反比例函数的应用教学设计
- 格式:doc
- 大小:307.00 KB
- 文档页数:7
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。
过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。
难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。
三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。
环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。
环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。
环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。
四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。
五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
《反比例函数的应用》教学教案教学目标:1.了解反比例函数的定义和特点;2.掌握反比例函数的应用;3.能够解决与反比例函数相关的实际问题。
教学重点:1.反比例函数的定义和特点;2.反比例函数的应用。
教学难点:1.如何通过实际问题建立反比例函数的模型;2.如何用反比例函数解决实际问题。
教学准备:1.教师准备:白板、彩色粉笔、教学PPT;2.学生准备:参考教材、铅笔、计算器。
教学过程:一、导入(5分钟)教师通过引入一道有关反比例函数的问题,如“小明去小卖部买了10张明信片,一共花了15元,那么20张明信片一共要花多少元?”来引起学生兴趣,激发学生思考。
二、新知讲解(20分钟)1.反比例函数的定义教师通过讲解反比例函数的定义和示例,引导学生了解反比例函数的性质和图像特点。
反比例函数的一般形式为:y=k/x(k≠0)其中,k为常数,称为反比例函数的比例因子,x≠0。
反比例函数图像的特点是:通过原点,单调递减,左侧和右侧的趋势趋近于x轴和y轴。
2.反比例函数的应用教师通过示例演示反比例函数的应用,并结合实际例子进行讲解,如:a.两个物体的速度和时间的关系(速度与时间成反比);b.人工作时间和效率的关系(工作时间与效率成反比);c.电阻和电流的关系(电阻与电流成反比)。
三、实例分析(25分钟)教师给出一些实际问题,要求学生通过建立反比例函数的模型来解决。
教师通过引导学生寻找问题中的关键变量和因果关系,然后利用反比例函数的特性建立函数模型,并计算出相关的数值。
例1:甲乙两个工人同时做一件活,如果甲一个人能在8小时内完成,那么需要乙多少小时才能完成?假设两人的效率是相同的。
解析:设乙需要x小时才能完成工作,由题意可知,甲乙的工作时间和效率成反比。
根据反比例函数的性质,可以列出方程:8×1=x×1,解得x=8/1=8(小时)。
四、拓展练习(15分钟)教师设计其他实际问题,要求学生自行构建反比例函数模型,解决问题,并进行相应的计算。
【教学设计】一、教学目标1.理解反比例函数的概念和性质。
2.掌握反比例函数的图像特点。
3.能够应用反比例函数解决实际问题。
二、教学重难点1.理解反比例函数与正比例函数的区别。
2.理解如何利用反比例函数解决实际问题。
三、教学过程1.导入新知识(10分钟)教师出示一张正比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生总结出正比例函数的性质。
然后教师再出示一张反比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生从图像中发现反比例函数的性质。
2.反比例函数的性质(25分钟)教师向学生展示反比例函数的定义,并从数学公式角度帮助学生理解反比例函数的性质。
然后,教师引导学生观察反比例函数图像的特点,如自变量和因变量的比例关系、反比例函数图像在坐标平面中的位置等。
学生根据观察到的特点总结反比例函数的性质。
3.反比例函数的图像特点(30分钟)教师以一个具体的例子来展示如何根据反比例函数的性质来画出反比例函数的图像。
教师在黑板上画出一组数字序列,并带领学生计算出对应的自变量和因变量。
然后,教师带领学生将这组数字绘制在坐标平面上,并连线得到反比例函数的图像。
学生在教师的指导下,练习绘制不同的反比例函数的图像。
4.反比例函数的应用(30分钟)教师将反比例函数的应用引入到现实生活中。
教师提供一组与实际生活相关的数据,如商品价格与销量的关系等,然后带领学生分析出这组数据满足反比例函数的条件。
学生根据所学的知识,利用反比例函数解决实际问题。
5.拓展应用练习(20分钟)教师提供一批拓展应用题,让学生自主完成。
每道题目都提供实际生活的背景,学生需要根据实际情况采用适当的方法解决问题,并将解决过程和答案书写清楚。
