第五章塑性变形与回复再结晶--习题集
- 格式:doc
- 大小:594.50 KB
- 文档页数:27
第一章材料的性能1.1 名词解释δb δb δsδ0.2 δ-1 a k HB HRC1.2 填空题1.材料常用的塑性指标有(延伸率)和(断面收缩率)两种,其中用(延伸率)表示塑性更接近材料的真实变形。
2.检验淬火钢成品件的硬度一般用( 洛氏)硬度,检测退火件、正火件和调质件的硬度常用(布氏)硬度,检验氮化件和渗金属件的硬度采用(维氏)硬度试验。
3.材料的工艺性能是指( 铸造)性能、(锻造)性能、(焊接)性能、(切削加工)性能和(热处理)性能。
4.工程上常用金属材料的物理性能有( 熔点)、(密度)、(导电性)、(磁性)和(热膨胀性)等。
5.表征材料抵抗冲击载荷能力的性能指标是(冲击韧性ak ),其单位是( J/cm2 )。
1.3 简答题2.设计刚性好的零件,应根据何种指标选择材料?采用何种材料为宜?3.常用的硬度方法有哪几种?其应用范围如何?这些方法测出的硬度值能否进行比较?1.4 判断1.金属的熔点及凝固点是同一温度。
( 错)2.导热性差的金属,加热和冷却时会产生内外温度差。
导致内外不同的膨胀或收缩,使金属变形或开裂。
( 对)3.材料的强度高,其硬度就高,所以刚度大。
( 错)4.所有的金属都具有磁性,能被磁铁所吸引。
( 错)5.钢的铸造性比铸铁好,故常用来铸造形状复杂的工件。
( 错)1.5 选择填空1.在有关零件图图纸上,出现了几种硬度技术条件的标注方法,正确的标注是( D )。
(a)HBS650—700 (b)HBS=250—300Kgf/mm2(c)HRCl5—20 (d) HRC 45—702.在设计拖拉机缸盖螺钉时应选用的强度指标是( a )。
(a) δb (b) δs(c) δ0.2(d) δp3.在作疲劳试验时,试样承受的载荷为( c )。
(a)静载荷(b)冲击载荷(c)交变载荷4.洛氏硬度C标尺使用的压头是( b )。
(a)淬硬钢球(b)金刚石圆锥体(c)硬质合金球5.表示金属密度、导热系数、导磁率的符号依次为( d )、( f )、( c )。
psi是一种压力单位,定义为英镑/平方英寸,145psi=1MpaPSI英文全称为Pounds per square inch。
P是磅pound,S是平方square,I 是英寸inch。
把所有的单位换成公制单位就可以算出:1bar≈14.5psi1 KSI = 1000 lb / in.2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2材料机械强度性能单位,要用到试验机来检测Density of Slip PlanesThe planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur?(112) planar density:The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip.It will help to visualize these two planes as we calculate the atom density.The (110) plane passes through the atom on the lattice point in the center of the unit cell. The plane is rectangular, with a height equal to the lattice parameter a0and a width equal to the diagonal of the cube face, which is 2 a0.Lattice parameter (height):Width:Thus, according to the geometry, the area of a (110) plane would beThere are two atoms in this area. We can determine that by counting the piece of atoms that lie within the circle (1 for the atom in the middle and 4 times 1/4 for the corners), or using atom coordinates as discussed in Chapter 3. Then the planar density isThe interplanar spacing for the (110) planes isFor the (112) plane, the planar density is not quite so easy to determine. Let us draw a larger array of four unit cells, showing the