线弹性断裂力学的本质
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。
为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。
为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。
1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。
裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。
在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。
c δ也是材料的断裂韧性,是通过实验测定的材料常数。
COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。
2. J 积分理论1968年,Rice 提出了J 积分理论。
对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。
J 积分的单位为MPa* mm 。
图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。
线弹性断裂力学的本质线弹性断裂力学的本质一、线弹性断裂力学1.1 线弹性断裂力学的研究范围线弹性断裂力学是断裂力学的一个重要分支,它是用弹性力学的线性理论对裂纹体进行力学分析,并采用由此求得的某些特征参量(如应力强度因子、能量释放率)作为判断裂纹扩展的准则。
线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。
研究裂纹扩展有两种观点:一种是能量平衡的观点,认为裂纹扩展的动力是构件在裂纹扩展中所释放出的弹性应变能,它补偿了产生新裂纹表面所消耗的能量,如Griffith理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin理论。
1.2线弹性断裂力学的基本理论线弹性断裂力学的基本理论包括:●Griffith理论,即能量释放率理论;●Irwin理论,即应力强度因子理论。
Griffith理论:1913年,Inglis研究了无限大板中含有一个穿透板厚的椭圆孔的问题,得到了弹性力学精确分析解,称之为Inglis解。
1920年,Griffith研究玻璃与陶瓷材料脆性断裂问题时,将Inglis解中的短半轴趋于0,得到Griffith裂纹。
Orowan在1948年对其发展指出,金属材料在裂纹的扩展过程中,其尖端附近局部区域发生塑性变形。
因此,裂纹扩展时,金属材料释放的应变能,不仅用于形成裂纹表面所吸收的表面能,同时用于克服裂纹扩展所需要吸收的塑性变形能(也称为塑性功)。
Irwin的理论:Irwin的理论适用于金属材料的准脆性破坏—破坏前裂纹尖端附近有相当范围的塑性变形 .该理论的提出是线弹性断裂力学诞生的标志。
Irwin认为裂纹尖端存在奇异性,基于这种性质,1957年Irwin提出新的物理量—应力强度因子。
1.3线弹性断裂力学的应用按线弹性力学求得的裂纹体的应力和应变通常是有奇异性的,即在裂纹顶端处的应力和应变为无穷大。
这在物理上是不合理的。
材料力学中的断裂力学分析方法研究引言:断裂力学是材料力学中的一个重要分支,研究材料在受力作用下的破裂行为和断裂过程。
在工程实践和科学研究中,了解材料的断裂行为对于设计和改进工程结构具有重要意义。
本文将介绍材料力学中的断裂力学分析方法,包括线弹性断裂力学、弹塑性断裂力学和断裂力学的数值模拟方法。
一、线弹性断裂力学线弹性断裂力学是材料力学中最基本的断裂理论,适用于强度高、韧性差的材料。
线弹性断裂力学的基本原理是根据材料的线弹性性质,通过应力和应变的关系,计算出材料在受力作用下的应力强度因子。
应力强度因子是描述断裂过程中应力场的一种参数,可用于预测材料的断裂行为。
线弹性断裂力学的主要分析方法包括拉伸试验、根据裂纹尖端应力场求解应力强度因子、确定裂纹扩展方向的K-R曲线等。
