风洞概论及设计
- 格式:docx
- 大小:162.88 KB
- 文档页数:12
小型风洞设计制作及稳定段研究摘要风洞是从事飞行器研制和空气动力学研究的最基本的实验设备。
迄今为止绝大部分空气动力学实验都是在风洞中完成的。
风洞的发展是同航空航天技术紧密相关的,风洞是研制新型飞行器的重要物质基础。
稳定段及其内部的整流装置是风洞不可或缺的组成部分。
整流装置包括纱网和蜂窝网等,其设计目的是使气流均匀或降低紊流度。
关键词小型风洞;纱网;均匀性;稳定段;能量损失在本次研究中,设计并动手制作可用于实际操作的小型风洞,着重对其稳定段进行研究,从而设计出适合于一类小型风洞的稳定段。
一方面,在理论计算与实验中记录有意义的数据,为以后进一步的研究提供依据。
另一方面,此次研究所制作出的小型风洞,可以用于实际的风洞实验,如小型风力发电机的测试等。
在研究的前期进行小型风洞的设计,绘制小型风洞的设计图纸。
在研究的第二阶段,根据设计动手制作小型风洞。
在制作过程中,不断根据实际情况,对图纸细节进行调整和改进。
在研究的第三阶段,对已制作完成的小型风洞稳定段中的纱网进行控制变量的研究与分析。
对于低速小型风洞,进口风速为10m/s~18m/s时,在综合气流均匀性、稳定性和气流能量3个指标之后发现,网丝直径d与网眼尺度l的比值为0.37,每层纱网间距为2cm的三层纱网组合为最优纱网组合。
1 研究方法及过程1.1 小型风洞的设计1.1.1 风洞整体的布置小型风洞是由风扇、风洞本体和测量仪器系统三部分组成。
如图1所示为风洞的整体布置图。
①为风扇。
②为风洞本体。
③为传感器组1.1.2 风扇的设计根据研究需要,风扇选用具有调速功能的低速风扇,其风速范围为:10m/s ~20m/s。
出风口为正方形,内径为11.6cm,外径为12cm。
在风洞的出口和进口,分别放置两个相同型号的风扇,进口的风扇向风洞内鼓风,出口的风扇从风洞内吸风,并始终调节两风扇的鼓风风速相同。
这样的设计可以在一定程度内令风洞内的气体密度保持恒定。
1.1.3 风洞本体的设计风洞本身共分为三段,内有两个为消除涡流而装置的蜂窝器和两套为平稳气流而装置的纱网。
实验空气动力学课程设计(风洞综述)一.概念及原理风洞(wind tunnel),是能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是空气动力学实验最常用、最有效的工具。
它不仅在航空和航天工程的研究和发展中起着重要作用, 在交通运输、房屋建筑、风能利用和环境保护等部门中也得到越来越广泛的应用。
原理:用风洞作实验的依据是运动的相对性原理。
为确保实验准确模拟真实流场,还必须满足相似律的要求。
但由于风洞尺寸和动力的限制,通常只能选择一些影响最大的参数进行模拟。
此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。
二.风洞发展简要回顾风洞设备的发展大致经历了低速风洞发展阶段、超声速风洞发展阶段、跨声速风洞发展阶段、高超声速风洞发展阶段、风洞设备更新改造和稳定发展阶段、风洞设备发展适应新需求、探索新概念风洞发展阶段。
20世纪90年代,随着经济全球化和型号发展数量的减少,一方面,风洞设备在数量上呈现出过剩状态;另一方面,又缺少能满足未来型号精细化发展要求的高性能风洞。
三.近期风洞改造和建设工业生产型风洞的更新改造最主要特点是风洞设计的多功能性、可扩展性、技术的先进性,风洞建设也呈现出创新的特点。
主要包括:吸收试验段内的大部分噪声,提高风洞试验Re或模拟能力等。
另外还有:感应热等离子体风洞(通过高频电发生器以感应偶合的方式将亚声速或超声速射流加热到极高温度(5000℃~10000℃),这种等离子风洞主要用于防热研究)四. 风洞发展的未来趋势1)“安静”气流风洞不仅气动声学风洞需要“安静”的风洞,高品质的任何类型风洞都需要“安静”的风洞。
2)亚声速高升力飞行风洞风洞Re模拟能力直接影响试验数据的准确性。