plane and the atoms it passes through.This plane is also rectangular, with a base width of √2 a0 (the diagonal of a cube face), and a height of √3 a0 (the body diagonal of a cube). It has four atoms at corners, which are counted as 1/4 for the portion inside the rectangle (4 x 1/4) and two atoms on the edges, counted as 1/2 for the portion inside the rectangle (2 x 1/2). This is a total of 2 atoms.Base width:Height:Hence, we can calculate the area and density as for the (110) plane.The planar density and interplanar spacing of the (110) plane are larger than that of the (112) plane, thus the (110) plane would be the preferred slip plane1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
1 单晶体的塑性变形铜单晶(a=0.36nm )在[112]方向加拉伸应力,拉伸应力为2.5×105Pa ,此条件下:(1)取向因子最大的滑移系有哪几个?(2)计算其分切应力多大?解:(1) Cu 为F.C.C 结构,易滑移面为{1,1,1},滑移方向为〈1,1,0〉,可以分别求出[112]方向与这些滑移系之间的两个夹角,然后得到12个取向因子的值。
(这里省略了)通过上述计算得到具体的滑移系(1,-1,1)[0,1,1]和(-1,1,1)[1,0,1]为具有最大取向因子滑移系。
(2) 根据施密特法则(公式略),F=δcosAcosB=1.02*105 Pa何谓临界分切应力定律?哪些因素影响临界分切应力大小? 解:(略)沿密排六方单晶的[0001]方向分别加拉伸力和压缩力,说明在这两种情况下,形变的可能方式。
解:1)滑移:a -拉伸的时,当c/a>=1.633,不会产生滑移,当c/a<1.633有可能产生滑移,可产生滑移的是{1,1,-2,2}<1,1,-2,-3>;其他滑移面不能产生滑移;b -压缩的时候结果和拉伸一样;2)孪生:拉伸和压缩的时候都可能产生孪生变形;3)扭折:拉伸的时候一般不易扭折变形,压缩的时候可以产生扭折变形。
试指出单晶体的Cu 与α-Fe 中易滑移面的晶面与晶向,并分别求它们的滑移面间距,滑移方向上的原子间距及点阵阻力,已知泊松比为ν=0.3,G Cu =48300MPa ,G α-Fe =81600MPa. 解:体心Fe 具有多种类的滑移系,但是滑移方向均相同。
力=90.56MPa 。
铝单晶体拉伸时,其力轴为[001],一个滑移系的临界分切应力为0.79MN/m2,取向因子COS φCOSλ=0.41,试问有几个滑移系可同时产生滑移?开动其中一个滑移系至少要施加多大的拉应力?解:Al为F.C.C结构,其滑移系共有{1,1,1}4<1,1,0>3=12个。
第5章材料的形变和再结晶提纲5.1 弹性和粘弹性5.2 晶体的塑性变形(重点)5.3 回复和再结晶(重点)5.4 高聚物的塑性变形学习要求掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。
1.材料的弹性变形本质、弹性的不完整性及黏弹性;2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折)3.多晶体、合金塑性变形的特点及其影响因素4.塑性变形对材料组织与性能的影响;5.材料塑性变形的回复、再结晶和晶粒长大过程;6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等)7、结晶动力学的形式理论(J-M-A方程)8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。
9、陶瓷、高聚物材料的变形特点重点内容1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量;材料在外力作用下发生变形。
当外力较小时,产生弹性变形。
弹性变形是可逆变形,卸载时,变形消失并恢复原状。
在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:式中E为正弹性模量,G为切变模量。
它们之间存在如下关系:弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量。
