材料的变形与再结晶
- 格式:ppt
- 大小:4.19 MB
- 文档页数:74
材料科学基础_第五章材料的形变和再结晶材料的形变是指材料在外力作用下发生的形状、尺寸及结构的变化。
形变可以分为弹性变形和塑性变形两种形式。
弹性变形是指物质在外力作用下只发生形状的改变,而不发生组织内部结构的改变,当外力消失时,物质能恢复到原来的形状。
塑性变形是指物质在外力作用下发生形状和内部结构的改变,当外力消失时,物质不能恢复到原来的形状。
形变过程中,材料的内部晶粒会发生滑移、动晶界和晶界迁移等变化,这些变化有助于减小材料中的位错密度,同时也能影响晶粒的尺寸、形状和分布。
当形变达到一定程度时,晶粒内部会产生高密度的位错,这会导致晶体的韧性下降,同时也容易引起晶粒的断裂和开裂。
因此,形变过程中产生的位错对材料的性能具有重要影响。
再结晶是指在材料的形变过程中,通过退火处理使晶粒重新长大,去除或减小形变过程中产生的位错和晶界等缺陷,从而改善材料的力学性能和其他性能。
再结晶的发生与材料的种类、成分、形变方式等因素有关。
再结晶可以通过两种方式实现:显微再结晶和亚显微再结晶。
显微再结晶是指晶粒在正常晶界上长大,形成新的晶粒;亚显微再结晶是指材料中的一些晶粒发生部分再结晶,形成较大的再结晶晶粒。
再结晶的发生和发展受到晶粒的尺寸、形状和分布的影响。
晶粒尺寸越小,再结晶发生越容易,且再结晶晶粒的尺寸也越小。
再结晶晶粒的尺寸和分布对材料的性能影响很大。
晶粒尺寸较小的材料通常具有优良的力学性能和高韧性,且易于加工。
因此,控制再结晶晶粒的尺寸和分布对材料的性能优化和加工有重要意义。
总之,材料的形变和再结晶是材料科学中重要的研究领域。
通过研究形变和再结晶的机制和规律,可以优化材料的性能和加工过程,从而推动材料科学的发展和应用。
金属的塑性变形与再结晶实验”实验报告、实验目的( 1) 了解冷塑性变形对金属材料的内部组织与性能的影响。
( 2) 了解变形度对金属再结晶退火后晶粒大小的影响。
二、实验原理金属材料在外力作用下,当应力大于弹性极限时,不但会产生弹性变形,还会产生塑性变形。
塑性变形的结果不仅改变金属的外形和尺寸,也会改变其内部的组织和性能。
在冷塑性形变过程,随着变形程度的增大,金属内部的亚晶增多,加上滑移面转动趋向硬位向和位错密度增加等原因,金属的强度和硬度升高,塑性和韧性下降,这种现象称为加工硬化。
加工硬化后的金属内能升高,处在不稳定的状态,并有想稳定状态转变的自发趋势。
若对其进行加热,使其内部原子活动能力增大,随着加热温度逐渐升高,金属内部依次发生回复、再结晶和晶粒长大3 个阶段。
冷塑性变形金属经再结晶退火后的晶粒大小,不仅与再结晶退火时的加热温度有关,,而且与再结晶退火前预先冷变形程度有关。
当变形度很小时,由于金属内部晶粒的变形也很小,故晶格畸变也小,晶粒的破碎与位错密度增加甚微,不足以引起再结晶现象发生,故晶粒大小不变。
当变形度在2%~10% 范围内时,由于多晶体变形的特点,金属内部各个晶粒的变形极不均匀(即只有少量晶粒进行变形) ,再结晶是晶核的形成数量很少,且晶粒极易相互并吞长大,形成较粗大的晶粒,这样的变形度称为临界变形度。
大于临界变形度后,随着变形量的增大,金属的各个晶粒的变形逐步均匀化,晶粒破碎程度与位错密度也随着增加,再结晶时晶核形成的数量也增多,所以再结晶退火后晶粒较细小而均匀。
为了观察再结晶退火后铝片的晶粒大小,必须把退火后的铝片放入一定介质中进行浸蚀,由于各个晶粒内原子排列的位向不同,对浸蚀剂的腐蚀不同,因而亮暗程度不同,就能观察到铝片内的晶粒。
