00.8 1.0 1.057600=⨯⨯⨯⨯⨯=17138.84 N混凝土劈裂破坏受拉承载力标准值:,,, 1.517138.8425708.26Rk sp h sp Rk c N N ψ==⨯=N混凝土劈裂破坏受拉承载力设计值:,,/25708.26/2.1511957.33Rd sp Rk sp Rsp N N γ===N >N=5544 N混凝土劈裂破坏承载力满足规要求! 4、锚栓钢材受剪破坏承载力锚栓钢材破坏时的受剪承载力标准值:,0.50.55850014500Rk s s stk V A f ==⨯⨯=N锚栓钢材受剪承载力分项系数:,5001.2/ 1.22.0300Rv s stkyk f f γ==⨯=锚栓钢材破坏时的受剪承载力设计值:,,,/14500/27250Rd s Rk s Rs v V V N γ===>V=2074 N锚栓钢材受剪承载力满足规要求! 5、混凝土楔形体受剪破坏承载力取c 1=c 2=,90cr Nc=mm混凝土楔形体破坏时的受剪承载力标准值:,00.21.51/)Rk c f nom V l d =0.2 1.50.45(60/10)90==10285.86 N边距比c 2/c 1对受剪承载力的降低影响系数:2s,1900.70.30.70.30.91.5 1.590v c c ψ=+=+⨯=⨯边距与构件厚度比c 1/h 对受剪承载力的提高影响系数:1/31/31, 1.5 1.590()()0.814250h v c h ψ⨯===<1,取, 1.0h v ψ= 剪力与垂直于构件自由边方向轴线之夹角α对受剪承载力的影响系数,v αψ: 因为α=00,因此, 1.0v αψ=。
化学锚栓拉拔力值计算混凝土位置M12X160化学锚栓拉拔力为Nmax=3160.8N;锚栓计算:计算说明:层高3600位置石材幕墙后置埋件化学锚栓强度计算计算层间高度3600mm,分格最大宽度1000mm石材幕墙自重1100N/平方米,地震荷载880 N/平方米风荷载标准值1000 N/平方米埋件受力计算:1、N1: 埋件处风荷载总值(N):N1wk=Wk×B×Hsjcg×1000=1.000×1.000×3.600×1000=3600.000N连接处风荷载设计值(N) :N1w=1.4×N1wk=1.4×3600.000=5040.000NN1Ek: 连接处地震作用(N):N1Ek=qEAk×B×Hsjcg×1000=0.880×1.000×3.600×1000=3168.000NN1E: 连接处地震作用设计值(N):N1E=1.3×N1Ek=1.3×3168.000=4118.400NN1: 连接处水平总力(N):N1=N1w+0.5×N1E=5040.000+0.5×4118.400=7099.200N2、N2: 埋件处自重总值设计值(N):N2k=1100×B×Hsjcg=1100×1.000×3.600=3960.000NN2: 连接处自重总值设计值(N):N2=1.2×N2k=1.2×3960.000=4752.000N3、M: 弯矩设计值(N·mm):e2: 立柱中心与锚板平面距离: 70mm M: 弯矩设计值(N·mm):M= N2×e2=4752×70=332640N·mm4、埋件强度计算螺栓布置示意图如下:123441244022040300200螺栓布置示意图d:锚栓直径12mmde:锚栓有效直径为10.36mmd0:锚栓孔直径16mm一个锚栓的抗剪承载力设计值为Nvb= nv ×π×d24×fvb (GB50017-20037.2.1-1) = 1×π×1224×140=15833.6Nt:锚板厚度,为10mm一个锚栓的承压承载力设计值为Ncb= d ×t ×fcb(GB50017-2003 7.2.1-2)= 12×10×305=36600N一个拉力锚栓的承载力设计值为Ntb= π×de24×ftb (GB50017-2003 7.2.1-6)= π×10.3624×140=11801.5N在轴力和弯矩共同作用下,锚栓群受力形式。
