信息论讲义第二讲
- 格式:ppt
- 大小:2.12 MB
- 文档页数:68
信息论第2讲北京航空航天大学201教研室陈杰buaa201gcss@ PWD:buaaf6152第一章小结1.信息论:经典信息论工程信息论广义信息论2.信息的概念:通俗信息概念广义信息概念概率信息概念3.信息:抽象概念,研究对象,含于消息消息:比较具体,非物理量,信息的载荷者信号:最具体,表示消息的物理量,可测量、可显示、可描述,消息的载荷者4.通信系统的模型:第一章小结(续)通信系统干扰源窃听者模型32.5 连续随机变量的互信息和相对熵2.5.1 连续随机变量的互信息⎯定义⎯熵的性质2.5.2 连续随机变量的相对熵⎯连续随机变量的自信息量⎯相对熵、联合熵、条件熵⎯性质45•连续随机变量的互信息连续随机变量集XY ,事件x , p (x ) ≥0和事件y , p (y ) ≥0之间的互信息定义为00()() lim log ()()x y p x y p y x y p x xp y y Δ→Δ→ΔΔ=ΔΔ00()(;)lim log ()def x y p x y x I x y p x xΔ→Δ→Δ=Δ() log ()()p xy p x p y =6•连续随机变量的平均互信息连续随机变量集合X 和Y 之间的平均互信息量(Mutual Information)定义为()(;)()log ()()def p xy I X Y p xy dxdy p x p y ∞−∞=∫∫7•连续随机变量的平均互信息的性质(1)非负性当且仅当连续随机变量X 和Y 统计独立时等号成立。
(2)对称性(;)0I X Y ≥(;)(;)I X Y I Y X =8•连续随机变量令随机变量X 的取值区间是(a ,b ),a <b ,把它分成n 段,等间隔,那么X 处于第i 个小区间的概率为事件x i <x i +Δ的自信息量为b a n −Δ=()i i p p x Δ=⋅Δlog log[()]i i p p x −Δ=−⋅Δ9•连续r.vX 的平均自信息量为•当n →∞,Δi →0时,定义绝对熵()()log[()]i i iH X p x p x Δ=−⋅Δ⋅⋅Δ∑()H X Δ→∞0()log H X Δ=-()[log ()]()[log ]i i i i ip x p x p x =−⋅⋅Δ−⋅Δ⋅Δ∑∑10•连续随机变量的相对熵(Differential Entropy)称为连续随机变量的相对熵,或微分熵,简称为熵。
《信息论》研究生课程讲义2-5 平均互信息量的特性平均交互信息量IX,Y在统计平均的意义上,描述了信源、信道、信宿组成的通信系统的信息传输特性。
这一节将进一步讨论IX,Y的数学特性,重点介绍其特性的结论和其物理意义。
2-5-1 IX,Y的非负性当x为大于0的实数时,底大于1的对数logx是x的严格上凸函数,可以证明若fx为上凸函数,则有:f∑pixi≥∑pifxi,如fxlogx,则有:log∑pixi≥∑pilogxi根据这个关系,考虑平均互信息量,IX,Y ∑∑pxi,yjlog[pxi,yj/pxipyj]则:-IX,Y ∑∑pxi,yjlog[pxipyj/pxi,yj]≤log∑∑pxi,yj[pxipyj/pxi,yj]log∑pxi ∑pyj0所以有:IX,Y ≥0只有当PX,YPXPY,即对于所有的i1,2,…n, j1,2,…m。
都有:pxi,yjpxipyj,才有:IX,Y0互信息量可能出现负值,但平均互信息量不可能出现负值。
接收者收到一个Y的符号,总能从中获取道关于信源X的信息量,只有当XY相互独立时,平均互信息量才为0。
由IX,YHX-HX/Y,可知,在信息传输过程中,后验熵不可能大于先验熵,这种特性称为后熵不增加原理。
当XY相互独立时,pxi,yjpxipyj可得:HX,YHX+HY当XY相互独立时,pyj/xipyj可得:HY/XHY当XY相互独立时,pxi/yjpxi可得:HX/YHX由互信息量的定义可知:IX,YHX+HY-HX,YHX-HX/YHY-HY/X02-5-2 平均互信息量的交互性由于pxi,yjpyj,xi则:IX,YIY,X交互性表明在Y中含有关于X的信息,IX,Y;在X中含有关于Y的信息,IY,X;而且两者相等。
实际上IX,Y和IY,X只是观察者的立足点不同,对信道的输入X 和输出Y的总体测度的两种表达形式。
两个园相交的部分为平均互信息量,可见,平均互信息量的大小体现了X和Y 的相关程度。