材料科学基础材料的变形和再结晶介绍
- 格式:ppt
- 大小:3.67 MB
- 文档页数:52
材料科学基础_第五章材料的形变和再结晶材料的形变是指材料在外力作用下发生的形状、尺寸及结构的变化。
形变可以分为弹性变形和塑性变形两种形式。
弹性变形是指物质在外力作用下只发生形状的改变,而不发生组织内部结构的改变,当外力消失时,物质能恢复到原来的形状。
塑性变形是指物质在外力作用下发生形状和内部结构的改变,当外力消失时,物质不能恢复到原来的形状。
形变过程中,材料的内部晶粒会发生滑移、动晶界和晶界迁移等变化,这些变化有助于减小材料中的位错密度,同时也能影响晶粒的尺寸、形状和分布。
当形变达到一定程度时,晶粒内部会产生高密度的位错,这会导致晶体的韧性下降,同时也容易引起晶粒的断裂和开裂。
因此,形变过程中产生的位错对材料的性能具有重要影响。
再结晶是指在材料的形变过程中,通过退火处理使晶粒重新长大,去除或减小形变过程中产生的位错和晶界等缺陷,从而改善材料的力学性能和其他性能。
再结晶的发生与材料的种类、成分、形变方式等因素有关。
再结晶可以通过两种方式实现:显微再结晶和亚显微再结晶。
显微再结晶是指晶粒在正常晶界上长大,形成新的晶粒;亚显微再结晶是指材料中的一些晶粒发生部分再结晶,形成较大的再结晶晶粒。
再结晶的发生和发展受到晶粒的尺寸、形状和分布的影响。
晶粒尺寸越小,再结晶发生越容易,且再结晶晶粒的尺寸也越小。
再结晶晶粒的尺寸和分布对材料的性能影响很大。
晶粒尺寸较小的材料通常具有优良的力学性能和高韧性,且易于加工。
因此,控制再结晶晶粒的尺寸和分布对材料的性能优化和加工有重要意义。
总之,材料的形变和再结晶是材料科学中重要的研究领域。
通过研究形变和再结晶的机制和规律,可以优化材料的性能和加工过程,从而推动材料科学的发展和应用。
5 材料的形变和再结晶材料在加工制备过程中或是制成零部件后的工作运行中都要受到外力的作用。
材料受力后要发生变形,外力较小时产生弹性变形;外力较大时产生塑性变形,而当外力过大时就会发生断裂。
本章主要内容:一.晶体的塑性变形单晶体的塑性变形多晶体的塑性变形合金的塑性变形塑性变形对材料组织与性能的影响二.回复和再结晶冷变形金属在加热时的组织与性能变化回复再结晶晶粒长大再结晶织构与退火孪晶5.1 晶体的塑性变形塑性加工金属材料获得铸锭后,可通过塑性加工的方法获得一定形状、尺寸和机械性能的型材、板材、管材或线材。
塑性加工包括锻压、轧制、挤压、拉拔、冲压等方法。
金属在承受塑性加工时,当应力超过弹性极限后,会产生塑性变形,这对金属的结构和性能会产生重要的影响。
5.1.1 单晶体的塑性变形单晶体塑性变形的两种方式:滑移孪生滑移:滑移是晶体在切应力的作用下,晶体的一部分相对于另一部分沿着某些晶面和晶向发生相对滑动。
滑移线:为了观察滑移现象,可将经良好抛光的单晶体金属棒试样进行适当拉伸,使之产生一定的塑性变形,即可在金属棒表面见到一条条的细线,通常称为滑移线.滑移带:在宏观及金相观察中看到的滑移带并不是单一条线,而是由一系列相互平行的更细的线所组成的,称为滑移带。
滑移系:塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。
一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系。
滑移的临界分切应力τk晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的特点晶体的滑移并不是晶体的一部分相对于另一部分同时做整体的刚性的移动,而是通过位错在切应力作用下沿着滑移面逐步移动的结果,因此实际滑移的临界分切应力τk 比理论计算的低得多。
(滑移面为原子排列最密的面)单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动。
材料科学基础第五章材料的变形与再结晶材料的变形与再结晶是材料科学基础的重要课题之一,对于材料的使用性能和制备工艺有着重要的影响。
本文将从变形机制、再结晶机制以及变形与再结晶的关系等方面进行探讨。
材料的变形是指材料的形状、尺寸以及内部结构在受到外力作用下的改变。
变形可以分为弹性变形和塑性变形两类。
