磁光调制实验
- 格式:ppt
- 大小:384.50 KB
- 文档页数:24
实验四、磁光调制实验[实验目的]1.了解法拉第效应的工作原理;2.掌握磁光调制器件性能参数的测量方法;[实验原理]原来没有旋光性的透明介质,如水、铅玻璃等,放在强磁场中,可产生旋光性,这种现象称为法拉第效应。
具体的现象是,把磁光介质放到磁场中,使光线平行于磁场方向通过介质时,入射的平面偏振光的振动方向就会发生旋转,转移角度的大小与磁光介质的性质、光程和磁场强度等因素有关。
对于不同的介质其振动面的旋转方向不同,顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,反之,则称为左旋或负旋介质。
ψ=VlBcosα式中,ψ为振动面旋转的角度, l为光程,B为磁感应强度,α为光线与磁场的夹角,V为比例常数,称费尔德常数,单位rad/Tm,它与磁光介质和入射光的波长有关,是一个表征介质磁光特性强弱的参量。
对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。
这点是磁光介质和天然旋光介质之间的重要区别。
就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。
例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,另一次是与这个方向相反,观察结果,振动面并没旋转。
可是磁光物质则不同,光线以相反的两个方向两次通过磁光物质时,其振动面的旋转角是叠加的。
因此,在磁致旋光的情况下,使光线多次通过磁光物质可得到旋转角累加。
图1 磁光调制器结构简图磁光调制器就是根据法拉第效应制成的,其结构见图67-1。
将磁光介质(铁钇石榴石Y3Fe5O12或三溴化铬CrBr3)置于激磁线圈中。
在它的左右两边,各加一个偏振片。
安装时,使它们的光轴彼此垂直。
没有磁场时,自然光通过起偏振片变为平面偏振光通过磁光介质。
达到检偏振片时,因振动面没有发生旋转,光因其振动方向与检偏振片的光轴垂直而被阻挡,检偏振片无光输出。
有磁场时,入射于检偏振片的偏振光,因振动面发生了旋转,检偏振片则有光输出。
光输出的强弱与磁致的旋转角ψ有关。
电光调制实验一 实验原理电光调制实验仪作为高等院校新一代的物理实验仪器,在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。
电光调制器的调制信号频率可达 Hz 量级,因而在激光通讯、激光显示等领域中有广泛的应用。
(一)电光调制原理某些晶体在外加电场的作用下,其折射率随外加电场的改变而发生变化的现象称为电光效应,利用这一效应可以对透过介质的光束进行幅度,相位或频率的调制,构成电光调制器。
电光效应分为两种类型:(1)一级电光(泡克尔斯—Pockels )效应,介质折射率变化正比于电场强度。
(2)二级电光(克尔—Kerr )效应,介质折射率变化与电场强度的平方成正比。
本实验仪使用铌酸锂(LiNbO 3)晶体作电光介质,组成横向调制(外加电场与光传播方向垂直)的一级电光效应。
图1 横向电光效应示意图如图1所示,入射光方向平行于晶体光轴(Z 轴方向),在平行于X 轴的外加电场(E )作用下,晶体的主轴X 轴和Y 轴绕Z 轴旋转45°,形成新的主轴X ’轴—Y ’轴(Z 轴不变),它们的感生折射率差为Δn ,并正比于所施加的电场强度E :rE n n 30=∆式中r 为与晶体结构及温度有关的参量,称为电光系数。
n 0为晶体对寻常光的折射率。
当一束线偏振光从长度为l 、厚度为d 的晶体中出射时,由于晶体折射率10910~101的差异而使光波经晶体后出射光的两振动分量会产生附加的相位差δ,它是外加电场E 的函数: U d l r n rE n nl ⎪⎭⎫ ⎝⎛==∆=3030222λπλπλπδ (1) 式中λ为入射光波的波长;同时为测量方便起见,电场强度用晶体两极面间的电压来表示,即U=Ed 。
当相差πδ=时,所加电压l d r n U U 302λπ== (2) πU 称为半波电压,它是一个可用以表征电光调制时电压对相差影响大小的重要物理量。