2. 弹性的不完整性和粘弹性;理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。
3. 滑移系,施密特法则(公式),滑移的临界分切应力;晶体中一个滑移面和该面上一个滑移方向组成。
fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。
滑移的临界分切应力:如何判断晶体中各个滑移系能不能开动?解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移?4. 滑移的位错机制,派-纳力(公式);为什么晶体中滑移系为原子密度最大的面和方向?5. 比较塑性变形两种基本形式:滑移与孪生的异同特点;6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响;会判断多个晶体中哪些晶体会优先发生塑性变形?7. 细晶强化与Hall-Petch 公式, 高温晶界弱化的原因;晶粒细化为何能同时提高材料的强韧性?位错塞积群效应(应力集中区的应力数值等于外加切应力n 倍)可启动临近晶粒滑移,故高温合金为何要采用定向凝固技术获得单晶?晶界滑动机制和扩散性蠕变8. 固溶强化,屈服现象(吕德斯带),上下屈服点的柯垂耳理论和一般位错增殖理论,应变时效;d c dcττ= 金属有四大著名的强化机制,请给出这几种机制的名称,物理实质,定量描述其强化效果的数学公式。
第5章材料的形变和再结晶提纲5.1 弹性和粘弹性5.2 晶体的塑性变形(重点)5.3 回复和再结晶(重点)5.4 高聚物的塑性变形学习要求掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。
1.材料的弹性变形本质、弹性的不完整性及黏弹性;2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折)3.多晶体、合金塑性变形的特点及其影响因素4.塑性变形对材料组织与性能的影响;5.材料塑性变形的回复、再结晶和晶粒长大过程;6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等)7、结晶动力学的形式理论(J-M-A方程)8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。
9重点内容1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量;材料在外力作用下发生变形。
当外力较小时,产生弹性变形。
弹性变形是可逆变形,卸载时,变形消失并恢复原状。
在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:式中E为正弹性模量,G为切变模量。
它们之间存在如下关系:弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。
在工程上,弹性模量则是材料刚度的度量。
2. 弹性的不完整性和粘弹性;理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。
3. 滑移系,施密特法则(公式),滑移的临界分切应力;晶体中一个滑移面和该面上一个滑移方向组成。
fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。
滑移的临界分切应力:如何判断晶体中各个滑移系能不能开动?解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移?4. 滑移的位错机制,派-纳力(公式);为什么晶体中滑移系为原子密度最大的面和方向?5. 比较塑性变形两种基本形式:滑移与孪生的异同特点;6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响; 会判断多个晶体中哪些晶体会优先发生塑性变形?7. 细晶强化与Hall-Petch 公式, 高温晶界弱化的原因;晶粒细化为何能同时提高材料的强韧性?位错塞积群效应(应力集中区的应力数值等于外加切应力n可启动临近晶粒滑移,故 高温合金为何要采用定向凝固技术获得单晶?晶界滑动机制和扩散性蠕变 8. 固溶强化,屈服现象(吕德斯带),上下屈服点的柯垂耳理论和一般位错增殖理论,应变时效;d c dcττ= 金属有四大著名的强化机制,请给出这几种机制的名称,物理实质,定量描述其强化效果的数学公式。
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
笫5章材料的形变和再结晶5.1 复习笔记一、弹性和黏弹性1.弹性变形的本质弹性变形是指外力去除后能够完全恢复的那部分变形,当无外力作用时,晶体内原子间的结合能和结合力可通过理论计算得出,它是原子间距离的函数,如图5-1所示。