三、实验装置及试件工业纯铝片、铝片拉伸机、浸蚀剂( 15%HF+45%HCL+15%HN ??3+25% ??2??组成的混合酸)、HV-120型维氏硬度计、小型实验用箱式炉、钢皮尺、划针、扳手、放大镜。
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
5 材料的形变和再结晶材料在加工制备过程中或是制成零部件后的工作运行中都要受到外力的作用。
材料受力后要发生变形,外力较小时产生弹性变形;外力较大时产生塑性变形,而当外力过大时就会发生断裂。
本章主要内容:一.晶体的塑性变形单晶体的塑性变形多晶体的塑性变形合金的塑性变形塑性变形对材料组织与性能的影响二.回复和再结晶冷变形金属在加热时的组织与性能变化回复再结晶晶粒长大再结晶织构与退火孪晶5.1 晶体的塑性变形塑性加工金属材料获得铸锭后,可通过塑性加工的方法获得一定形状、尺寸和机械性能的型材、板材、管材或线材。
塑性加工包括锻压、轧制、挤压、拉拔、冲压等方法。
金属在承受塑性加工时,当应力超过弹性极限后,会产生塑性变形,这对金属的结构和性能会产生重要的影响。
5.1.1 单晶体的塑性变形单晶体塑性变形的两种方式:滑移孪生滑移:滑移是晶体在切应力的作用下,晶体的一部分相对于另一部分沿着某些晶面和晶向发生相对滑动。
滑移线:为了观察滑移现象,可将经良好抛光的单晶体金属棒试样进行适当拉伸,使之产生一定的塑性变形,即可在金属棒表面见到一条条的细线,通常称为滑移线.滑移带:在宏观及金相观察中看到的滑移带并不是单一条线,而是由一系列相互平行的更细的线所组成的,称为滑移带。
滑移系:塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。
一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系。
滑移的临界分切应力τk晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的特点晶体的滑移并不是晶体的一部分相对于另一部分同时做整体的刚性的移动,而是通过位错在切应力作用下沿着滑移面逐步移动的结果,因此实际滑移的临界分切应力τk 比理论计算的低得多。
(滑移面为原子排列最密的面)单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动。
实验三金属塑性变形与再结晶一、实验目的认识金属冷变形加工后及经过再结晶退火后的组织性能和特征变化;研究形变程度对再结晶退火前后组织和性能的影响。
加深对加工硬化现象和回复再结晶的认识。
二、基本原理1、金属冷塑性变形后的显微组织和性能变化金属冷塑性变形为金属在再结晶温度以下进行的塑性变形。
金属在发生塑性变形时,外观和尺寸发生了永久性变化,其内部晶粒由原来的等轴晶逐渐沿加工方向伸长,在晶粒内部也出现了滑移带或孪晶带,当变形程度很大时,晶界消失,晶粒被拉成纤维状。
相应的,金属材料的硬度、强度、矫顽力和电阻等性能增加,而塑性、韧性和抗腐蚀性降低。
这一现象称为加工硬化。
为了观察滑移带,通常将已抛光并侵蚀的试样经适量的塑性变形后再进行显微组织观察。
注意:在显微镜下滑移带与磨痕是不同的,一般磨痕穿过晶界,其方向不变,而滑移带出现在晶粒内部,并且一般不穿过晶界。
2、冷塑性变形后金属加热时的显微组织与性能变化金属经冷塑性变形后,在加热时随着加热温度的升高会发生回复、再结晶、和晶粒长大。
(1)回复当加热温度较低时原子活动能力尚低,金属显微组织无明显变化,仍保持纤维组织的特征。
但晶格畸变已减轻,残余应力显著下降。