教师在学生完成后,分组让学生交流分享自己的解题思路和方法,从中发现不同的解题思路。
四、教学反思本堂课以图像、实例和应用为导入点,让学生从不同的角度理解反比例函数的概念、性质和应用。
2023-2024学年北师大版九年级数学上册教学设计:6.3 反比例函数的应用一. 教材分析反比例函数是九年级数学上册的教学内容,对于学生来说,这部分内容较为抽象,需要通过具体实例来帮助学生理解和掌握。
本节课通过生活中的实例,让学生感受反比例函数的应用,培养学生的实际问题解决能力。
二. 学情分析学生在学习本节课之前,已经掌握了比例函数的知识,对函数的概念和性质有一定的了解。
但反比例函数的概念和性质与比例函数有很大的不同,学生需要通过实例来理解和掌握。
同时,学生需要具备一定的观察和分析问题的能力,能够将实际问题转化为数学问题。
三. 教学目标1.了解反比例函数的概念和性质。
2.能够将实际问题转化为反比例函数问题,并求解。
3.培养学生的观察和分析问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.将实际问题转化为反比例函数问题。
五. 教学方法采用问题驱动法,通过实例来引导学生观察、分析和解决问题,培养学生的实际问题解决能力。
同时,采用小组合作学习的方式,让学生在讨论中加深对反比例函数的理解。
六. 教学准备1.准备相关的实例,如购物问题、速度问题等。
2.准备反比例函数的PPT,展示反比例函数的图像和性质。
七. 教学过程1.导入(5分钟)通过一个购物实例,让学生观察商品单价和购买数量的关系,引导学生思考如何用数学模型来表示这种关系。
2.呈现(10分钟)呈现反比例函数的定义和性质,通过PPT展示反比例函数的图像,让学生观察和分析图像的特点。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,将其转化为反比例函数问题,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成几个反比例函数的应用题,巩固所学知识。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)引导学生思考反比例函数在实际生活中的应用,如广告宣传、经济分析等。
让学生举例说明,并进行讨论。
6.小结(5分钟)总结本节课所学内容,反比例函数的概念和性质,以及如何将实际问题转化为反比例函数问题。
《反比例函数的应用》教学设计教学目标:1.能分析实际问题中两个变量的关系,建立反比例函数模型,进而解决实际问题.2.能利用函数的图象解决问题,体会数形结合的思想,发展几何直观.教学重难点:利用函数的图象解决问题.教学过程:一、知识回顾1.视察函数图象,写出你能从图中获得哪些数学信息?学生活动:先视察图象独立思考,小组交流。
老师活动:分别从解析式和图象的性质两个方面整理学生发现的问题,引导学生数形结合的思想来分析问题。
活动意图:引发学生思考,激发学生学习的主动性。
回顾反比例函数图象的性质,为本节课的学习奠定基础。
二、学习新知例1.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.你能解释他们这样做的道理吗? 当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化? 如果人和木板对湿地地面的压力合计600 N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?(2)填写下表,并在直角坐标系中画出相应的函数图象.m )S(2p(Pa)(3)如果要求压强不超过6000 Pa,木板面积至少要多大?(4)视察函数图象,你还能得出哪些结论?学生活动:采用师生问答,小组交流的情势对本题的问题展开学习,进一步练习反比例函数图象的画法。
独立思考解决问题的办法,能够通过组内和班内交流,选择最优解题方案。
至少掌握一种解题方法。
老师活动:关注学生回答问题是否规范准确,引导学生实际问题自变量的取值,引导学生与之前的反比例函数图象进行对照,总结解题方法,培养学生建模意识,引导学生用数形结合的思想解决问题。
活动意图:以实际背景为依托,培养学生建立反比例函数模型,进而用函数图象解决简单问题。
【巩固提升】1.为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与药物在空气中的持续时间x(分)如图所示.请根据函数图象解答下列问题:(1)分别写出药物燃烧时及燃烧后y 关于x 的函数表达式.(2)当每立方米空气中的含药量大于或等于1.6mg 时,对人体有毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?学生活动:独立思考,小组交流,体会函数图象在解决问题中的直观性。
反比例函数的应用精品教案【教学目标】1.了解反比例函数的概念及特点;2.能够应用反比例函数解决实际问题;3.学会用图表和公式表示反比例函数。
