5第四章 弹塑性断裂力学
- 格式:ppt
- 大小:295.50 KB
- 文档页数:47
弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。
为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。
为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。
1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。
裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。
在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。
c δ也是材料的断裂韧性,是通过实验测定的材料常数。
COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。
2. J 积分理论1968年,Rice 提出了J 积分理论。
对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。
J 积分的单位为MPa* mm 。
图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。
混凝土弹塑性断裂力学概述与线弹性体不同的是,当含裂缝的弹塑性体受到外荷载作用时,裂缝尖端附近会出现较大范围的塑性区,线弹性断裂力学将不再适用,而需要采用弹塑性断裂力学的方法。
弹塑性断裂力学的主要任务,就是在考虑裂缝尖端屈服的条件下,确定能够定量描述裂缝尖端场强度的参量,进而建立适合工程应用的断裂判据。
目前应用最广泛的包括裂缝尖端张开位移(Crack Opening Displacement,COD)(Wells,1962)理论和J积分理论(Rice,1968a,b)。
一、Orowan对Griffith理论的改进试验证实,Griffith理论只适用于理想脆性材料的断裂问题,实际上绝大多数金属材料在裂缝尖端处存在屈服区,裂缝尖端也因屈服而钝化,使得Griffith 理论失效。
在Griffith理论提出二十多年之后,Orowan(1948)和Irwin(1955)通过对金属材料裂缝扩展过程的研究指出:弹塑性材料在其尖端附近会产生一个塑性区,该区域的塑性变形对裂缝的扩展将产生很大的影响,为使裂缝扩展,系统释放的能量不仅要供给裂缝形成新自由表面所需的断裂表面能,更重要的是需要提供裂缝尖端塑性流变所需的塑性应变能(通常称为“塑性功”)。
所以,“塑性功”有阻止裂缝扩展的作用。
裂缝扩展单位面积时,内力对塑性变形所做的“塑性功”称为“塑性功率”,假设用Γ表示,则对金属材料应用Griffith理论时,式(2.4b)和式(2.5)应修正为对于金属材料,通常Γ比γ大三个数量级,因而γ可以忽略不计,则式(2.33)和式(2.34)可改写为以上即为Orowan把Griffith理论推广到金属材料情况的修正公式。
以上是针对平面应力状态讨论的,当平板很厚时,应视为平面应变状态,只要把上述公式中的E用代替即得平面应变状态下相应的解。
二、裂缝尖端的塑性区金属材料裂缝尖端会形成塑性区,裂缝扩展所需要克服的塑性功在量级上可高达断裂表面能的三个数量级。
《弹塑性断裂力学》一、断裂力学研究现状与进展断裂力学是近几十年才发展起来的一支新兴学科,也是固体力学的新分支,是二十世纪六十年代发展起来的一门边缘学科。
它从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。
断裂力学应用力学成就研究含缺陷材料和结构的破坏问题,由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。
它不仅是材料力学的发展与充实,而且它还涉及金属物理学、冶金学、材料科学、计算数学等等学科内容。
断裂力学的创立对航天航空、军工等现代科学技术部门都产生了重大影响。
随着科学技术的发展,断裂力学这门新的学科在生产实践中得到越来越广泛的应用。
断裂力学包括线弹性断裂力学、弹塑性断裂力学、刚塑性断裂力学、粘弹性断裂力学、断裂动力学、复合材料断裂力学等分支。
断裂力学的发展主要是线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的发展。
1921年,Griffith用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则。
1955年,Irwin用弹性力学理论分析了裂纹尖端应力应变场后提出了对于三种类型裂纹尖端领域的应力场与位移场公式。
弹塑性断裂与脆性断裂不同,在裂纹开裂以后出现明显的亚临界裂纹扩展(稳态扩展),达到一定的长度后才发生失稳扩展而破坏.而脆性断裂无明显的临界裂纹扩展,裂纹开裂与扩展几乎同时发生。
弹塑性断裂准则分为两类,第一类准则以裂纹开裂为根据,如COD准则,J积分准则;第二类准则以裂纹失效为根据,如R阻力曲线法,非线性断裂韧度G法。
1965年Wells在大量实验的基础上,提出以裂纹尖端的张开位移描述其应力、应变场。
1968年,Rice提出了J积分理论.以J积分为参数并建立断裂准则。
弹塑性断裂力学的重要成就是HRR解。
硬化材料I型裂纹尖端应力应变场的弹塑性分析是由Hutchinson,Rice与Rosengren(1968)解决的,故称为HRR理论。
弹塑性断裂力学在断裂力学差不多节课的时候,我们开始上弹塑性力学。
而此之后就要求学一个有关断裂力学的文章,顺其自然的我就想到了二者之间应该有着某种联系,而已材料力学时单轴拉伸试验给我一个很重要的的思想就是材料的破坏是在弹性到塑性再到很大的材料应变最后破坏。
断裂是破坏的一种这样,这样就很容易的把断裂与弹塑性联系在一起。
虽然这里的联系我说的似乎有点牵强附会,或者只是从一些文字表面的理解所做的判断。
为此我就专门去网上搜了一下,果然有一个力学分支叫做弹塑性断裂力学。
于是大略的知道了什么叫做弹塑性断裂力学,其所依据的理论研究是什么,主要应用等等。
大范围屈服断裂或简称弹塑性断裂(“普遍屈服断裂”及“屈服后断裂”也是常见的称法),指的是塑性区尺寸已经接近或显著超过裂纹尺寸的断裂,和高强度材料的小范围屈服断裂或低应力脆性断裂相似,也是工程结构中常见的断裂型式,因而是工程断裂力学的一个重要研究对象。
这个是一篇文章中的一个论断,由此可知弹塑性断裂力学所研究的对象是大范围的屈服断裂。
但是大范围的屈服断裂研究也可以通过线弹性断裂力学方法加入塑性区修正,但是对于很多的问题这个方法并不适用。
由此就提出了弹塑性断裂力学。
不同的情况需要不同分析方法和断裂判据。
例如,长条屈服区模型(或D一M摸型)法,裂纹顶端张开位移法(简称COD法),J积分方法,最大断裂应力判据以及其他半经验分析方法等等。
由于J积分是一个应力形变场强度的参量,有较严密的力学理论基础,试验测定方法比较简单可靠,又可以利用有限元法和计算技术进行计算,并且,如本文中将抬出的,它为口前在工程界获得广泛应用的COD方法和D 一M模型法提供了有效的理论根据和分析手段。
不过有的文章中也有把COD法写作CTOD的。
COD法是弹塑性断裂力学中以裂纹顶端的张开位移作为断裂准则的一个近似的工程方法,是英国的A。
A。
韦尔斯于1963年提出的。
COD是英文crack opening displacement(意为裂纹张开位移)三字的缩写。