11.2_毕奥-萨伐尔定律及应用
- 格式:ppt
- 大小:1.12 MB
- 文档页数:27
第五版普通物理习题11-2,11-3毕奥—萨伐尔定律及其应用选择题两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为(A )0 (B )πμ02000T (C )πμ04000 T (D )πμ0400T [ ] 答案:A通有电流I 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为(A )P B >Q B >O B (B )Q B >P B >O B (C ) Q B >O B >P B (D )O B >Q B >P B[ ] 答案:D在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零(A )仅在象限1 (B )仅在象限2 (C )仅在象限1、3 (D )仅在象限2、4[ ]答案:D无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:(A )1:2 (B )1:1 (C )1:4 (D )2:1[ ]答案:(B )边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度(A )与a 无关 (B )正比于2a (C )正比于a (D )与a 成反比[ ]答案:D边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为(A )01=B ,02=B (B )01=B ,lIB πμ0222=(C )l I B πμ0122=,02=B (D )l I B πμ0122=, lIB πμ0222= [ ]答案:C载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =(A )1:1 (B )π2:1 (C )π2:4 (D )π2:8[ ]答案:D如图所示,两根长直载流导线垂直纸面放置,电流11=I A ,方向垂直纸面向外;电流22=I A ,方向垂直纸面向内。
毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例一、毕奥-萨伐尔定律1.毕奥-萨伐尔定律:载流导线产生磁场的基本规律。
微分形式为:整个闭合回路产生的磁场是各电流元所产生的元磁场dB的叠加。
磁感应线的方向服从右手定则,如图。
二、毕奥-萨伐尔定律应用举例两种基本电流周围的磁感应强度的分布:载流直导线;圆电流。
例1.载流长直导线的磁场解:建立如图坐标系,在载流直导线上,任取一电流元Idz,由毕-萨定律得元电流在P点产生的磁感应强度大小为:方向为垂直进入纸面。
所有电流元在P点产生的磁场方向相同,所以求总磁感强度的积分为标量积分,即:(1)由图得:,即:此外:,代入(1)可得:讨论:(1)无限长直通电导线的磁场:(2)半无限长直通电导线的磁场:(3)其他例子例2:圆形载流导线轴线上的磁场:设在真空中,有一半径为 R ,通电流为 I 的细导线圆环,求其轴线上距圆心 O 为 x 处的P点的磁感应强度。
解:建立坐标系如图,任取电流元,由毕-萨定律得:,方向如图:,所有dB形成锥面。
将dB进行正交分解:,则由由对称性分析得:,所以有:,因为: ,r=常量,所以:,又因为:所以:,方向:沿x轴正方向,与电流成右螺旋关系。
讨论:(1)圆心处的磁场:x=0 ,。
(2)当即P点远离圆环电流时,P点的磁感应强度为:。
例3:设有一密绕直螺线管。
半径为 R ,通电流 I。
总长度L,总匝数N(单位长度绕有n 匝线圈),试求管内部轴线上一点 P 处的磁感应强度。
解:建立坐标系,在距P 点 x 处任意截取一小段 dx ,其线圈匝数为: 电流为:。
其相当于一个圆电流,它在P点的磁感应强度为:。
因为螺线管各小段在P点的磁感应强度的方向均沿轴线向右,所以整个螺线管在P点的磁感应强度的大小为:因为:代入上式得:所以:讨论:(1)管内轴线上中点的磁场:(2)当 L>>R时,为无限长螺线管。
此时,,管内磁场。
即无限长螺线管轴线上及内部为均匀磁场,方向与轴线平行满足右手定则。