弹塑性断裂力学
- 格式:ppt
- 大小:849.50 KB
- 文档页数:73
弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。
为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。
为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。
1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。
裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。
在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。
c δ也是材料的断裂韧性,是通过实验测定的材料常数。
COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。
2. J 积分理论1968年,Rice 提出了J 积分理论。
对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。
J 积分的单位为MPa* mm 。
图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。
混凝土弹塑性断裂力学概述与线弹性体不同的是,当含裂缝的弹塑性体受到外荷载作用时,裂缝尖端附近会出现较大范围的塑性区,线弹性断裂力学将不再适用,而需要采用弹塑性断裂力学的方法。
弹塑性断裂力学的主要任务,就是在考虑裂缝尖端屈服的条件下,确定能够定量描述裂缝尖端场强度的参量,进而建立适合工程应用的断裂判据。
目前应用最广泛的包括裂缝尖端张开位移(Crack Opening Displacement,COD)(Wells,1962)理论和J积分理论(Rice,1968a,b)。
一、Orowan对Griffith理论的改进试验证实,Griffith理论只适用于理想脆性材料的断裂问题,实际上绝大多数金属材料在裂缝尖端处存在屈服区,裂缝尖端也因屈服而钝化,使得Griffith 理论失效。
在Griffith理论提出二十多年之后,Orowan(1948)和Irwin(1955)通过对金属材料裂缝扩展过程的研究指出:弹塑性材料在其尖端附近会产生一个塑性区,该区域的塑性变形对裂缝的扩展将产生很大的影响,为使裂缝扩展,系统释放的能量不仅要供给裂缝形成新自由表面所需的断裂表面能,更重要的是需要提供裂缝尖端塑性流变所需的塑性应变能(通常称为“塑性功”)。
所以,“塑性功”有阻止裂缝扩展的作用。
裂缝扩展单位面积时,内力对塑性变形所做的“塑性功”称为“塑性功率”,假设用Γ表示,则对金属材料应用Griffith理论时,式(2.4b)和式(2.5)应修正为对于金属材料,通常Γ比γ大三个数量级,因而γ可以忽略不计,则式(2.33)和式(2.34)可改写为以上即为Orowan把Griffith理论推广到金属材料情况的修正公式。
以上是针对平面应力状态讨论的,当平板很厚时,应视为平面应变状态,只要把上述公式中的E用代替即得平面应变状态下相应的解。
二、裂缝尖端的塑性区金属材料裂缝尖端会形成塑性区,裂缝扩展所需要克服的塑性功在量级上可高达断裂表面能的三个数量级。
《弹塑性断裂力学》一、断裂力学研究现状与进展断裂力学是近几十年才发展起来的一支新兴学科,也是固体力学的新分支,是二十世纪六十年代发展起来的一门边缘学科。
它从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。
断裂力学应用力学成就研究含缺陷材料和结构的破坏问题,由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。
它不仅是材料力学的发展与充实,而且它还涉及金属物理学、冶金学、材料科学、计算数学等等学科内容。
断裂力学的创立对航天航空、军工等现代科学技术部门都产生了重大影响。
随着科学技术的发展,断裂力学这门新的学科在生产实践中得到越来越广泛的应用。
断裂力学包括线弹性断裂力学、弹塑性断裂力学、刚塑性断裂力学、粘弹性断裂力学、断裂动力学、复合材料断裂力学等分支。
断裂力学的发展主要是线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的发展。
1921年,Griffith用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则。
1955年,Irwin用弹性力学理论分析了裂纹尖端应力应变场后提出了对于三种类型裂纹尖端领域的应力场与位移场公式。
弹塑性断裂与脆性断裂不同,在裂纹开裂以后出现明显的亚临界裂纹扩展(稳态扩展),达到一定的长度后才发生失稳扩展而破坏.而脆性断裂无明显的临界裂纹扩展,裂纹开裂与扩展几乎同时发生。
弹塑性断裂准则分为两类,第一类准则以裂纹开裂为根据,如COD准则,J积分准则;第二类准则以裂纹失效为根据,如R阻力曲线法,非线性断裂韧度G法。
1965年Wells在大量实验的基础上,提出以裂纹尖端的张开位移描述其应力、应变场。
1968年,Rice提出了J积分理论.以J积分为参数并建立断裂准则。
弹塑性断裂力学的重要成就是HRR解。
硬化材料I型裂纹尖端应力应变场的弹塑性分析是由Hutchinson,Rice与Rosengren(1968)解决的,故称为HRR理论。
材料力学中的断裂力学分析方法研究引言:断裂力学是材料力学中的一个重要分支,研究材料在受力作用下的破裂行为和断裂过程。
在工程实践和科学研究中,了解材料的断裂行为对于设计和改进工程结构具有重要意义。
本文将介绍材料力学中的断裂力学分析方法,包括线弹性断裂力学、弹塑性断裂力学和断裂力学的数值模拟方法。
一、线弹性断裂力学线弹性断裂力学是材料力学中最基本的断裂理论,适用于强度高、韧性差的材料。
线弹性断裂力学的基本原理是根据材料的线弹性性质,通过应力和应变的关系,计算出材料在受力作用下的应力强度因子。
应力强度因子是描述断裂过程中应力场的一种参数,可用于预测材料的断裂行为。
线弹性断裂力学的主要分析方法包括拉伸试验、根据裂纹尖端应力场求解应力强度因子、确定裂纹扩展方向的K-R曲线等。
二、弹塑性断裂力学当材料的强度和韧性较高时,线弹性断裂力学不能很好地描述材料的断裂行为。
此时,需要采用弹塑性断裂力学进行分析。
弹塑性断裂力学将材料的弹性和塑性行为结合起来,考虑材料在加载过程中的变形和断裂。
在弹塑性断裂力学中,应力强度因子的计算需要考虑材料的塑性缺口效应。
常见的弹塑性断裂力学分析方法包括J-积分法、能量法和应力强度因子法等。
三、断裂力学的数值模拟方法随着计算机技术的发展,断裂力学的数值模拟方法得到了广泛应用。
数值模拟方法能够更准确地描述材料的断裂行为,包括裂纹的扩展路径、失效载荷和断裂过程等。
常用的数值模拟方法有有限元法和离散元法。
有限元法以其广泛的适用性和高精度的计算结果而受到广泛关注。
在有限元法中,利用离散化的网格模型和连续介质力学理论,对材料的断裂过程进行模拟和分析。
离散元法则更适用于颗粒状材料或颗粒之间存在断裂的材料。
四、断裂力学在工程中的应用断裂力学在工程中有着广泛的应用。
通过对材料的断裂行为进行准确的分析和预测,可以为工程结构的设计和改进提供重要的依据。
例如,在航空航天工程中,断裂力学能够用于预测飞机机体的疲劳破坏和碰撞破坏情况;在汽车工程中,断裂力学可以帮助改进车辆的安全性能和减少事故发生的风险;在材料工程中,断裂力学可以用于评估材料的强度和韧性,优化材料生产工艺。