经过多年论证研究,NASA提出了高升力飞行风洞(HiLiFT)的概念。
风洞(英语:Wind tunnel)是空气动力学的研究工具。
风洞是一种产生人造气流的管道,用于研究空气流经物体所产生的气动效应。
风洞除了主要应用于汽车、飞行器、导弹(尤其是巡航导弹、空对空导弹等)设计领域,也适用于建筑物、高速列车、船舰的空气阻力、耐热与抗压试验等。
简介风洞实验是飞行器研制工作中的一个不可缺少的组成部分。
它不仅在航空和航天工程的研究和发展中起着重要作用,随着工业空气动力学的发展,在交通运输、房屋建筑、风能利用等领域更是不可或缺的。
这种方法,流动条件容易控制,可重要依据是运动的相对性原理。
实验时,常将模型或实物固定在风复地、经济地取得实验数据。
为使实验结果准确,实验时的流动必须与实际流动状态相似,即必须满足相似律的要求。
但由于风洞尺寸和动力的限制,在一个风洞中同时模拟所有的相似参数是很困难的,通常是按所要研究的课题,选择一些影响最大的参数进行模拟。
此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。
历史1871年,弗朗西斯〃赫伯特〃韦纳姆和约翰〃布朗宁设计并建造了世界上第一座风洞1901年,莱特兄弟为研究飞机及得到正确的飞行资料,发明了风洞隧道进行测试[1]。
1902年莱特兄弟以风洞隧道的测试与前两架滑翔机的经验,建造第三架滑翔机,为当时最大的双翼滑翔机,并在机尾加装垂直尾翼,以防止转向时发生翻转,并进行了上千次的试飞。
而最终在1903年发明了世界上第一架带有动力的载人飞行器——莱特飞行器。
1945年,第二次世界大战尚未结束时,德国设计并开始建造一个实验段直径1米,最高风速达10马赫的连续式高超音速风洞。
战争结束后被美国缴获,美国仿制并作了适当修改后,一直到1961年才在阿诺德中心建立最高风速达12马赫的高超音速风洞。
因为风洞的控制性佳,可重复性高,现今风洞广泛用于汽车空气动力学和风工程(Wind Engineering)的测试,譬如结构物的风力荷载(Wind load)和振动、建筑物通风(Ventilation)、空气污染(Air pollution)、风力发电(Wind power)、环境风场(Pedestrian level wind)、复杂地形中的流况、防风设施(Wind break)的功效等。
风洞文献综述Wind Tunnels Document Summary一、前言风洞,是能人工产生和控制气流,以模拟飞行器或物体周围气体的流动,并可量度气流对物体的作用以及观察物理现象的一种管道状实验设备,它是进行空气动力实验最常用、最有效的工具。
风洞设备的建设发展与航空航天飞行器研制紧密相联。
在航空飞行器发展早期,对空气动力问题的探究促使了风洞的诞生。
1871年,英国人温霍姆建造了世界上第一座风洞。
随着飞机、导弹、航天飞行器发展,20世纪30~80年代,迎来了风洞建设的高峰期,低速、跨声速、超声速、高超声速各类型风洞得到快速发展。
到目前为止,我国已经拥有低速、高速、超高速以及激波、电弧等风洞。
由于实际流动的复杂性,流体力学和空气动力学中的许多课题还不能单纯依靠理论或计算方法解决,因而风洞有其特殊的重要性。
二、风洞的发展简要回顾风洞设备的发展大致经历了低速风洞发展阶段、超声速风洞发展阶段、跨声速风洞发展阶段、高超声速风洞发展阶段、风洞设备改造和稳定发展阶段、风洞设备发展适应新需求阶段、探索新概念风洞发展阶段。
20世纪90年代,随着经济全球化和型号发展数量的减少,一方面,风洞设备在数量上呈现出过剩状态;另一方面,又缺少能满足未来型号精细化发展要求的高性能风洞。
三、风洞的组成风洞主要由洞体、驱动系统和测量控制系统组成,各部分的形式因风洞类型而不同。
根据驱动系统的不同有两类,一类是运转时间长,运转费用较低,多在低速风洞中使用的连续式风洞。
另一类是工作时间可由几秒到几十秒,多用于跨声速、超声速和高超声速的暂冲式风洞。