预埋件计算书==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v2.0.1.6计算时间:2011年04月01日13:49:10====================================================================一. 预埋件基本资料采用化学锚栓:单螺母扩孔型锚栓库_6.8级-M20排列为(环形布置):4行;行间距140mm;2列;列间距150mm;锚板选用:SB20_Q235锚板尺寸:L*B= 400mm×600mm,T=20基材混凝土:C30基材厚度:300mm锚筋布置平面图如下:二. 预埋件验算:1 化学锚栓群抗拉承载力计算轴向拉力为:N=50kNX向弯矩值为:Mx=100kN·mY向弯矩值为:My=30kN·m锚栓总个数:n=4×2=8个所选化学锚栓抗拉承载力为(锚栓库默认值):Nc=90.574kN承载力降低系数为:0.7实际抗拉承载力取为:Nc=90.574×0.7=63.402这里要考虑抗震组合工况:γRE=0.85故有允许抗拉承载力值为:Nc=63.402/γRE=74.59kN故有:0 < 74.59kN,满足2 化学锚栓群抗剪承载力计算X方向剪力:Vx=60kNY方向剪力:Vy=190kN扭矩:T=30kN·mX方向受剪锚栓个数:n x=8个Y方向受剪锚栓个数:n y=8个剪切荷载通过受剪化学锚栓群形心时,受剪化学锚栓的受力应按下式确定:V ix V=V x/n x=60000/8=7500×10-3=7.5kNV iy V=V y/n y=190000/8=23750×10-3=23.75kN化学锚栓群在扭矩T作用下,各受剪化学锚栓的受力应按下列公式确定:V ix T=T*y i/(Σx i2+Σy i2)V iy T=T*x i/(Σx i2+Σy i2)化学锚栓群在剪力和扭矩的共同作用下,各受剪化学锚栓的受力应按下式确定:V iδ=[(V ix V+V ix T)2+(V iy V+V iy T)2]0.5结合上面已经求出的剪力作用下的单个化学锚栓剪力值及上面在扭矩作用下的单个锚栓剪力值公式分别对化学锚栓群中(边角)锚栓进行合成后的剪力进行计算(边角锚栓存在最大合成剪力):取4个边角化学锚栓中合剪力最大者为:V iδ=[(7500+3663.43)2+(23750+1308.368)2]0.5=27.433kN所选化学锚栓抗剪承载力为(锚栓库默认值):Vc=53.855kN承载力降低系数为:0.7实际抗剪承载力取为:Vc=53.855×0.7=37.698这里要考虑抗震组合工况:γRE=0.85故有允许抗剪承载力值为:Vc=37698.272/0.85=44.351kN故有:V iδ=27.433kN < 44.351kN,满足3 化学锚栓群在拉剪共同作用下计算当化学锚栓连接承受拉力和剪力复合作用时,混凝土承载力应符合下列公式:(βN)2+(βV)2≤1式中:βN=N h/Nc=0/106.557=0βV=V iδ/Vc=39.189/63.358=0.6185故有:(βN)2+(βV)2=02+0.61852=0.3826 ≤1 ,满足三. 预埋件构造验算:锚固长度限值计算:锚固长度为300,最小限值为160,满足!锚板厚度限值计算:按《混凝土结构设计规范2002版》10.9.6规定,锚板厚度宜大于锚筋直径的0.6倍,故取锚板厚度限值:T=0.6×d=0.6×20=12mm锚筋间距b取为列间距,b=150 mm锚筋的间距:b=150mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于b/8=18.75mm, 故取锚板厚度限值:T=150/8=18.75mm锚板厚度为20,最小限值为18.75,满足!行间距为140,最小限值为120,满足!列边距为150,最小限值为60,满足!行边距为90,最小限值为40,满足!列边距为125,最小限值为40,满足!。
化学锚栓埋件的计算首先是锚栓的类型和尺寸。
常见的锚栓类型有膨胀锚栓、胶囊锚栓和钻孔锚栓。
不同类型的锚栓具有不同的载荷能力和适用范围。
锚栓的尺寸包括直径和长度,直径决定了锚栓的强度,长度决定了锚栓在混凝土中的嵌入深度。
其次是混凝土的强度。
混凝土的强度直接影响着化学锚栓埋件的承载力。
混凝土的强度一般由抗压强度表示,常见的混凝土抗压强度等级有C15、C20、C25等。
需要根据混凝土的抗压强度确定化学锚栓埋件的承载力。
第三是锚栓的安装方式。
化学锚栓的安装方式主要有预埋法和现场施工法两种。
预埋法是将化学锚栓在混凝土浇筑前预先埋入,现场施工法是混凝土浇筑后再进行化学锚栓的安装。
不同的安装方式会影响到化学锚栓的承载力计算。
计算化学锚栓埋件的承载力时,首先需要确定锚栓的最大拉力和最大剪力。
最大拉力一般由设备或结构的重量和悬挂方式决定。
最大剪力一般由受拉设备或结构施加的横向力决定。
根据最大拉力和最大剪力,可以计算出化学锚栓胶的有效承载力。
化学锚栓胶的有效承载力一般由制造商提供,也可以通过实验获得。
有效承载力可以通过公式计算得到,公式为有效承载力=化学锚栓胶的极限粘结强度×锚栓的有效面积。
其中,极限粘结强度是化学锚栓胶在固化后的强度,有效面积是浸入混凝土中的锚栓的有效面积。
最后,需要根据化学锚栓胶的有效承载力和使用工况进行验算。