但加工硬化还在,固其机械性能变化不大。
(2)再结晶金属加热到再结晶温度以上,组织发生显著变化。
首先在形变大的部位(晶界、滑移带、孪晶等)形成等轴晶粒的核,然后这些晶核依靠消除原来伸长的晶粒而长大,最后原来变形的晶粒完全被新的等轴晶粒所代替,这一过程为再结晶。
由于金属通过再结晶获得新的等轴晶粒,因而消除了冷加工显微组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形以前的状态。
金属的再结晶过程是在一定的温度范围能进行的,通常规定在一小时内再结晶完成95%所对应的温度为再结晶温度,实验证明,金属熔点越高,再结晶温度越高,其关系大致为:T=0.4T熔。
(3)晶粒长大再结晶完成后,继续升温(或保温),则等轴晶粒以并容的方式聚集长大,温度越高,晶粒越大。
实验二金属的塑性变形与再结晶一、实验目的1、了解工业纯铁经冷塑性变形后,变形量对硬度和显微组织的影响2、研究变形量对工业纯铝再结晶退火后晶粒大小的影响二、实验原理金属在外力作用下,当应力超过其弹性极限时将发生不可恢复的永久变形称为塑性变形。
金属发生塑性变形后,除了外形和尺寸发生改变外,其显微组织与各种性能也发生明显的变化。
经塑性变形后,随着变形量的增加,金属内部晶粒沿变形方向被拉长为偏平晶粒。
变形量越大,晶粒伸长的程度越明显。
变形量很大时,各晶粒将呈现出“纤维状”组织。
同时内部组织结构的变化也将导致机械性能的变化。
即随着变形量的增加,金属的强度、硬度上升,塑性、韧性下降,这种现象称为加工硬化或应变硬化。
在本实验中,首先以工业纯铁为研究对象,了解不同变形量对硬度和显微组织的影响。
冷变形后的金属是不稳定的,在重新加热时会发生回复、再结晶和晶粒长大等过程。
其中再结晶阶段金属内部的晶粒将会由冷变形后的纤维状组织转变为新的无畸变的等轴晶粒,这是一个晶粒形核与长大的过程。
此过程完成后金属的加工硬化现象消失。
金属的力学性能将取决于再结晶后的晶粒大小。
对于给定材料,再结晶退火后的晶粒大小主要取决于塑性变形时的变形量及退火温度等因素。
变形量越大,再结晶后的晶粒越细;金属能进行再结晶的最小变形量通常在2~8%之间,此时再结晶后的晶粒特别粗大,称此变形度为临界变形度。
大于此临界变形度后,随变形量的增加,再结晶后的晶粒逐渐细化。
在本实验中将研究工业纯铝经不同变形量拉伸后在550℃温度再结晶退火后其晶粒大小,从而验证变形量对再结晶晶粒大小的影响。
三、实验设备和材料1、实验设备箱式电阻炉、万能拉伸机、卡尺、低倍4X型金相显微镜、洛氏硬度计等2、实验材料(1)变形度为0%、30%、50%、70%的工业纯铁试样两套,其中一套用于塑性变形后的硬度测定,一套为已制备好的不同变形量下的金相标准试样,用于观察组织(2)工业纯铝试样,尺寸为160mm×20m m×0.5mm,(3)腐蚀液:40mlHNO3+30mlHCl+30mlH2O+5g纯Cu),硝酸溶液四、实验内容及步骤1、测定工业纯铁的硬度(HRB )与变形度的关系,观察不同塑性变形量后工业纯铁的金相显微组织(1)将工业纯铁的试样在万能拉伸实验机上分别进行0%、30%、50%、70%的压缩变形。