图5-1 晶体内的原子间的结合能和结合力(a)体系能量与原子间距的关系(b)原子间作用力和距离的关系原子处于平衡位置时,其原子间距为r0,势能U处于最低位置,相互作用力为零。
当原子受力偏离其平衡位置时,原子间距增大时将产生引力;原子间距减小时将产生斥力,外力去除后,原子都会恢复其原来的平衡位置,所产生的变形便完全消失,这就是弹性变形。
2.弹性变形的特征和弹性模量弹性变形的主要特征是:(1)理想的弹性变形是可逆变形,加载时变形,卸载时变形消失并恢复原状;(2)金属、陶瓷和部分高分子材料不论是加载或卸载时,只要在弹性变形范围内,其应力与应变之间都保持单值线性函数关系,即服从胡克定律:①在正应力下:σ=Eε,②在切应力下:τ=Gγ,弹性模量与切变弹性模量之间的关系为:式中,υ为材料泊松比,表示侧向收缩能力,在拉伸试验时系指材料横向收缩率与纵向伸长率的比值。
弹性模量代表着使原子离开平衡位置的难易程度,反映原子间结合力,是表征晶体中原子间结合力强弱的物理量。
(3)弹性的不完整性①包申格效应材料经预先加载产生少量塑性变形,而后同向加载则σe升高,反向加载则σe下降。
②弹性后效在弹性极限范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或滞弹性。
③弹性滞后由于应变落后于应力,在σ-ε曲线上使加载线与卸载线不重合而形成一封闭回线,称之为弹性滞后,如图5-2所示。
图5-2 弹性滞后(环)与循环韧性(a)单向加载弹性滞后(环)(b)交变加载(加载速度慢)弹性滞后(c)交变加载(加载速度快)弹性滞后(d)交变加载塑性滞后(环)④黏弹性黏弹性变形既与时间有关,又具有可回复的弹性变形性质,即具有弹性和黏性变形两方面的特征。
一、判断题
1、铁丝在室温下反复弯折,会越变越硬,直到断裂,是由于产生了加工硬化。
()
正确答案:√
2、滑移常沿晶体中原子密度最大的晶面和晶向发生。
()
正确答案:√
3、面心立方晶格的塑性好于体心立方晶格的塑性是因为其滑移系更多。
()
正确答案:×
4、在回复阶段,金属组织性能变化不大,但内应力显著下降。
()正确答案:√
5、再结晶也是一个晶核形成和长大的过程。
()
正确答案:√
6、Fe的熔点为1538℃,其再结晶温度为615.2℃。
()
正确答案:×
7、提高加热速度会使再结晶推迟到较高温度发生。
()
正确答案:√
8、延长加热时间,会使再结晶推迟到较高温度发生。
()
正确答案:×
二、填空题
1、一个滑移面和其上的一个滑移方向构成一个()。
正确答案:滑移系
2、塑性变形的主要形式是()和孪生。
正确答案:滑移
3、滑移是通过滑移面上()的运动来实现的。
正确答案:位错
4、金属冷变形后的组织在加热时重新彻底改组的过程称()。
正确答案:再结晶
5、高于()温度的加工称为热加工。
正确答案:再结晶
6、Sn 的再结晶温度为-71℃,则其在室温下的加工为()加工。
正确答案:热
7、冷热加工的区别在于加工后是否存在()。
正确答案:加工硬化。
第五章 固体材料的塑性变形Chapter 5 Plastic Deformation作业1:在面心立方晶体结构中,有一位错可以在(111) 和 ()111 晶面上发生交滑移,请确定这个位错的伯氏矢量?Solution: []1012ab =作业2:在面心立方晶体中有三个滑移系,假定在Au 晶体的[100]上施加2MPa 的拉伸应力,其临界分切应力是0.91MPa 。
证明滑移不会在(111)晶面的三个滑移系上滑移?The three slip systems in the (111) plane are (111) []110, (111) []011, (111) []101. Because [100][]101⊥, that is λ=︒90, so τ( resolred shear stress in (111)[]101) is 0.Another two ︒=451λ [][]110100-︒=452λ [][]011100-2245cos =︒ 3360cos =︒ [][]MPa MPa 91.0816.03233222cos cos 011110<==⨯⨯=••=φλστ So :Measurable slip will not occur on any of the three slip systems in the (111) plane.作业3.:在面心立方晶体中,沿[123]方向施加2 MPa 的正应力。
滑移面是(111),滑移方向是[101]。
请确定 临界分切应力τcrTo solve this problem, we must find both cos θ and cos φ. This can be done suing the vector dot product:Cos φ=[][][][]167.0314321111231111231=++-=• Cos θ =[][][][]756.0214301011231011231=++=• Solving equation ϕϑστcos cos =cR for τcR and substituting the data given in the problem statement yields:τcR =(2Mpa)×(0.617)×(0.756)=0.933Mpa作业4:假定某面心立方晶体可以开动的滑移系为()111[011]。
