第三章集中量数
- 格式:ppt
- 大小:834.50 KB
- 文档页数:41
第三章 集中量数第一节 算术平均数 一、概念及计算公式 (一)概念算术平均数 (mean),是所有观测值(或变量值)的总和除以总数所得的商。
简称平均数、均数或均值。
其符号系统既有表示样本平均数的数学符号X 和英文符号M (M ean ),又有表示总体参数的希腊字符μ。
(二)计算公式1、未分组数据计算平均数方法 公式一:例3—1:现有一组实验观测数据,25,27,28,27,25,29,30,34,32,33.计算它们的平均数。
解:根据题意,已知N=10,根据公式:X = = =29公式二:X =AM+= 2、使用次数分布表计算平均数方法 公式一: 公式二:X =AM+ ×i例3—2:100名学生的数学成绩分布如下,计算平均数。
表3-1 简化平均数计算表组别 c XfdC fXfd96~ 97 2 6 194 12 93~ 94 3 5 282 15 90~ 91 4 4 364 16 87~ 88 83 704 24 84~ 85 11 2 935 22 81~ 82 17 1 1394 17 78~ 79 19 0 1501 0 75~ 76 14 -1 1064 -14 72~ 73 10 —2 730 —20 69~ 707 -3 490 -21 66~673—4201-12∑∑=f fm X Nfd∑Nx ∑'1033...2725+++10290NX X i∑=29102027=+63~ 64 1 -5 64 —5 60~611 —6 61 -6 ∑—100—798428①将∑fm ,N 代入上面第一个公式计算: X = = =79.84②设AM=79,将AM ,∑fd ,N ,i 代入上面第二个公式计算:X =AM + ×i=79+ ×3=79.84这两个公式计算的结果完全相同,但第二个公式更简便.二、平均数的特点1、一组变量值的和等于变量的个数与其平均数的乘积,即∑=X N X2、一组变量值的离均差之和等于零,即()∑=-0X X3、在一组变量值中,每个变量值加上或减去、乘以或除以常数c ,所得的平均数等于原平均数减去或加上,除以或乘以常数c 。