四、风洞的种类风洞种类繁多,有不同的分类方法。
按实验段气流速度大小来区分,可以分为低速、高速和高超声速风洞。
①低速风洞基本上有两种形式,一种是直流式风洞;另一种是回流式风洞。
低速风洞实验段有开口和闭口两种形式,截面形状有矩形、圆形、八角形和椭圆形等,长度视风洞类别和实验对象而定。
60年代以来,还发展出双实验段风洞,甚至三实验段风洞。
《流体力学试验技术》课程设计班级:0109108学号:***************指导教师:***南京航空航天大学空气动力学系2012年12月一、目的要求综合运用所学课程知识,完成简化了的低速风洞气动外型概念设计,达到培养和提高独立完成设计工作的能力。
二、完成设计任务的条件(1)风洞试验段要求:闭口(2)实验段进口截面形状:矩形(3)实验段进口截面尺寸:2.5mX3.0m(4)试验段进口截面最大风速:100m/s(5)收缩段的收缩比:7三、完成的任务(1)低速风洞设计图纸绘制(2)设计说明书(3)风洞设计、研制与实验技术研究方面的综述报告四、完成时间2012年12月24日~2013年1月4日五、参考文献《风洞设计原理》、《低速风洞实验》:查找风洞实验技术相关文献资料。
指导老师:史志伟① 为了使模型处于实验段的均匀流场之中,模型头部至实验段入口应保持一定的距离,以1l 表示。
1l 的大小视实验段入口流场的均匀程度而定。
如实验段直径为0D ,则1l 大致为0.25~0.500D 。
因为后面我们会采用较多层的紊流网,故此处不用取得太大,选择100.35l D =。
② 模型的长度为2l 表示,大约在0.75~1.250D 之间,各类飞机的模型是不相同的。
为了使风洞尽量满足一洞多用,取2l 足够长选择201.25l D =。
③ 模型尾部至扩压段进口也应保持一定距离,以3l 表示,一方面是保证模型的尾流不过多影响扩压段的工作效率,另一方面也不使扩压段的流动影响模型尾部。
这个距离大约为0.75~1.250D 。
选择300.8l D =④ 所以12302.4 6.55L l l l D m =++==,满足统计数据中,主要实验低速飞机02.0~2.5L D =的情况。
其中0D 为水力直径。
04S D C= ⑤ 由于本组的风洞实验段截面为矩形形状,而对于矩形实验段,可以采用的一种解决附面层影响的方法就是沿轴线逐渐减小切面的截角。
此处我们参考NH -2风洞模型。
这样做使位流截面保持不变,可以消除纵向静压梯度。
① 任务要求收缩比为7(即进口面积与出口面积之比)② 收缩段长度一般可采用进口直径的0.5~1.0倍。
因为收缩比越大,长度与进口直径的比值越小。
这样能减短扩压段长度,减少资金耗费。
因为收缩比为7较大,选择收缩段长度为0.6倍进口直径00.6 4.3L D m =⨯⨯≈③ 收缩段的在接近出口部分曲线应该比较平缓,以利于稳定气流。
进口处的曲线应与稳定段保持连续。
因为任务要求为矩形,选择在收缩段四角做成圆弧,防止气流分离。
其收缩曲线方程如下:R R = 三、 稳定段① 对于小收缩比的风洞,如收缩比小于5,稳定段长度为直径的1.0~1.5倍;对于大收缩比风洞,如收缩比大于5,则长度为直径的0.5~1.0倍。
稳定段长度引起的损失只占风洞总损失很小的一部分,所以经常使稳定段长度长一些,用以协调动力段和回流段的长度要求。
又因为目前收缩比较大的风洞一般为7~10,参考大收缩比风洞稳定段长度,综合选定其长度为直径的0.8倍。
00.8 5.8L D m =⨯⨯≈② 蜂窝器的选择:兼顾经济性和损失系数采用方形格子,因为其加工方便,最为常见。
5~10;5~30L M M cm ==。
L 、M 分别为蜂窝器的蜂窝长度和口径。
长度L 越大,整流效果越好,但损失增加。
M 值越小,蜂窝器对降低紊流度的效果越显著。
这里选择6L M =。
因为风洞不小,所以尽量使L 长一些,同时又要兼顾不能使得M 过大,所以取15M cm =、90L cm =。
