旋流燃烧器混合特性实验方案设计
- 格式:docx
- 大小:109.97 KB
- 文档页数:4
旋流燃烧器混合特性实验方案设计 如图所示的旋流燃烧器,由同轴的两根同心管道组成,中心管通燃料气,外层管道通助燃空气(带有旋流),当空气和燃料气喷入炉膛之后发生混合,并通过旋转射流的回流区卷吸炉膛内的高温烟气,因此射流中的气体由三种成分混合而成:燃料气、空气、炉膛内烟气。
为掌握燃烧器的燃烧特性,需要了解炉膛空间中各处的气体成分比例(假定暂不考虑化学反应引起的成分变化)。
一. 实验原理:由于不考虑化学反应,可考虑采用用温度场来模拟浓度场、(1) 与 均小于1,说明:动量交换过程不如热量和质量交换更强烈,∴温度和浓度混合边界层比速度边界层发展得快。
Pr 0.75,0.7~0.75t t Sc a D νν=≈=≈1~0.9t a Le D∴=≈Pr t a ν=t Sc D ν=(2)由于Le t =a /D ≈1,说明:温度和浓度边界层的发展十分相近,可以用传热过程的基本规律近似描写质量交换。
在上图中,用不同温度T 1=T 2实验,实测混合点xy 处的温度T xy (介于T 1和T 2之间,T 1>T xy > T 2)分布与浓度C xy 相似研究两股射流的混合实验,通过实验混合边界层中任一点浓度C 。
其中:C 1和C 2是被比拟的实际两股气流的浓度T 1和T 2是被比拟的实际两股气流的温度m 1和m 2是被比拟的实际两股气流的在空间中混合后的质量分数试验中采用热电偶,测量温度,取参考点为冰水混合物。
多只热电偶共用一台显示仪表的方式。
如图所示:221212xy xy T T C C T T C C --=--,1,2121,11121212122,2211122211p p p c c c p p p x x y xy y xy m m m c T m c T c T m C m C m m m m m m T C T C C C T ==⎧⎧+=+=⎪⎪+=−−−−−→+=⎨⎨⎪⎪+=+=⎩⎩二.实验系统的示意图:1➢x 2y三.实验步骤1.建立如图所示的系统;2.分别测定1.2处温度,并记录;3.沿x方向从出口处向外等距取8个点,沿y方向与同心管道中心线对称取5个点,记各点为x i y j分别测量温度,并记录4. 按 计算各点浓度; ,1,2121,11121212122,2211122211p p p c c c p p p x x y xy y xy m m m c T m c T c T m C m C m m m m m m T C T C C C T ==⎧⎧+=+=⎪⎪+=−−−−−→+=⎨⎨⎪⎪+=+=⎩⎩。
方案签批页1 试验目的华电新乡发电有限公司#1炉于2010年9~10月进行检修,为了掌握燃烧器二次风气流分布情况,了解炉内的空气动力工况,为该炉热态运行中组织良好的燃烧奠定基础,受华电新乡发电有限公司委托,河南电力试验研究院将对该炉进行旋流燃烧器冷态空气动力工况试验。
2 试验依据2.1 GB10184-88《电站锅炉性能试验规程》;2.2有关机组制造厂、设计院的技术资料。
3 试验内容3.1燃烧器二次风门操作状态试验;3.2燃烧器原旋流强度下炉内气流观测试验;3.3外二次风调平试验;3.4内二次风调平试验;3.5燃尽风调平试验;3.6冷态模化风速下燃烧器空气动力工况观测。
4测量方法4.1 燃烧器二次风门操作状态试验DCS操作主燃烧器外二次风门煤位、油位,检查外二次风门的实际动作情况,并且检查外二次风煤位、油位就地刻度与实际开度的一致性。
检查燃尽风、主燃烧器内二次风挡板、燃尽风挡板及调风器的开度就地与实际开度的一致性。
4.2燃烧器原旋流强度下炉内气流观测试验启动引风机、送风机、一次风机,控制合适的炉膛负压。