磁光调制实验报告-回复通过建立磁光调制实验系统,掌握磁光效应的原理和应用,并实现对载波的二进制调制、解调和调频过程的观测。
实验原理:磁光效应是指介质中的光在磁场作用下偏振状态的旋转或偏振面的移动。
在磁光效应中,光的振动方向和介质中的磁场方向垂直且相邻两个振动方向的偏转角之间存在比例关系。
在实验中,我们采用了单频光源结合锁相放大器的方式对载波进行调制。
首先,将激光光源通过分束器分为两束,分别经过两个图像旋转器使两束光分别旋转α和−α角,接着将这两束光的振动方向合成一束,指向振荡器的P极板,进而进入样品。
此时,当样品中存在磁场时,光的偏振方向会发生改变。
最后,通过锁相放大器对输出信号进行检测和解调,得到载波的调制信息。
实验装置:实验的主要装置包括激光光源、分束器、图像旋转器、P极板、样品室、锁相放大器等。
实验步骤:1、首先将实验中使用的磁光介质(GdIG)放入样品室中,设置样品温度。
2、打开激光光源和分束器。
将激光光源通过分束器分为两束,分别经过两个图像旋转器使两束光分别旋转α和−α角,合成一束射向P极板的偏振光。
3、打开样品室,并将振荡器调至合适频率并置于样品室中间。
4、给样品加上磁场,调节样品室压强,控制样品温度,使样品处于稳定的工作状态。
5、开启锁相放大器,调节放大器的增益,将输出信号进行检测和解调,得到载波的调制信息,观测得到的曲线图像。
实验结果:实验中得到了不同频率射到GdIG中的激光光的偏振角度,以及载波的调制信息。
调制信息的幅度和相位与磁场的存在和强度有关,从实验结果中可以得到磁场的强度大小和方向对载波调制效果的影响。
实验结论:本实验通过建立磁光调制实验系统,掌握了磁光效应的原理和应用,实现了对载波的二进制调制、解调和调频过程的观测。
实验结果表明,磁场强度的大小和方向对载波调制效果具有明显的影响,为后续磁光效应在通讯和信息处理领域的应用提供了实验基础和方法。
物理实验技术中的磁光调制实验方法磁光调制是物理实验中一种重要的技术方法,可以在光学实验中控制光的传输性能。
通过磁场对材料的磁光性质进行调控,磁光调制实验可以实现光的偏振、幅度和相位的调节,从而在光传输的过程中产生一定的调制效应。
本文将从基本原理、实验仪器和实验步骤三个方面,介绍磁光调制实验的方法和应用。
一、基本原理:磁光调制的基本原理是基于磁光效应。
磁光效应是指在磁场的影响下,材料的折射率会发生变化,从而改变光的传播速度和相位延迟。
具体而言,当光通过具有磁光性质的材料时,会出现棘轮效应和线性磁光效应。
棘轮效应是指光的线偏振方向在磁场的作用下旋转一定角度,而线性磁光效应是指光的相位随磁场的改变而发生变化。
二、实验仪器:进行磁光调制实验需要一些基本的仪器设备。
首先需要一个光源,可以使用激光器或白光源。
其次是一套光学系统,包括透镜、偏振片、分光镜和探测器等。
磁光调制实验还需要一个外加磁场装置,可以使用恒定磁场,也可以使用可调节磁场。
最后,还需要一台计算机和数据采集系统,用于记录和分析实验数据。
三、实验步骤:1. 准备工作:根据实验要求,选择合适的磁光材料和适当的光源。
检查实验仪器的连接情况,确保各个部件正常工作。
2. 光路调整:利用透镜、分光镜和偏振片等光学元件,完成光路的调整。
确保光经过偏振片后,能够以所需的偏振方向进入磁光样品。
3. 材料处理:将磁光样品制备成合适的形状和大小,并进行必要的处理,如去除气泡和表面污染物。
将样品固定于实验台上,保持稳定。
4. 磁场调节:根据实验所需,调节外加磁场的大小和方向。
可以使用恒定磁场装置或可调节磁场装置,确保磁场的稳定性和准确性。
5. 数据采集:通过探测器收集实验数据,并利用计算机进行信号处理和数据分析。
可以记录光强度、偏振角度和相位等参数。
6. 实验结果分析:根据所得数据,分析磁光调制实验的结果。
可以通过比较不同光源、不同磁场和不同样品的实验数据,研究磁光效应的特性。
实验七 磁光调制实验一、 实验背景介绍(一)概述磁光调制是利用某些晶体的磁光效应,对光信号进行调制,使光信号的幅度随着调制信号的变化而变化,实现把调制信号加载到光信号上。
磁光调制在光电检测,光通讯,光显示等领域有着广泛的应用。
(二)磁光效应原理 磁光效应置于外磁场中的物体,在光与外磁场作用下,其光学特性(如吸光特性,折射率等)发生变化的现象。