当6L M =时,圆形蜂窝格子的损失系数为0.30;方形蜂窝格子的损失系数为0.22;六角形蜂窝格子的损失系数为0.20.可见虽然六角形蜂窝格子最好,但施工较为复杂。
因方形蜂窝格子与其损失系数相近而又加工方便,选用方形格子。
③ 紊流网的选择:现有风洞的情况是网的层数为1~11层,最常见为2~3层;网的粗细为18~60目/英寸,最常用的是24~30目/英寸。
参考书《低速风洞设计》表2-3,可知随着层数的增加,脉动速度与实验段速度之比逐渐降低了。
综合考虑工序和整流效果,选择紊流网为4层。
因为网越细,整流效果越好,选择网的粗细为30目/英寸。
考虑到安装要求及每一层网后应有一段距离衰减旋窝,相邻两层之间距离应相距25厘米。
四、 其他部件设计① 调压孔/调压缝为了使实验段的静压等于风洞外的环境压力,常在实验段与扩压段之间开一个调压缝,或在扩压段进口处开一排调压孔。
这里我们采用调压缝,其宽度约为实验段直径的5%上下。
00.05140L D mm =⨯≈。
并且,设计成可调节形式,风洞建成后通过实验调整再确定。
② 扩压段:入口面积1D ,出口面积2D 。
综合考虑整个风洞的设计长度,取1211.5D D =。
因为设计任务为中型风洞,λ在0.006左右。
在tan 2α=4~5︒︒,但从综合角度考虑,这个幅值小一些,宜采用6︒左右。
所以我们取32α=︒因为实验段为矩形截面,而我们设计的扩压段及后面的拐角1、2和回流段都为圆形的。
所以这里,我们需要采用一个过渡段,使矩形截面过渡为圆形。
通过1211.5D D =和32α=︒我们可以求得扩压段的长度14L m ≈,因为采用过渡段,其长度要能使其能够加工,也不能过长,所以选择为6米,扩压段有部分包含在过渡段中。
③ 回流段:我们设计的在风扇系统后至第三拐角的回流段仍采用扩张管道,因而也为扩压段。
采用扩压段的原因为:一是为了继续把动能转变为压力能,减小气流损失,尤其是经过拐角和整流装置的损失;二是增加管道面积,以得到比较大的收缩比。
回流段的平均速度已经比较低了,因而损失不会大,为了缩短风洞的总长度采用较大的扩散角,8~9α=︒︒。
与扩压段相同,回流段中还需要设置一个过渡段让圆形截面再过渡到矩形截面,这里其长度取为8米。
④ 拐角及导流片:气流经过拐角时很容易发生分离,出现很多旋窝,因而使流动不均匀或发生脉动。
因而在拐角处设置拐角导流片,防止分离和改善流动。
这里,为单回流风洞,在拐角处每排导流片数量一般为10~20个,但为了使导流效果明显,选择24个导流片增强效果。
导流片的弦长为C ,间距为1D 。
参考《低速风洞设计》表2-2各种导流片的性能,采用最佳间距比10.4D C =,其损失系数为0.11,并采用翼剖面型。
虽然翼剖面型加工困难,但强度好。
同时这种导流片有一定厚度,内部可以通过冷却液,大中型风洞拐角处一般都采用翼剖面型。
拐角处圆弧半径按0.1D τ=来计算,另外导流片的弦长取t D =10.4D C =,可以求得为24个导流片。
因为此次设计的为低速风洞,拐角1、2和拐角3、4的风速都比较小,虽然损失系数随导流片增多而增加,也不会太大。
所以不需要取拐角1、2的导流片布置的比拐角3、4的稀。
五、 风扇设计在风洞管道中,风扇系统应位于流速比较高而且流动又比较均匀的部位。
我们设计的为回路风洞,将风扇安装在第二拐角之后。
因为,此处直径不是很大,因而流速比较高。
同时,因为经过了第二个拐角导流片,所以气流也比较均匀。
还能满足有足够的长度来安装风扇整流系统。
风扇管道长度因尾罩具有相当的长度而一般比较长,其长度一般为直径的2.5倍或者更长一些。
我们这里选择2.510L D m =≈六、 能量比能量比定义为:实验段气流的动能流率(即单位时间通过的动能)与通过动力系统输入风洞的功率之比。
注明:在求雷诺数时,采用公式Re vD vD ρμν==,其中521.460710/m s ν-=⨯① 实验段损失: 对实验段来说,损失系数就是当量损失系数。