形变和再结晶弹性变形时,出现的有别于理想弹性变形的现象,称之为弹性的不完整性包申格效应弹性的不完整性材料经预先加载产生少量塑性变形。
而后同向加载则屈服强度增加,反向加载则屈服强度降低。
弹性后效在弹性极限内,应变滞后于外加应力,并和时间有关的现象弹性滞后应变落后于应力,在应力-应变曲线上加载线与卸载线不重合而形成一封闭回线,称为弹性滞后滑移系数目:BCC﹥FCC﹥HCP滑移的临界分切应力(定值)反映单晶体受力起始屈服的物理量晶体中的多个滑移系并非同时参与滑移,只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可首先进行滑移,该分切应力称为滑移的临界分切应力F/A =σs滑移面趋向于与轴向平行滑移方向趋向于最大分切应力方向取向因子(施密特因子)任一给定Φ角,若Φ+λ=90°,滑移方向位于F与滑移面法线所组成的平面上,沿此方向,所需切应力较小,得到以下两个结论❶当Φ=45°时,取向因子具有最大值0.5。
以最小的拉应力达到发生滑移所需的分切应力,σs最小❷Φ=90°/λ=90°,取向因子为0,不能产生滑移Φ由45→0°或由45→90°,σs↑(变硬)取向因子大的为软取向取向因子小的为硬取向hcp晶体软/硬取向σs差距很大fcc晶体软/硬取向σs差距不大(2倍)——思考:为什么?•b——滑移方向上的原子间距• a ——滑移面的面间距•ν——泊松比•W=a/(1-ν)——位错宽度τP-N= 2G/(1-ν)exp(-2πW/b) 派一纳(P-N)力滑移的特点:滑移总是沿密排面上的密排方向进行(P-N)力小,则屈服应力低,反之亦然(3)滑移和孪生1.滑移和孪生均在切应力作用下,沿一定晶面的一定晶向进行,产生塑性变形。
——同2.孪生借助于切变进行,所需切应力大,速度快,在滑移较难进行时发生——异3.滑移→原子移动的相对位移是原子间距的整数值→不引起晶格位向的变化;孪生→原子移动的相对位移是原子间距的分数值→孪晶晶格位向改变→促进滑移——异4.孪生产生的塑性变形量小(≤滑移变形量的10%),但引起的晶格畸变大。
塑性变形
1.如果沿FCC 晶体的[110]方向拉伸,请写出可能的滑移系。
2.有一70MPa 应力作用在fcc 晶体的]001[方向上,求作用在]011)[111(和]101)[111( 滑移系上的分切应力。
回复与再结晶
1.铁的回复激活能为 kJ/mol ,如果经冷变形的铁在400℃进行回复处理,使其残留加工硬化为60%需160分钟,问在450℃回复处理至同样效果需要多少时间
2. 工业纯铝在室温下经大变形量轧制成带材后,测得室温力学性能为冷加工态的性能。
查表得知工业纯铝的T 再=150℃,但若将上述工业纯铝薄带加热至
100℃,保温16天后冷至室温再测其强度,发现明显降低,请解释其原因。
立。
3.将经过大量塑性变形(如70%以上)的纯金属长棒的一端浸入冰水中,另一端加热至接近熔点的高温(例如),过程持续进行一小时,然后试样完全冷却,试作沿棒长度的硬度分布曲线示意图,并作简要说明。
《工程材料》习题集材料工程系金属材料工程教研室编辑:石继红、马红岩2006/11/01第一章金属材料的机械性能思考题及习题1.解释下列常用机械性能指标,并说明它们的含义及在工程上的意义。
σb、σs、σ0.2、σ-1、δ、Ψ、αK、HB、HRC、HRB。
2.通常提高金属材料的强度往往降低其塑性,试根据强度和塑性指标的含义说明是否材料的强度高塑性就一定低?3.布氏硬度和洛氏硬度常用来测什么材料?某一钢件毛坯,压头用Φ10mm钢球,载荷为3000公斤,测得压坑直径为3.34mm,问HB、HRC、σb各是多少?4.说明洛氏硬度的测试原理。
5.某合金由α+β两相组成。
如果α%=50%,HBα=40,HBβ=72,试求出该合金的大致硬度。
6.何谓K1?何谓K1c?两者有何区别?7.简介冲击弯曲试验的试验方法和冲击韧度的计算方法。
8.45钢板在一定热处理后,K1c为20.3~20.9MNm-3/2(30~35),穿透裂纹长度2a=2mm,为使零件工作安全,实际工作应力应为多少?9.某零件的最大工作应力为700MPa,其材料的K1c为60MNm-3/2,实际测出该零件存在4mm 长的裂纹,问此零件是否可以继续使用?10.用Q235钢制成的拉伸试棒,直径为Φ10mm,标距长度为50mm,屈服时拉力为18840N,断裂前最大拉力为35320N,将试棒拉断后接起来,量得标距长度为75mm,断裂处端面直径为Φ6.7mm。
问此Q235钢的屈服强度ζS、抗拉强度ζb、伸长率δ和断面收缩率ψ各是多少?11.低碳钢、中碳钢、灰铸铁和球墨铸铁的拉伸曲线如题1-2图所示。