二、弹塑性断裂力学当材料的强度和韧性较高时,线弹性断裂力学不能很好地描述材料的断裂行为。
此时,需要采用弹塑性断裂力学进行分析。
弹塑性断裂力学将材料的弹性和塑性行为结合起来,考虑材料在加载过程中的变形和断裂。
在弹塑性断裂力学中,应力强度因子的计算需要考虑材料的塑性缺口效应。
常见的弹塑性断裂力学分析方法包括J-积分法、能量法和应力强度因子法等。
三、断裂力学的数值模拟方法随着计算机技术的发展,断裂力学的数值模拟方法得到了广泛应用。
数值模拟方法能够更准确地描述材料的断裂行为,包括裂纹的扩展路径、失效载荷和断裂过程等。
常用的数值模拟方法有有限元法和离散元法。
有限元法以其广泛的适用性和高精度的计算结果而受到广泛关注。
在有限元法中,利用离散化的网格模型和连续介质力学理论,对材料的断裂过程进行模拟和分析。
离散元法则更适用于颗粒状材料或颗粒之间存在断裂的材料。
四、断裂力学在工程中的应用断裂力学在工程中有着广泛的应用。
通过对材料的断裂行为进行准确的分析和预测,可以为工程结构的设计和改进提供重要的依据。
例如,在航空航天工程中,断裂力学能够用于预测飞机机体的疲劳破坏和碰撞破坏情况;在汽车工程中,断裂力学可以帮助改进车辆的安全性能和减少事故发生的风险;在材料工程中,断裂力学可以用于评估材料的强度和韧性,优化材料生产工艺。
第五章 线弹性断裂力学§5.1 引 言断裂力学是从材料强度问题提出的。
随着固体物理、物理力学等学科的发展,人们已能够大致从理论上计算出某些固体材料(特别是单晶体)的理论强度t σ。
例如,Orowan(1949)得到πσ2/E t ≈, Zhurkov (1957)得到E t ≈σ。
其中E 为杨氏模量。
但试验中测得的实际材料强度远远低于计算所得的理论强度, 两者往往相差几个数量级。
这一情况吸引着不少科学家去研究现有材料的强度比理论强度低的原因。
人们很早就认识到这是由于实际固体中存在着大量缺陷所致。
但这种认识在很长一段时期里只停留在定性说明阶段。
而对于缺陷如何定量地影响材料的强度,直到断裂力学的产生,才得到较明显的进展。
§4.2介绍了含椭圆孔平板受拉伸时的弹性解。
当拉伸应力σ垂直于椭圆长轴时,长轴端点处的环向应力最大。
由§4.2可得()σσb a /21max += (5.1)又椭圆长轴端点处的曲率半径为a b /2=ρ, 因此(5.1)又可以改写成()σρσ/21max a += (5.2)因而应力集中系数α为ρα/21a += (5.3)当ρ很小时,α很大。
当0→b 时,椭圆孔就退化为长为a 2的直线裂纹。
更一般的提法是0→ρ。
按上述计算公式得到∞→α。
这样的结果不能用传统的连续介质力学的观点来解释。
Griffith 没有直接考虑裂纹尖端的应力,绕过这一矛盾,而计算由于裂纹的存在,整个弹性板所释放的弹性势能为(参看§5.4)'/22E a W c πσ= (5.4)为简便起见,设板的厚度为1. 其中E 为杨氏弹性模量。
由于裂纹的出现,增加的表面能为:Γa S 4= (5.5) 其中Γ为单位面积的表面能。
Griffith 认为当裂纹端部扩展一小段长度da (裂纹长度从2a →2a+2da )时,弹性势能的释放率dW c /da ,如果大于或等于表面能的增加率dS/da ,则裂纹处于不稳定状态,势必进一步扩展,因此而得到裂纹扩展的条件为dadSda dW c =(5.6) 将(5.4),(5.6)代入上式,得临界应力σg 为:⎪⎭⎪⎬⎫-==)( )1(/2)( /22平面应变平面应力νπΓσπΓσa E a E g g (5.7)其中E 、Γ是材料常数。
线弹性断裂力学的本质
一、线弹性断裂力学
1.1 线弹性断裂力学的研究范围
线弹性断裂力学是断裂力学的一个重要分支,它是用弹性力学的线性理论对裂纹体进行力学分析,并采用由此求得的某些特征参量(如应力强度因子、能量释放率)作为判断裂纹扩展的准则。
线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。