使用工况一般包括静载荷、冲击荷载、地震荷载等,需要根据具体情况进行选择。
通过验算可以确保化学锚栓埋件在使用过程中的安全可靠性。
总之,化学锚栓埋件的计算涉及到锚栓的类型和尺寸、混凝土的强度、锚栓的安装方式、最大拉力和最大剪力以及化学锚栓胶的有效承载力。
通过合理的计算方法和验算,可以确保化学锚栓埋件的安全可靠使用。
化学锚栓计算:采用四个5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef =110mm ,A S =58mm 2,f u =500N/mm 2,f y =300N/mm 2。
荷载大小:N=5.544KNV=2.074KN锚栓钢材受拉破坏承载力标准值:,5850029000Rk s s stk N A f ==⨯=N锚栓钢材破坏受拉承载力分项系数:锚栓钢材破坏时受拉承载力设计值:,,,29000145002.0Rk sRd s RS N N N γ===N >hSd N =2216N锚栓钢材受拉承载力满足规范要求!2、混凝土锥体受拉破坏承载力锚固区基材为开裂混凝土。
单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:,,12/120ec N N cr N e s ++⨯0N e =开裂混凝土, 1.0ucr N ψ=单根锚栓受拉,混凝土理想化破坏锥体投影面面积:s 1=100mm <,取,180cr Ns mm =s 1=100mm s 2=200mm >,180cr N s mm =,取s 2=180mmc 1=150mm >,90mm cr N c =,取c 1=90mm ,c 2=90mm 群锚受拉,混凝土破坏锥体投影面面积,c N A :=100800mm 2混凝土锥体破坏时的受拉承载力分项系数,, 2.15Rc N γ=群锚混凝土锥体受拉破坏时的受拉承载力标准值:单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:=8248.64N群锚混凝土锥体受拉破坏时的受拉承载力标准值:=17138.84N混凝土劈裂破坏受拉承载力标准值:,,, 1.517138.8425708.26Rk sp h sp Rk c N N ψ==⨯=N,,/25708.26/2.1511957.33Rd sp Rk sp Rsp N N γ===N >N=5544N混凝土劈裂破坏承载力满足规范要求!4、锚栓钢材受剪破坏承载力锚栓钢材破坏时的受剪承载力标准值:,0.50.55850014500Rk s s stk V A f ==⨯⨯=N荷载偏心对群锚受剪承载力的降低影响系数,ec v ψ:未开裂混凝土及锚固区配筋对受剪承载力的提高系数,ucr v ψ: 单根锚栓受剪,混凝土破坏楔形体在侧面的投影面面积:022,14.5 4.59036450c V A c ==⨯=mm 2群锚受剪,混凝土破坏楔形体在侧面的投影面积:,122(1.5)(1.59020090)250106250c V A c s c h =++=⨯++⨯=mm 2群锚混凝土楔形体破坏时的受剪承载力标准值:=16901.79N混凝土楔形体受剪承载能力分项系数:群锚混凝土楔形体破坏时的受剪承载力设计值:,,,/16901.79/1.89389.88Rd c Rk c Rc V V V γ===混凝土破坏:1.5 1.5 1.5 1.5,,55442074((((0.5469548.819389.88h h Sd Sd Rd s Rd s N V N V +=+=<1.0 综上所述,后置埋件的承载力满足规范要求!>>As=58f_stk=500N_RKs=As*f_stkf_yk=300N_RdS=N_RKs/gamma_RSNh_ef=110h_ef1=h_ef-30f_cuk=35N_RKc0=(3.0*(h_ef-30)^1.5)*sqrt(f_cuk)S_crN=3*h_ef1C_crN=1.5*h_ef1C_crsp=2*h_ef1C=120psi_sN=0.7+(0.3*c)/C_crNpsi_reN=0.5+h_ef1/200N_RKc=(N_RKc0*A_cN*psi_sN*psi_reN*psi_ecN*psi_ucrN)/A_cN0N_RKsp=psi_hsp*N_RKcgamma_Rsp=2.15N_Rdsp=N_RKsp/gamma_Rspgamma_Rsv=(1.2*f_stk)/f_ykV_Rds=N_RdS/gamma_Rsvc_1=C_crNc_2=C_crNl_f=90d_nom=12V_RKc0=0.45*sqrt(d_nom)*(90/60)^(0.2)*sqrt(f_cuk)*c_1^(1.5)psi_hv=((1.5*c_1)/h)^(1/3)psi_alphav=1.0e_v=225psi_ecv=1/(1+(2*e_v)/(3*c_1))psi_ucrv=1A_cV0=4.5*(c_1^2)A_cV=(1.5*c_1+s_2+c_2)*hV_RKc=(V_RKc0*A_cV*psi_sv*psi_hv*psi_ecv*psi_ucrv)/A_cV0gamma_Rev=1.8V_Rdc=V_RKc/gamma_Revh_ef=110f_cuk=35N_RKc0=1.2700e+04S_crN=240C_crN=120C_crsp=160C=psi_sN= 