据此:(1)估计这四种材料的ζS、ζb、及δ值;(2)计算这四种材料的E值并加以比较。
题1-2图12.ζS和ζ0.2的含义是什么?有何异同?其值大小对材料的冷变形性能和使用性能有什么影响?13.什么叫缩颈现象?拉伸试验时,如果试棒不出现缩颈现象,是否就意味着这种材料没有发生塑性变形?14.题1-5图中所示:①为0.45%C碳钢,②为铝青铜,③为0.35%C碳钢,④为硬铝,⑤为纯铜的拉伸曲线。
psi是一种压力单位,定义为英镑/平方英寸,145psi=1MpaPSI英文全称为Pounds per square inch。
P是磅pound,S是平方square,I 是英寸inch。
把所有的单位换成公制单位就可以算出:1bar≈14.5psi1 KSI = 1000 lb / in.2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2材料机械强度性能单位,要用到试验机来检测Density of Slip PlanesThe planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur?(112) planar density:The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip.It will help to visualize these two planes as we calculate the atom density.The (110) plane passes through the atom on the lattice point in the center of the unit cell. The plane is rectangular, with a height equal to the lattice parameter a0and a width equal to the diagonal of the cube face, which is 2 a0.Lattice parameter (height):Width:Thus, according to the geometry, the area of a (110) plane would beThere are two atoms in this area. We can determine that by counting the piece of atoms that lie within the circle (1 for the atom in the middle and 4 times 1/4 for the corners), or using atom coordinates as discussed in Chapter 3. Then the planar density isThe interplanar spacing for the (110) planes isFor the (112) plane, the planar density is not quite so easy to determine. Let us draw a larger array of four unit cells, showing the plane and the atoms it passes through.This plane is also rectangular, with a base width of √2 a0 (the diagonal of a cube face), and a height of √3 a0 (the body diagonal of a cube). It has four atoms at corners, which are counted as 1/4 for the portion inside the rectangle (4 x 1/4) and two atoms on the edges, counted as 1/2 for the portion inside the rectangle (2 x 1/2). This is a total of 2 atoms.Base width:Height:Hence, we can calculate the area and density as for the (110) plane.The planar density and interplanar spacing of the (110) plane are larger than that of the (112) plane, thus the (110) plane would be the preferred slip plane1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