研究裂纹扩展有两种观点:一种是能量平衡的观点,认为裂纹扩展的动力是构件在裂纹扩展中所释放出的弹性应变能,它补偿了产生新裂纹表面所消耗的能量,如Griffith理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin理论。
1.2线弹性断裂力学的基本理论
线弹性断裂力学的基本理论包括:
●Griffith理论,即能量释放率理论;
●Irwin理论,即应力强度因子理论。
Griffith理论:1913年,Inglis研究了无限大板中含有一个穿透板厚
的椭圆孔的问题,得到了弹性力学精确分析解,称之为Inglis解。
1920年,Griffith研究玻璃与陶瓷材料脆性断裂问题时,将Inglis解中的短半轴趋于0,得到Griffith裂纹。
Orowan在1948年对其发展指出,金属材料在裂纹的扩展过程中,其尖端附近局部区域发生塑性变形。
因此,裂纹扩展时,金属材料释放的应变能,不仅用于形成裂纹表面所吸收的表面能,同时用于克服裂纹扩展所需要吸收的塑性变形能(也称为塑性功)。
Irwin的理论:Irwin的理论适用于金属材料的准脆性破坏—破坏前裂
纹尖端附近有相当范围的塑性变形 .该理论的提出是线弹性断裂力学诞生的标志。
Irwin认为裂纹尖端存在奇异性,基于这种性质,1957年Irwin提出新的物理量—应力强度因子。
1.3线弹性断裂力学的应用
按线弹性力学求得的裂纹体的应力和应变通常是有奇异性的,即在裂纹顶端处的应力和应变为无穷大。
这在物理上是不合理的。
实际上,裂纹顶端附近的应力和应变很大,线弹性力学在裂纹顶端不适用。
一般说,这些区域的情况很复杂,很多微观因素(如晶粒大小、位错结构等)对裂纹顶端应力场影响很大。
线弹性断裂力学不考虑裂纹顶端的复杂情况,而采用裂纹顶端外部区域的应力状况来表征断裂特性。
当外加载荷不大时,裂纹顶端附近一个小区域内的应力和应变的变化并不影响外面大区域内的应力和应变的分布,而且在小区域外围作用的应力、应变场可以由应力强度因子这个参量确定。
对于这种载荷作用下裂纹的失稳和扩展,线弹性断裂力学是适用的。
线弹性断裂力学适用的载荷值根据经验可以由下面两个不等式确定:
,
,式中为裂纹长度;为构件厚度;为材料的
屈服极限;为在外载荷作用下,根据线弹性断裂力学计算得的应力强度因子。
就是说,由外载荷算得的应力强度因子要满足这两个不等式。
此外,在线弹性断裂力学中一般还要求在载荷下构件整体的响应是线性的。
二、裂纹的类型和断裂特征
2.1裂纹的类型
缺陷一般分为平面缺陷和立体缺陷,线弹性断裂力学通常研究的是平面缺陷。
平面缺陷通常被归结为裂纹类缺陷,裂纹按几何类型可以分为:1、穿透裂纹:裂纹沿构件整个厚度贯穿2、表面裂纹:深度和长度皆处于构件表面的裂纹,可简化为半椭圆裂纹3、深埋裂纹:完全处于构件内部的裂纹,片状圆形或片状椭圆裂纹。
2.2裂纹的受力和断裂特征分类
裂纹的受力和断裂特征可以分为:1、张开型(Ⅰ型):拉应力垂直于裂纹扩展面,裂纹上、下表面沿作用力的方向张开,裂纹沿着裂纹面向前扩展,是最常见的一种裂纹2、滑开型(Ⅱ型):裂纹扩展受切应力控制,切应力平行作用于裂纹面而且垂直于裂纹线,裂纹沿裂纹面平行滑开扩展.3、撕开型裂纹(Ⅲ型):在平行于裂纹面而与裂纹前沿线方向平行的剪应力作用下,裂纹沿裂纹面撕开扩展。
三、裂纹尖端附近的应力场和位移值
3.1远场与近场
在裂纹尖端建立极坐标系,在r→∞处的应力场,应力场和位移场成为远场,在r→0处的应力场,应力场和位移场称为近场。
3.2远场条件与近场条件
远场条件主要指裂纹体中处于有限远和无限远的外边界处的应力边界处的应力边界,位移边界条件或混合边界条件。
近场条件主要是撕裂面的边界条件。
经典断裂力学在外载荷的剪应力分量很小的假设条件下,认为裂纹面的摩擦作用可以忽略,从而以裂纹面张开或裂纹面无摩擦接触来构造裂纹面的边界条件。
四、应用线弹性断裂力学所必须的基本假设
1、连续性假设:裂纹之外区域材料是连续的,原始裂纹面和裂纹瞬时扩展面材料是不连续的。
2、均匀性和各向同性假设:连续域中材料是均匀的和各向同性的。
3、小变形假设:裂纹周围和裂纹扩展区域材料处于弹性变形或处于与弹性变形同数量级变形。
4、椭圆、半椭圆或矩形状平面裂纹面假设。