0.9750 psi_reN= 0.9000 e_N=s_crN=180 psi_ecN=1psi_ucrN=160s_crsp=320s_1=120s_2=120A_cN0= 102400 A_cN= 160000500psi_hsp=1.7286N_RKc0= 1.2700e+04N_RKc= 1.7412e+04 N_RKsp= 3.0099e+04 gamma_Rsp=2.1500psi_ecv=0.4444 psi_ucrv=1A_cV0=64800A_cV=210000V_RKc= 1.2124e+04 gamma_Rev=V_Rdc=6.7353e+03>V_sdh=5.9934e+03(混凝土碶形体受剪破坏承载力)h_ef=110K=2V_RKcp=3.4825e+04>V_sdh=5.9934e+03(混凝土剪撬破坏承载力标准值)gamma_Rcp=1.8000V_Rdcp=。
预埋件锚栓计算范文引言:预埋件锚栓是一种常见的建筑结构连接件,用于固定混凝土结构或其他类似结构的构件。
在工程设计中,为确保预埋件锚栓的安全可靠,需要进行相应的计算。
本文将以一幢多层建筑的柱基础锚栓计算为例,介绍预埋件锚栓的计算方法和步骤。
一、设计要求:1.预埋件锚栓的承载力要满足工程要求,确保结构的稳定和安全。
2.预埋件锚栓的设计应符合国家相关标准和规范要求。
二、计算步骤:1.确定预埋件锚栓的类型和尺寸。
根据设计要求和结构特点,选择合适的预埋件锚栓类型和尺寸。
2.计算混凝土的抗拉强度。
根据混凝土强度等级和试块试验结果,确定混凝土的抗拉强度。
3.计算混凝土中的预埋件锚栓的埋入长度。
根据相关的设计规范公式,计算预埋件锚栓的埋入深度。
4.计算预埋件锚栓的抗剪强度。
按照相关标准和规范的要求,计算预埋件锚栓的抗剪强度。
5.计算预埋件锚栓的抗拉强度。
根据预埋件锚栓的尺寸和材料参数,计算预埋件锚栓的抗拉强度。
6.计算预埋件锚栓的承载力。
根据预埋件锚栓的抗剪强度和抗拉强度,计算预埋件锚栓的最大承载力。
7.检查预埋件锚栓的安全系数。
根据计算结果,对预埋件锚栓的安全系数进行检查和评估。
三、计算示例:假设工程的一层柱基础需要使用预埋件锚栓进行连接,设计要求预埋件锚栓的承载力不得小于100kN。
柱底柱脚尺寸为400mm×400mm,柱高4m,柱底柱脚混凝土强度等级为C30。
1.确定预埋件锚栓的类型和尺寸:选择M20型号的预埋件锚栓。
2. 计算混凝土的抗拉强度:混凝土强度等级为C30,抗拉强度为fct = 2.8MPa。
3. 计算预埋件锚栓的埋入长度:根据相关设计规范公式,计算预埋件锚栓的埋入长度为le = 8d = 8 × 20 = 160mm。
4. 计算预埋件锚栓的抗剪强度:根据相关标准和规范,预埋件锚栓的抗剪强度为Vc = β1 × α × fcd × le × d = 0.12 × 1 ×0.85 × 0.4 × 16 = 0.82kN。
后置埋件及化学螺栓计算一、设计说明与本部分预埋件对应的主体结构采用混凝土强度等级为C30。
在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。
本部分后置埋件由4-M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下:埋件示意图当前计算锚栓类型:后扩底机械锚栓;锚栓材料类型:A2-70;螺栓行数:2排;螺栓列数:2列;最外排螺栓间距:H=100mm;最外列螺栓间距:B=130mm;螺栓公称直径:12mm;锚栓底板孔径:13mm;锚栓处混凝土开孔直径:14mm;锚栓有效锚固深度:110mm;锚栓底部混凝土级别:C30;二、荷载计算V x :水平方轴剪力; V y :垂直方轴剪力; N :轴向拉力;D x :水平方轴剪力作用点到埋件距离,取100 mm ; D y :垂直方轴剪力作用点到埋件距离,取200 mm ; M x :绕x 轴弯矩; M y :绕y 轴弯矩;T :扭矩设计值T=500000 N·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mmM x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mmM y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值:1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.1条)式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数;1k :锚栓受力不均匀系数,取1.1。