2.一Mg合金的屈服强度为180MPa,E为45GPa,a)求不至于使一块10mm⨯2mm 的Mg板发生塑性变形的最大载荷;b)在此载荷作用下,该镁板每mm的伸长量为多少?3. 已知烧结Al2O3的孔隙度为5%,其E=370GPa。
若另一烧结Al2O3的E=270GPa,试求其孔隙度。
4. 有一Cu-30%Zn黄铜板冷轧25%后厚度变为1cm,接着再将此板厚度减少到0.6cm,试求总冷变形度,并推测冷轧后性能变化。
5. 有一截面为10mm⨯10mm的镍基合金试样,其长度为40mm,拉伸实验结果如下:载荷(N)标距长度(mm)040.043,10040.186,20040.2102,00040.4104,80040.8109,60041.6113,80042.4121,30044.0126,90046.0127,60048.0113,800(破断)50.2试计算其抗拉强度σb,屈服强度σ0.2,弹性模量E以及延伸率δ。
6. 将一根长为20m,直径为14mm的铝棒通过孔径为12.7mm的模具拉拔,求a)这根铝棒拉拔后的尺寸;b)这根铝棒要承受的冷加工率。
7. 确定下列情况下的工程应变εe和真应变εT,说明何者更能反映真实的变形特性:a)由L伸长至1.1L;b)由h压缩至0.9h;c)由L伸长至2L;d)由h压缩至0.5h。
8. 对于预先经过退火的金属多晶体,其真实应力—应变曲线的塑性部分可近似表示为,其中k和n为经验常数,分别称为强度系数和应变硬化指数。
若有A,B两种材料,其k值大致相等,而n A=0.5,n B=0.2,则问a)那一种材料的硬化能力较高,为什么?b)同样的塑性应变时,A和B哪个位错密度高,为什么?c)导出应变硬化指数n和应变硬化率之间的数学公式。
9. 有一70MPa应力作用在fcc晶体的[001]方向上,求作用在(111)和(111)滑移系上的分切应力。
10. 有一bcc晶体的[111]滑移系的临界分切力为60MPa,试问在[001]和[010]方向必须施加多少的应力才会产生滑移?11. Zn单晶在拉伸之前的滑移方向与拉伸轴的夹角为45︒,拉伸后滑移方向与拉伸轴的夹角为30︒,求拉伸后的延伸率。
12. Al单晶在室温时的临界分切应力τC=7.9×105Pa。
若室温下对铝单晶试样作为拉伸试验时,拉伸轴为[123]方向,试计算引起该样品屈服所需加的应力。
13. Al单晶制成拉伸试棒(其截面积为9mm2)进行室温拉伸,拉伸轴与[001]交成36.7︒,与[011]交成19.1︒,与[111]交成22.2︒,开始屈服时载荷为20.40N,试确定主滑移系的分切应力。
14. Mg单晶体的试样拉伸时,三个滑移方向与拉伸轴分别交成38°、45°、85°,而基面法线与拉伸轴交成60°。
如果在拉应力为2.05MPa时开始观察到塑性变形,则Mg的临界分切应力为多少?15. MgO为NaCl型结构,其滑移面为{110},滑移方向为<110>,试问沿哪一方向拉伸(或压缩)不能引起滑移?16. 一个交滑移系包括一个滑移方向和包含这个滑移方向的两个晶面,如bcc晶体的(101)(110),写出bcc晶体的其他三个同类型的交滑移系。
17. fcc和bcc金属在塑性变形时,流变应力与位错密度ρ的关系为,式中τ0为没有干扰位错时,使位错运动所需的应力,也即无加工硬化时所需的切应力,G为切变模量,b为位错的柏氏矢量,α为与材料有关的常数,为0.3~0.5。
实际上,此公式也是加工硬化方法的强化效果的定量关系式。
若Cu单晶体的τ0=700kPa,初始位错密度ρ0=105cm-2,则临界分切应力为多少?已知Cu的G=42⨯103MPa,b=0.256nm,[111] Cu单晶产生1%塑性变形所对应的σ=40MPa,求它产生1%塑性变形后的位错密度。
18. 证明:bcc及fcc金属产生孪晶时,孪晶面沿孪生方向的切变均为0.707。
19. 试指出Cu和α-Fe两晶体易滑移的晶面和晶向,并求出他们的滑移面间距,滑移方向上的原子间及点阵阻力。
(已知G Cu=48.3GPa,Gα-Fe=81.6GPa,v=0.3).20. 设运动位错被钉扎以后,其平均间距(ρ为位错密度),又设Cu单晶已经应变硬化到这种程度,作用在该晶体所产生的分切应力为14 MPa,已知G=40GPa,b=0.256nm,计算Cu单晶的位错密度。
21.设合金中一段直位错线运动时受到间距为λ的第二相粒子的阻碍,试求证使位错按绕过机制继续运动所需的切应力为:,式中T—线张力,b—柏氏矢量,G—切变模量,r0—第二相粒子半径,B—常数。
22.40钢经球化退火后渗碳体全部呈半径为10μm的球状,且均匀地分布在α-Fe基础上。
已知Fe的切变模量G=7.9×104Mpa,α-Fe的点阵常数a=0.28nm,试计算40钢的切变强度。
23.已知平均晶粒直径为1mm和0.0625mm的α-Fe的屈服强度分别为112.7MPa和196MPa,问平均晶粒直径为0.0196mm的纯铁的屈服强度为多少?24.已知工业纯铜的屈服强度σ S=70MPa,其晶粒大小为N A=18个/mm2,当N A=4025个/mm2时,σ S =95MPa。