弹性变形是指材料在加载后可以恢复到原来的形状和尺寸,而塑性变形则是指材料在加载后不能恢复到原来的形状和尺寸。
材料的塑性变形主要是由于材料晶体结构中的位错导致的。
位错是指晶体中存在的局部的原子排列错误。
在加载时,外力作用在晶体上,使得晶体中的原子在位错的作用下发生滑移,从而导致整体的塑性变形。
再结晶是指材料在一定条件下,通过断裂和重结晶可以重新形成新的晶粒。
再结晶的机制主要是晶界和位错的动态行为。
晶界是指两个晶粒之间的界面,在塑性变形过程中,晶界可以通过重结晶来消除变形能量,从而保证材料的继续塑性变形。
变形和再结晶有着密切的关系。
塑性变形过程中,位错密度会不断增加,晶界也会发生移动和重新排列,从而改变了材料的晶粒形态和尺寸。
当位错密度达到一定程度时,晶界开始活动,晶粒开始长大,并且会形成新的晶粒,即再结晶发生。
再结晶可以消除塑性变形过程中的缺陷,并且通过晶界的活动实现晶粒尺寸的控制。
材料的变形与再结晶对材料的性能和制备工艺有着重要的影响。
塑性变形可以提高材料的强度和硬度,改善材料的力学性能。
再结晶可以改善材料的塑性变形能力,降低材料的应力集中和脆弱性,提高材料的韧性和延展性。
在材料制备过程中,变形和再结晶的控制对材料的组织和性能具有重要的意义。
合理的变形和再结晶工艺可以获得理想的材料微观结构,从而提高材料的使用性能。
总之,材料的变形与再结晶是材料科学基础中的重要内容。
通过对变形机制和再结晶机制的研究,可以了解材料的塑性变形和再结晶的机理,进而控制和调整材料的性能和组织。
这对于材料的应用和制备工艺都具有重要的意义。
一、冷变形后的组织结构
1. 晶粒沿变形方向伸长,形成纺锤状或纤维状。
2. 位错密度增加,位错聚集,形成位错缠节,晶粒内部被
分割破碎,形成胞状亚结构,位错集中在胞壁,或形
成位错网络。
3. 第二相或夹杂物沿变形方向拉长,形成流线或带状组织。
4. 晶粒发生转动,各晶粒的取向趋于一致,形成变形织构。
(1)变形织构
塑性变形后多晶体具有择优取向的结构称为变形织构。
(2)织构类型
•丝织构:各晶粒中某一晶向[uvw
uvw]]趋于平行力轴方向。
•板织构:各晶粒中某一晶面(hkl)趋于平行轧面,某一晶向[uvw
uvw]]趋于平行轧向。
(3)织构表示——极图。
5 材料的形变和再结晶材料在加工制备过程中或是制成零部件后的工作运行中都要受到外力的作用。
材料受力后要发生变形,外力较小时产生弹性变形;外力较大时产生塑性变形,而当外力过大时就会发生断裂。
本章主要容:一.晶体的塑性变形单晶体的塑性变形多晶体的塑性变形合金的塑性变形塑性变形对材料组织与性能的影响二.回复和再结晶冷变形金属在加热时的组织与性能变化回复再结晶晶粒长大再结晶织构与退火孪晶5.1 晶体的塑性变形塑性加工金属材料获得铸锭后,可通过塑性加工的方法获得一定形状、尺寸和机械性能的型材、板材、管材或线材。
塑性加工包括锻压、轧制、挤压、拉拔、冲压等方法。
金属在承受塑性加工时,当应力超过弹性极限后,会产生塑性变形,这对金属的结构和性能会产生重要的影响。
5.1.1 单晶体的塑性变形单晶体塑性变形的两种方式:滑移孪生滑移 :滑移是晶体在切应力的作用下,晶体的一部分相对于另一部分沿着某些晶面和晶向发生相对滑动。
滑移线:为了观察滑移现象,可将经良好抛光的单晶体金属棒试样进行适当拉伸,使之产生一定的塑性变形,即可在金属棒表面见到一条条的细线,通常称为滑移线.滑移带:在宏观及金相观察中看到的滑移带并不是单一条线,而是由一系列相互平行的更细的线所组成的,称为滑移带。
滑移系:塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。
一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系。
滑移的临界分切应力τk晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的特点晶体的滑移并不是晶体的一部分相对于另一部分同时做整体的刚性的移动,而是通过位错在切应力作用下沿着滑移面逐步移动的结果,因此实际滑移的临界分切应力τk 比理论计算的低得多。
(滑移面为原子排列最密的面)单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动。