实验三金属的塑性变形与再结晶组织观察目的1.加深对材料塑性编写过程的理解;2.认识塑性变形的典型组织;3.理解变形量对再结晶后晶粒尺寸的影响.一、塑性变形引起材料组织的变化晶体塑性材料塑性变形的基本方式有四种:滑移、孪生、蠕变、粘滞性流动.滑移是晶体中位错在外力作用下发生运动,造成晶体的两部分在滑移面上沿滑移方向的相对移动,滑移是位错的移动,晶体内部原子从一个平衡位置移到另一个平衡位置,不一起晶体内的组织变化,位错移出晶体的表面,形成滑移台阶,一个位错源发出的位错都移出,在晶体表明形成台阶在显微镜下可以见到,就是滑移线.孪生是在滑移困难时以形成孪晶的方式发生的塑性变形,晶体发生孪生,在晶体表面产生浮凸,晶体内部生成的孪晶与原晶体的取向不一样,并有界面分隔,所以在晶体内重新制样后依然可以看到孪晶.多晶体材料发生塑性变形后,原等轴晶粒被拉长或压扁,晶界变模糊.两相材料经过塑性变形后,第二相的分布也与变形方向有关.塑性变形后进行退火加热发生再结晶的晶粒尺寸与变形量有直接的关系.在临界变形量不同材料不相同,一般金属在2—10%之间以下,金属材料不发生再结晶,材料维持原来的晶粒尺寸;在临界变形量附近,刚能形核,因核心数量很少而再结晶后的尺寸很大,有时甚至可得到单晶;一般情况随着变形量的增加,再结晶后的晶粒尺寸不断减小;当变形量过大>70%后,可能产生明显织构,在退火温度高时发生晶粒的异常长大.二、实验内容1.观察几种塑性变形后的组织形貌①.低碳钢拉伸后的组织变化:看断口附近,变形量最大,组织特征明显,白色的软相的晶粒的形状分布,黑色较硬相形状分布特征.②纯铁压缩表面的滑移线:为了观察,现将试样磨平,再压缩变形,晶体表面可留下滑移线.若再打磨则滑移线就不可见.一个滑移系能开动,与之平行的滑移系也可能开动,滑移线往往时互相平行,因为存在交滑移,滑移线为波浪状.③锌的变形孪晶:Zn是hcp晶系,仅有三个滑移系,多晶体变形就会发生孪生,从试样上可见到变形产生的孪晶.④纯铁的变形孪晶:铁为bcc晶体,有12个滑移系,一般变形为滑移.在-120℃以下冲击,低温滑移阻力大,大的应力也可引起孪生方式的变形.2.观察铝片经不同变形量后退火发生再结晶后晶粒的大小.一组试样的变形量分别为0、1、2、3、5、8、10、13%,见试样头部的字号,用钢板尺测晶粒的平均截线长.方法:取一线段,数穿过了多少个晶粒,则)()(n mm d 晶粒的个数测量用线段总长=,为保证数字有意义,50>n .三、实验报告要求 报告内容部分:1.画出见到的四中组织示意图,每一个注明组织特征,简述形成组织的原因或过程.2.用表格列出测量铝片用的总长度,数出的晶粒个数,算出平均截线长.用坐标纸画出在结晶后的晶粒尺寸与变形量关系曲线.指出其临界变形量.。
变形量和再结晶尺寸的关系
变形量和再结晶尺寸之间存在着密切的关系,它们在材料学和
金属加工领域中起着重要的作用。
首先,变形量指的是材料在加工过程中所经历的变形程度,通
常用来描述材料的变形程度和加工工艺的影响。
变形量的大小直接
影响着再结晶尺寸的形成。
在金属材料的加工过程中,通过塑性变形,晶粒会发生形变和滑移,导致晶界的错位和位错的堆积。
这些
位错的堆积会导致材料的局部变形,最终形成晶界的能量密集区域,促使再结晶的发生。
其次,再结晶尺寸是指材料在加工过程中发生再结晶后晶粒的
尺寸大小。
再结晶是指在材料经历了一定程度的塑性变形后,通过
晶粒的再长大和再结晶,来消除变形过程中产生的位错和晶界能量,从而恢复材料的塑性。
再结晶尺寸的大小受到多种因素的影响,其
中变形量是一个重要的影响因素。
一般来说,变形量越大,再结晶
尺寸也会越大,因为更大的变形量会导致更多的位错和晶界能量的
积累,从而促进再结晶的发生,最终形成较大的再结晶晶粒。
综上所述,变形量和再结晶尺寸之间存在着直接的关系。
变形
量的大小会直接影响再结晶尺寸的形成,较大的变形量通常会导致较大的再结晶尺寸。
这种关系在材料加工和控制晶粒尺寸上具有重要的意义,对于优化材料的性能和加工工艺具有一定的指导意义。