1/ 1.16000/41650sd N k N n N ==⨯=2、在拉力和绕y 轴弯矩共同作用下,锚栓群有两种可能的受力形式,具体如下所示;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.2条)假定锚栓群绕自身的中心进行转动,经过分析得到锚栓群形心坐标为(125,100),各锚栓到锚栓形心点的x 向距离平方之和为:∑x 2=4×652=16900 mm 2;x 坐标最高的锚栓为4号锚栓,该点的x 坐标为190,该点到形心点的x 轴距离为:x 1= 190-125=65mm ;x 坐标最低的锚栓为1号锚栓,该点的x 坐标为60,该点到形心点的x 轴距离为:x 2= 60-125=-65mm ;锚栓群的最大和最小受力分别为:2min 2600065000065-1000 N 416900y M x N N n x ⨯=+=-=∑ 1max 26000650000654000 N 416900y M x N N n x ⨯=+=+=∑由于N min <0,说明连接下部受压,在弯矩作用下构件绕最左排锚栓转动,此时,分析计算得到各锚栓到左排锚栓的x 轴距离平方之和为:∑x d 2=33800 mm 2;最右锚栓点到最左锚栓点的x 轴距离为:x d =190-60=130 mm ; L y :轴力N 作用点至受压一侧最外棑锚栓的垂直距离,取65 mm ; 那么,锚栓所受最大拉力实际为:min 2130()(650000600065)4000 N 33800d y y d x N M NL x =+=+⨯⨯=∑ 综上,锚栓群在拉力和垂直弯矩共同作用下,锚栓的最大拉力设计值为4000 N 。
3、在拉力和绕x 轴弯矩共同作用下,锚栓群有两种可能的受力形式,具体如下所示;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.2条)假定锚栓群绕自身的中心进行转动,各锚栓到锚栓形心点的y 向距离平方之和为:∑y 2=4×502=10000 mm 2;y 坐标最高的锚栓为4号锚栓,该点的y 坐标为150,该点到形心点的y 轴距离为:y 1= 150-100 = 50mm ;y 坐标最低的锚栓为1号锚栓,该点的y 坐标为50,该点到形心点的y 轴距离为:y 2= 50-100 = -50mm ;锚栓群的最大和最小受力分别为:2min 26000700000502000 N 410000x h M y N N n y ⨯=-=-=-∑ 1min 26000700000505000 N 410000x M y N N n y ⨯=+=+=∑ 由于N hmin <0,说明连接下部受压,在弯矩作用下构件绕最下排锚栓转动,此时,分析计算得到各锚栓到下排锚栓的y 轴距离平方之和为:∑y d 2=20000;最上锚栓点到最下锚栓点的y 轴距离为:y d = 150-50 = 100mm ; L x :轴力N 作用点至受压一侧最外棑锚栓的垂直距离,取50mm ; 因此,锚栓所受最大拉力实际为:min 2100()(700000600050)5000 N 20000d h x x d y N M NL y =+=+⨯⨯=∑ 综上,锚栓群在拉力和水平弯矩共同作用下,锚栓的最大拉力设计值为5000 N 。
(二)、锚栓受拉区总拉力计算计算依据:g sdsi N N =∑,//1/h si d i N N y y =;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.3条)式中,gsd N :锚栓受拉区总拉力设计值;si N :锚栓中受拉锚栓i 的拉力设计值;hsd N :锚栓中最大锚栓的拉力设计值;/1y :锚栓1至受压一侧最外排锚栓的垂直距离;/i y :锚栓i 至受压一侧最外排锚栓的垂直距离。