通过调整容量风门及二次风箱两侧二次风门的开度,将燃烧器一次、二次风速调整到冷态模化值(一次风速28m/s,二次风箱风量224t/h),记录各风机电流、风门开度、炉膛负压、风箱风压。
在此基础上在最下层燃烧器(E、F)中心平面,实际测量燃烧器一次风及内、外二次风风速,沿炉内测量坐标线测量炉膛贴壁风速的大小,并用飘带法观察燃烧器喷口空气动力工况。
4.3 外二次风调平试验保持一次风速、二次风箱风压不变,控制合适的炉膛负压。
在各层#1、#4燃烧器煤位开度为60%的开度下,测量燃烧器的风速,通过调整#2、#3燃烧器的外二次风的旋流强度,使同层四个燃烧器的外二次风速一致。
4.4 内二次风调平试验保持一次风速、二次风箱风压不变,控制合适的炉膛负压。
在#1、#4燃烧器内二次风全开的工况下,测量同层燃烧器内二次风速,通过调整内二次风的挡板的开度使燃烧器的内二次风速一致。
旋流燃烧器工作原理
旋流燃烧器是一种喷嘴结构特殊的燃烧器,其工作原理基于旋流现象和快速混合燃料与氧气。
旋流燃烧器内部包含一个中心喷嘴,燃料和氧气从该喷嘴内部喷射出来。
除喷嘴之外,还有一个圆形腔室与喷嘴相连接。
当燃料和氧气从喷嘴射出时,它们以高速进入腔室。
在腔室中,喷射的气流将会形成一个旋转的涡流。
由于喷射速度较高,涡流具有较大的动能,使燃料和氧气迅速混合,并形成一个稳定的燃烧区域。
在涡流中,由于旋流的强烈对流效果,燃料和氧气的混合程度大大提高,从而实现高效燃烧。
此外,涡流的形成还能增加燃烧区域的表面积,进一步提高燃烧效率。
另外,旋流燃烧器还具有良好的涡流稳定性。
当燃烧区域的湍流流向发生变化时,涡流可以自我调节并保持相对稳定的旋转状态,保证燃料和氧气的充分混合和燃烧。
总之,旋流燃烧器通过利用涡流的旋转和对流效应,实现燃料和氧气的高效混合和稳定燃烧,从而提高燃烧效率和能源利用率。
电厂燃烧器的调节及运行方式宋日旺【摘要】介绍了燃烧器的特点与特性,分析了燃烧器的调节方式,包括:直流燃烧器布置、燃烧器出口风的调整以及燃烧器摆角及四角配风均匀性调整,从而提出燃烧器优化调节后的运行方式,以期提高锅炉的燃烧效率.【期刊名称】《机械管理开发》【年(卷),期】2018(033)011【总页数】3页(P199-200,203)【关键词】燃烧器;配风与调整;运行方式【作者】宋日旺【作者单位】山西兴能发电有限责任公司,山西太原030200【正文语种】中文【中图分类】TK223.23引言电厂生产运行中锅炉的燃烧特性各不相同,因此调节方法也不尽相同,即使同一台锅炉不同工况的调节手段也是多样的。
但是燃烧调整必须遵循一些基本的原则和理论,只有这样才能保证燃烧的合理性和稳定性,其中燃烧器的特点和调整尤其重要。
1 燃烧器的燃烧特点目前常用的锅炉燃烧器主要有直流燃烧器、旋流燃烧器、低负荷稳燃新型燃烧器三种,每种燃烧器的燃烧方式和特点各不一样,配风方式也不同。
1.1 直流燃烧器的燃烧特点直流燃烧器一般由圆形喷嘴组成,一次风粉和助燃空气通过不同的喷嘴进入炉膛。
煤粉直流燃烧器一般布置在炉膛四角,喷入的风粉在炉内形成一个假想的切圆。
燃烧器出口风粉的动量越大,穿透能力越强,风粉可以尽量射入炉内,否则会上摆,形成较好的切圆,使煤粉尽可能燃尽。
一次风携带煤粉进入炉膛,着火燃烧后动量很快减弱,因此炉内空气动力场主要受助燃风影响。
射入炉膛内风粉气流抵抗偏转的能力为气流刚性。
四角切圆的锅炉允许气流有一定的偏转,便于邻角点燃和煤粉燃尽。
但不允许太大,否则会冲刷水冷壁,引起大面积积灰结焦和高温腐蚀。
直流燃烧器采用四角切圆的燃烧方式,因此四角风粉气流的互相配合对燃烧有重要的影响,主要体现在切圆的形成。
切圆直径较大有利于火球扫到各角喷口,使煤粉燃尽。
同时切圆过大也会在炉膛形成大的回流,影响烟气的有效流通面积,炉膛和燃烧器容易结焦。