法拉第效应 1845年由M.法拉第发现。
当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度θ与磁感应强度B 和光穿越介质的长度l 的乘积成正比,即V B L θ=⋅⋅,比例系数V 称为费尔德常数,与介质性质及光波频率有关。
偏转方向取决于介质性质和磁场方向。
2 直流磁光调制当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I 可以分解成如图2所示的左旋圆偏振光I L 和右旋圆偏振光I R ,对应的电矢量为E L 和E R ,两者旋转方向相反。
在磁场作用下,处于磁场中的介质呈现各向异性,由于介质对两者具有不同的折射率n L 和n R ,E L 的传播速度与E R 不同,当它们穿过厚度为L 的介质后会产生相位差,E L 与E R 旋转角度为θL 与θR ,合成电矢量则旋转一个角度θ。
2L L n L πθλ= y=Acos(wt+θ) 初相位的改变 2R R n L πθλ=因θθθθ+=-R L1()()()22L R L R R L Ln n L n n cπωθθθλ=-=-=- (2)其中n R 为在磁场作用下,右旋圆偏振光通过介质的折射率,n L 为左旋圆偏振光通过介质的折射率,c 为真空中的光速。
如折射率差()R L n n -正比于磁场强度B ,即可得(1)式,并由θ值与测得的B 与L 求出维尔德常数V图2 入射光偏振面的旋转运动3 交流磁光调制二、磁光调制实验(一)实验要求1、了解磁光调制实验的原理和方法2、了解磁光调制器用于光通讯的基本原理3、掌握磁光调制器的主要参数的测试方法 (二)实验内容1、测定旋光角与激励电流的关系2、出来晶体的半波电压和工作电压3、观察输出光强极小时,产生的倍频信号4、电光调制实现光通讯演示5、测试电光晶体的消光比和透射率 (三)实验步骤1、实验前的准备(1)按图组成实验系统,首先在光具座上放置好激光器和电接受器(2)设置实验仪(3)光路校准(4)插入起偏器,调节起偏器的高度和转角,使激光束垂直入射镜面,旋转起偏器,使透射光强最大。
磁光调制实验报告课程:_____光电子实验_____**::专业:信息工程大学工程管理学院磁光调制实验报告一、实验目的1 观察磁光调制现象2 测量调制深度与调制角幅度3测定旋光角与外加磁场的关系4 测量直流磁场对磁光介质的影响5 磁光调制与光通讯实验演示二、实验原理1 磁光效应当平面偏振光穿透*种介质时,假设在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验说明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第〔Faraday〕效应,也称磁致旋光效应,简称磁光效应,即:θ (1)=vlB式中l为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德〔Verdet〕常数。
由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。
图1 磁光效应示意图如图1所示,在磁光介质的外围加一个励磁线圈就构成根本的磁光调制器件。
2 直流磁光调制当线偏振光平行于外磁场入射磁光介质的外表时,偏振光的光强I可以分解成如图2所示的左旋圆偏振光I L和右旋圆偏振光I R〔两者旋转方向相反〕。
由于介质对两者具有不同的折射率n L和n R,当它们穿过厚度为l的介质后分别产生不同的相位差,表达在角位移上有:式中λ为光波波长 因θθθθ+=-R L()()l n n R L R L ⨯-=-=λπθθθ221( 2 ) 如折射率差()R L n n -正比于磁场强度B ,即可得〔1〕式,并由θ值与测得的B 与l 求出威德尔常数υ。
3 交流磁光调制用一交流电信号对励磁线圈进展鼓励,使其对介质产生一交变磁场,就组成了交流〔信号〕磁光调制器〔此时的励磁线圈称为调制线圈〕,在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强αα2020cos )cos (I A I ==〔马吕斯定律〕其中200A I =为其振幅。