§9.2 毕奥-萨伐尔定律
- 格式:ppt
- 大小:1016.00 KB
- 文档页数:1
1820年,法国物理学家比奥特(Biot)和萨瓦特(Savart)通过实验,测量了一条长直电流线附近的小磁针的力定律,并发表了一篇论文,题为“传递给运动中的金属的电的磁化力”。
后来被称为比奥-萨瓦特定律。
后来,在数学家拉普拉斯(Laplace)的帮助下,该定律以数学公式表示。
毕奥-萨伐尔定律:载流导线上的电流元Idl在真空中某点P的磁感度dB的大小与电流元Idl的大小成正比,与电流元Idl和从电流元到P点的位矢r之间的夹角θ的正弦成正比,与位矢r的大小的平方成反比。
dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则。
叠加原理:
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和。
特点:
从课程论和物理学课自身特点的角度来分析毕奥-萨伐尔定律,它体现的学科特点有以下几点:(1)是稳恒电流磁场的关键知识点;(2)具有高度的抽象性;(3)使用数学工具的复杂性;(4)掌握“方法”比掌握“内容”更重要;(5)在探索知识的过程中体现“把握本质联
系,揭示事物发展内在规律性”的唯物辩证法观点。
毕奥-萨伐尔定律公式
毕奥-萨伐尔定律公式是描述电磁感应现象的重要公式之一,它是由法国物理
学家毕奥和英国物理学家萨伐尔分别独立提出的,因此也被称为毕萨定律。
该定律表述了当一个闭合电路中的磁通量发生变化时,该电路内会产生电动势。
具体来说,如果一个电磁感应器中的磁通量Φ发生变化,那么在该感应器两端就
会产生一个电动势E,其大小与磁通量变化率的绝对值成正比。
毕奥-萨伐尔定律公式可以用一个简单的公式来表达:
E = -dΦ/dt
其中,E是感应电动势的大小,Φ是穿过感应电路的磁通量,t是时间,d/dt表示对时间的导数运算。
公式中的负号表示感应电动势的方向与磁通量变化的方向相反。
需要注意的是,该定律只适用于闭合电路中的感应电动势。
对于非闭合电路,根据法拉第电磁感应定律,产生的感应电动势大小与闭合电路中的相同,但方向可能不同。
总的来说,毕奥-萨伐尔定律公式是电磁学中一个非常重要的公式,广泛应用
于各种电磁感应现象的分析和设计中。
毕奥撒法尔定律
毕奥-萨伐尔定律(也被称为电场定律)是电学中的一个重要定律,它描述了电荷之间的相互作用力与它们所带电荷量的乘积以及它们之间距离之间的关系。
具体来说,毕奥-萨伐尔定律表明在真空中,静止的点电荷所产生的电场强度与它们所带电荷量成正比,与它们之间的距离的平方成反比。
公式表示为:$\frac{E}{q} = \frac{k}{r^{2}}$,其中E是电场强度,q是源电荷的电荷量,k是常数,r是源电荷与试探电荷之间的距离。
这个定律是英国物理学家约瑟夫·安培的学生,法国物理学家奥古斯汀·毕奥和其时的科学家萨伐尔共同发现的。
他们在研究电流产生的磁场时,通过实验和理论推导得出了这个定律。
这个定律不仅适用于点电荷产生的电场,还适用于任何形状的电荷分布产生的电场,以及多个电荷共同产生的电场。
需要注意的是,毕奥-萨伐尔定律是在静止电荷产生的电场中得出的,对于随时间变化的磁场,需要使用麦克斯韦方程组来描述。
.毕奥-萨伐尔定律
摘要:
1.毕奥- 萨伐尔定律的定义
2.毕奥- 萨伐尔定律的发现历程
3.毕奥- 萨伐尔定律的数学表达式
4.毕奥- 萨伐尔定律的应用领域
5.毕奥- 萨伐尔定律在我国的研究现状与前景
正文:
毕奥- 萨伐尔定律,又称毕萨定律,是电磁学中的一个基本定律,描述了电流在磁场中受力的规律。
该定律由法国物理学家让- 巴蒂斯特·毕奥(Jean-Baptiste Biot)和法国数学家费尔南德·萨伐尔(Ferdinand de Saussure)在1820 年同时独立发现,故以两位科学家的名字命名。
毕奥- 萨伐尔定律的数学表达式为:F = I * d * B,其中F 表示电流在磁场中受到的安培力,I 表示电流强度,d 表示电流元的长度,B 表示磁感应强度。
根据这个公式,可以计算出电流在磁场中所受的力。
毕奥- 萨伐尔定律在许多领域都有广泛的应用,如电磁制动、电磁起重机、电磁继电器等。
此外,在现代科技领域,如磁悬浮列车、电动汽车、风力发电等方面,毕奥- 萨伐尔定律的应用也越来越重要。
在我国,对毕奥- 萨伐尔定律的研究始于上世纪50 年代。
经过几十年的发展,我国在电磁学领域的研究已经取得了世界领先的成果。
目前,我国正加大对电磁学领域的研究力度,致力于推动电动汽车、磁悬浮列车等新型产业发
展,为我国经济建设和科技进步做出贡献。
总之,毕奥- 萨伐尔定律作为电磁学的基本定律之一,对我国科技发展具有重要意义。