g sd si N N =∑,//1/h si d i N N y y =四、混凝土锥体受拉承载力计算计算依据:,,,/Rd c Rk c Rc N N N γ=,,0,,,,,0,c N Rk c Rk cs N re N ec N c NA N N A ψψψ=;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.3条)对于开裂混凝土:,0 1.5Rd c ef N =;对于不开裂混凝土:,0 1.5Rd cefN = 式中,Rk,c N :混凝土锥体破坏受拉承载力标准值;0Rk,c N :单根锚栓受拉时,混凝土理想锥体破坏受拉承载力标准值;Rc,N γ:混凝土锥体破坏受拉承载力分项系数,根据《混凝土结构后锚固技术规程》JGJ145-2013 第4.3.10条,取3.0;cu,k f :混凝土立方体抗压强度标准值。
当cu,k f 不小于45 N/mm 2且不大于60N/mm 2时,应乘以降低系数0.95;ef h :锚栓有效锚固深度。
对于膨胀型螺栓及扩底型锚栓,为膨胀锥体与孔壁最大挤压点的深度;0c,N A :根锚栓受拉且无间距、边距影响时,混凝土理想锥体破坏投影面面积;c,N A :单根锚栓或群锚受拉时,混凝土实际锥体破坏投影面面积;s,N ψ:边距c 对受拉承载力的影响系数;re,N ψ:表层混凝土因密集配筋的剥离作用对受拉承载力的影响系数; ec,N ψ:荷载偏心e N 对受拉承载力的影响系数。
另外,根据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.9条规定:群栓有三个及以上边缘且锚栓的最大边距max c 不大于,cr N c (见下图),计算混凝土锥体受拉破坏的受拉承载力设计值,Rd c N 时,应取/ef h 代替ef h 、/,cr N s 代替,cr N s 、/,cr N c 代替,cr N c 用于计算0Rk,c N 、0c,N A 、c,N A 、s,N ψ及ec,N ψ。
/max max,,max()ef ef ef cr N cr Nc sh h h c s =, //,,efcr Ncr N efh ss h =//,,0.5cr N cr N c s =1、0c,N A 计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.4条)计算公式:02c,N cr,N A s =式中,2cr,N s :混凝土锥体破坏且无间距效应和边缘效应情况下,每根锚栓达到受拉承载力标准值的临界间距,应取为ef 3h 。
2、c,N A 计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.5条) (1)、单根锚栓,靠近构件边缘布置,且c 1不大于cr,N c 时(下左图):计算公式:c,N 1cr,N ,(0.5)cr N A c s s =+(2)、双栓,垂直于构件边缘布置,且c 1不大于cr,N c ,s 1不大于cr,N s 时(上右图):计算公式:c,N 11cr,N ,(0.5)cr N A c s s s =++(3)、双栓,平行于构件边缘布置,且c 2不大于cr,N c ,s 1不大于cr,N s 时(下左图):计算公式:c,N 2cr,N 1,(0.5)()cr N A c s s s =++(4)、四栓,位于构件角部,且c 1不大于cr,N c ,c 2不大于cr,N c ,s 1不大于cr,N s ,s 2不大于cr,N s 时(下右图)计算公式:c,N 11cr,N 22cr,N (0.5)(0.5)A c s s c s s =++++ 式中,c 1:方向1的边距;c 2:方向2的边距; s 1:方向1的间距; s 2:方向2的间距;cr,N c :混凝土椎体破坏且无间距效应及边缘效应情况下,每根锚栓达到受拉承载力标准值的临界边距,应取为ef 1.5h 。
3、s,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.6条)计算公式:s,N cr,N0.70.3c c ψ=+式中,c :边距,有多个边距时应取最小值。
4、re,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.7条)计算公式:re,N 0.5200ef h ψ=+另外,当re,N ψ的计算值大于1.0时,应取1.0;当锚固区钢筋间距s 不小于150mm 时,或钢筋直径d 不大于10mm 且s 不小于100mm 时,re,N ψ应取1.0。
5、ec,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.8条)ec,N N cr,N112/e s ψ=+式中,N e :受拉锚栓合力点相对于群锚受拉锚栓重心的偏心距。