因而有00L K D λ=,其中0D 为水力直径。
可以求得实验段的雷诺数7Re 1.8710vD ρμ==⨯ 此时,雷诺数比较小,因而附面层比较厚,实验段可以认为是光滑管,摩擦损失系数λ仅与雷诺数有关,而与粗糙度无关。
通过公式求得:0.2370.00320.221Re 0.00738λ-=+=所以,可以求得000.00738 6.55/2.730.0177L K D λ==⨯= ② 扩压段损失:气流经过扩压段的损失公式为:4平均120.6tan 128tan 2D K D λαα⎛⎫⎡⎤ ⎪⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦ ⎪⎝⎭由于损失系数K 的参考动压为扩压段入口的值,即为实验段动压,所以有4平均1020.6tan 128tan 2D K K D λαα⎛⎫⎡⎤ ⎪⎛⎫⎢⎥==+- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦ ⎪⎝⎭ 其中平均λ根据扩压段中间剖面上的雷诺数求得。
扩压段中间剖面的速度为:2211 2.7310064/3.4D v v m s D ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭所以7Re 1.49510vD ρμ==⨯ 0.2370.00320.221Re 0.0076λ-=+=进而求得4平均1020.6tan 10.039828tan 2D K K D λαα⎛⎫⎡⎤ ⎪⎛⎫⎢⎥==+-= ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦ ⎪⎝⎭③ 回流段损失:回流段也有扩散角,实际上也是一个扩压段,所以其损失系数的计算公式为:242平均01001210.6tan 10.0234628tan 2F D F K K F D F λαα⎛⎫⎡⎤ ⎪⎛⎫⎛⎫⎛⎫⎢⎥==+-= ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎣⎦ ⎪⎝⎭④ 拐角损失:因为这里设计的风洞并非大型风洞,采用经验公式近似计算,公式为:()2002.584.550.10lg Re F K F ⎛⎫⎛⎫ ⎪=+ ⎪ ⎪⎝⎭⎝⎭,其中F 为拐角时风洞截面积 第一、 二拐角速度为 22112 2.7310044.4/4.1D v v m s D ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭所以 6Re 1.75410vD ρμ==⨯ ()200 2.584.550.100.02759lg Re F K F ⎛⎫⎛⎫ ⎪=+= ⎪ ⎪⎝⎭⎝⎭第三、 四拐角速度为 22112 4.144.414.4/7.2D v v m s D ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 所以 6Re 0.10010vD ρμ==⨯ ()200 2.584.550.100.0035lg Re F K F ⎛⎫⎛⎫ ⎪=+= ⎪ ⎪⎝⎭⎝⎭⑤ 蜂窝器损失: 因为我们选用的蜂窝器长径比为6L M =,所以对应的方形蜂窝格子的损失系数0.22K =。
其当量损失系数:200F K K F ⎛⎫= ⎪⎝⎭,其中F 为稳定段截面 所以00.00449K =⑥ 紊流网损失:我们可以求得稳定段的速度:22112 4.144.414.4/7.2D v v m s D ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭因为其速度大于9米/秒,气流流经紊流网的损失可以按 21K ββ-=计算,其中21d l β⎛⎫=- ⎪⎝⎭ 这里为了让整流效果较好,采用了4层紊流网,所以其损失系数较大00.0614K ≈⑦ 收缩段损失:由于任务中只给出收缩段的收缩比为7,并没有给定其他数据。