比奥·萨瓦特定律指出:磁场源是电流元素,磁场的衰减与场点到电流元素的距离的平方成正比。
磁场遵循叠加原理。
由任意形状的导线激励的总磁感应强度B是由电流元件激励的磁感应强度DB的矢量积。
任何形状的载流导线都可以视为许多电流元件IDL,只要已知由电流元件激发的磁场定律,就可以通过叠加原理获得任意载流导线激发的磁场的分布。
载流线的任何电流元素IDL在给定点P处产生的磁感应强度DB 与电流元素的大小成正比,与电流元素与从电流元素到矢量的矢量r 之间的夹角正弦成正比。
P点,与当前元素和P点之间的距离的平方成反比;DB的方向垂直于由DL和R确定的平面,并且该方向由右螺旋规则确定,也就是说,当右螺旋从IDL旋转小于180°到R的角度时,螺钉的方向如图1所示。
数学表达式为
地球磁场起源的理论
其中k为比例系数,真空中k = 107t·m·a-1,不同磁性介质的K值不同。
为了使DB的公式合理化,设k =μ/ 4π,μ为介质的渗透率,μ= 4π×107t·m·a-1在真空中
地球磁场起源的理论
Biot Savart定律的向量表达如下:
地球磁场起源的理论
由任意形状的载流线在点P处产生的磁感应强度B等于该点上导体上每个电流元素IDL产生的磁感应强度的矢量和
地球磁场起源的理论
Biot Savart定律给出了当前元素IDL在距R的空间中的点P处产生dB的幅度和方向。
但是,由于当前元素不能单独存在,因此无法通过实验直接验证Biot Savart定律。
间接证明了比奥·萨瓦特定律的正确性,因为从比奥·萨瓦特定律得到的所有结果都与实验结果吻合良好。
毕奥-萨伐尔定律
毕奥-萨伐尔定律(英文:Biot-SavartLaw)是描述在静磁学中电流元在空间任意点P处所激发的磁场的关系。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-BaptisteBiot和FélixSavart命名。
电流元Idl在空间某点P处产生的磁感应强度dB的大小与电流元Idl的大小成正比,与电流元Idl所在处到P点的位置矢量和电流元Idl之间的夹角的正弦成正比,而与电流元Idl到P点的距离的平方成反比。
毕奥-萨伐尔定律定律是由H.C.奥斯特实验(见电流磁效应)引起的,这个实验表明,长直载流导线对磁极的作用力是横向力。
为了揭示电流对磁极作用力的普遍定量规律,J.B.毕奥和F.萨伐尔认为电流元对磁极的作用力也应垂直于电流元与磁极构成的平面,即也是横向力。
他们通过长直和弯折载流导线对磁极作用力的实验,得出了作用力与距离和弯折角的关系。
在P.S.M.拉普拉斯的帮助下,经过适当的分析,得到了电流元对磁极作用力的规律。
根据近距作用观点,它现在被理解为电流元产生磁场的规律。
毕奥萨伐尔定律
毕奥-萨伐尔定bai律指出: 磁场du的源是电流元,磁场随场点到电流元的距zhi离平方而衰减,dao磁场遵从叠加原理,由任意形状通电导线所激发的总磁感应强度B 是由电流元所激发的磁感应强度dB 的矢量积分,任意形状的载流导线都可以看成由许多电流元Idl 组成,只要知道了电流元激发磁场的规律,再用叠加原理就可以求得任意载流导线激发的磁场分布。
载流导线的任一电流元Idl 在给定点P 所产生的磁感应强度dB 的大小与电流元的大小成正比,与电流元和由电流元到P 点的矢径r 之间夹角的正弦成正比,并与电流元到P 点的距离的平方成反比; dB 的方向垂直于dl 与r 所决定的平面,指向由右手螺旋法则决定,即当右手螺旋由Idl 经小于180°的角转向r 时螺旋前进的方向,如附图-1 所示。
其数学表达式为
式中: k 为比例系数,在真空中k =107T·m·A-1,不同的磁介质k 值不同。
为了使dB 的公式有理化,取k = μ/4π,μ为介质的磁导率,真空中μ= 4π×107T·m·A-1,这样,式( 附-1) 改为:
任意形状载流导线在P 点产生的磁感应强度B,等于导线上各个电流元Idl 在该点处所产生的磁感应强度矢量和,即: 毕奥-萨伐尔定律给出了电流元Idl 对距离r 处的空间某一点P 处产生dB 的大小与方向,但由于电流元不可能单独存在,所
以毕奥-萨伐尔定律不可能由实验直接加以验证。
毕奥-萨伐尔定律的正确性是通过间接的方法被证实的,因为由毕奥-萨伐尔定律推出的所有结果都能很好地与实验结果相符合。
毕奥萨法定律
在1820年,法国物理学家毕奥和萨伐尔,通过实验测量了长直电流线附近小磁针的受力规律,发表了题为“运动中的电传递给金属的磁化力”的论文,后来人们称之为毕奥-萨伐尔定律。
稍后,在数学家拉普拉斯的帮助下,以数学公式表示出这一定律。
dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则,如图示一所示,因此,可将式图示一写成矢量形式如图示二。