因此在实际运行中要通过调整风粉比例和风速来控制切圆。
旋流燃烧器的工作原理
旋流燃烧器是一种常用于工业燃烧应用的设备,其工作原理由以下几个步骤组成:
1. 燃料和氧气的混合:燃料通常通过喷嘴或喷管以一定速率喷入旋流燃烧器的中央区域,氧气则从周围环境进入。
在旋流燃烧器内部,燃料和氧气会被剪切和混合,并形成一个紊流的气体环境。
2. 旋流效应:在旋流燃烧器内部,通过设计特殊的结构,使燃料和氧气形成旋转的气体流动。
这种旋流的效应有助于增加燃料和氧气的混合程度,并提供更好的燃烧条件。
3. 燃烧反应:当燃料和氧气混合在一起,并达到一定的温度和压力时,燃烧反应会发生。
燃料分子和氧气分子相互碰撞和反应,产生燃烧产物,如二氧化碳、水蒸气和废气。
4. 燃烧稳定性:旋流燃烧器的设计通过优化旋流效应,有助于产生稳定的燃烧。
这种稳定性可以确保燃烧反应持续进行,同时最大限度地减少不完全燃烧和产生有害物质的风险。
总之,旋流燃烧器通过将燃料和氧气混合并形成旋转的气体流动,在一定的温度和压力下促使燃烧反应发生,从而实现有效、稳定的燃烧过程。
旋流燃烧器混合特性实验方案设计 如图所示的旋流燃烧器,由同轴的两根同心管道组成,中心管通燃料气,外层管道通助燃空气(带有旋流),当空气和燃料气喷入炉膛之后发生混合,并通过旋转射流的回流区卷吸炉膛内的高温烟气,因此射流中的气体由三种成分混合而成:燃料气、空气、炉膛内烟气。
为掌握燃烧器的燃烧特性,需要了解炉膛空间中各处的气体成分比例(假定暂不考虑化学反应引起的成分变化)。
一. 实验原理:
由于不考虑化学反应,可考虑采用用温度场来模拟浓度场、
(1) 与 均小于1,说明:动量交换过程不如热量和质量交换更强烈,∴温度和浓度混合边界层比速度边界层发展得快。
Pr 0.75,0.7~0.75t t Sc a D νν=≈=≈1~0.9t a Le D
∴=≈Pr t a ν=t Sc D ν=
(2)由于Le t =a /D ≈1,说明:温度和浓度边界层的发展十分相近,可以用传热过程的基本规律近似描写质量交换。
在上图中,用不同温度T 1=T 2实验,实测混合点xy 处的温度T xy (介于T 1和T 2之间,T 1>T xy > T 2)分布与浓度C xy 相似
研究两股射流的混合实验,通过实验混合边界层中任一点浓度C 。
其中:C 1和C 2是被比拟的实际两股气流的浓度
T 1和T 2是被比拟的实际两股气流的温度
m 1和m 2是被比拟的实际两股气流的在空间中混合后的质量分数
试验中采用热电偶,测量温度,取参考点为冰水混合物。
多只热电偶共用一台显示仪表的方式。
如图所示:
221212
xy xy T T C C T T C C --=--
,1,2121,11121212122,22111
22211p p p c c c p p p x x y xy y xy m m m c T m c T c T m C m C m m m m m m T C T C C C T ==⎧⎧+=+=⎪⎪+=−−−−−→+=⎨⎨⎪⎪+=+=⎩⎩
二.实验系统的示意图:
1
➢x 2
y
三.实验步骤
1.建立如图所示的系统;
2.分别测定1.2处温度,并记录;
3.沿x方向从出口处向外等距取8个点,沿y方向与同心管道中心线对称取5个点,记各点为x i y j分别测量温度,并记录
4. 按 计算各点浓度; ,1,2121,11121212122,2211122211p p p c c c p p p x x y xy y xy m m m c T m c T c T m C m C m m m m m m T C T C C C T ==⎧⎧+=+=⎪⎪+=−−−−−→+=⎨⎨⎪⎪+=+=⎩⎩。