【教学内容】1.反比例函数的概念及特点;2.人口增长问题与反比例函数的关系;3.用图表和公式表示反比例函数;4.解决实际的人口增长问题。
【教学过程】1.导入新知识(5分钟)通过引导学生回答以下问题,激发学生的思考并预热课堂气氛:-你知道什么是函数吗?函数有哪些特点?-你听说过反比例函数吗?你认为它有什么特点?2.理解反比例函数(15分钟)讲解反比例函数的定义和特点:-当x趋近于无穷大或无穷小时,y趋近于0;-y随x的增大而减小,y随x的减小而增大;-y与x的乘积为常数k。
3.人口增长问题与反比例函数的关系(15分钟)通过一个简单的例子来引入人口增长问题与反比例函数的关系:假设地区的人口密度是反比例于土地面积的,写出人口密度D与土地面积A之间的关系式,并解释其中的常量k的含义。
4.用图表和公式表示反比例函数(20分钟)让学生练习用图表和公式表示反比例函数:-给出一个简单的反比例函数的表格,让学生根据表格绘制图像,并写出函数的公式;-再给出一个图像,让学生尝试写出函数的公式。
5.解决实际的人口增长问题(25分钟)通过一个实际的人口增长问题,来让学生应用反比例函数解决问题:地区的人口密度随土地面积的增加而减少,当土地面积为10平方公里时,人口总数为2000人。
现在要求你计算当土地面积增加到100平方公里时,该地区的人口总数是多少。
6.拓展与总结(10分钟)让学生回答以下问题,巩固学习内容:-反比例函数有什么特点?它与比例函数有什么不同?-除了人口增长问题,你能想到哪些其他的反比例函数的应用?【教学评估】-学生的课堂参与度和思维活跃度;-学生对反比例函数的理解程度;-学生解决人口增长问题的能力。
【教学拓展】教师可以通过更多的实际问题和案例,让学生进一步巩固和应用反比例函数的知识。
反比例函数实际应用教学设计(精选7篇)反比例函数实际应用教学设计1一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
反比例函数教学设计(通用6篇)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y 都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I= .(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t= .它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y 的值.[生]设反比例函数的表达式为y= .(1)当x=-1时,y=2;∴k=-2.∴表达式为y=- .(2)当x=-2时,y=1.当x=- 时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=- ;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,- .Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y= ,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
反比例函数在实际问题中的应用教案一、教学目标1、掌握反比例函数的概念及其应用;2、能够在实际问题中应用反比例函数进行分析和解决问题。
二、教学重点1、理解反比例函数的概念;2、掌握反比例函数的应用方法。
三、教学难点1、如何应用反比例函数进行实际问题的解决;2、如何理解反比例函数在实际问题中的作用。
四、教学内容1、反比例函数的概念反比例函数是指一个函数,其函数值与自变量成反比例关系。
如果表示为 f(x)= k/x,其中 k 是一个常数,则称 f(x) 为反比例函数。
其中 k 称为比例系数。
2、反比例函数的图像反比例函数的图像是一个双曲线。
这个双曲线有两个分支,其中一个分支在正半轴,另一个分支在负半轴。
3、反比例函数的应用反比例函数在实际问题中有着广泛的应用。
下面列举几个例子:(1) 理财计划:如果一个人在银行准备存款,假设他准备存 1000 元,每年收入的利息是 10%。
那么他在第一年利息收入为 100 元,第二年是 110 元,第三年是 121 元,以此类推。
那么每年的利息收入就是一个反比例函数。
其中,x 表示存款的年数,y 表示每年的利息收入。
那么,反比例函数可以表示为 y=k/x,k=1000×0.1=100 。
(2) 水力发电:水力发电是一种使用水能来转换成电能的发电方式。
水利发电站通常由水轮机和发电机两个部分组成。
水轮机通过流动的水产生旋转力,而发电机则将这个旋转力转换为电能。
这个转换的过程中,水流的速度就是反比例函数。
如果流速增加,水轮机的运转就会受到影响。
因此,水力发电站的设计和运行必须考虑水力的反比例函数。
(3) 药物代谢:药物代谢是指药物在人体内的代谢过程。
药物的代谢速率可以表示为反比例函数。
如果代谢速率比较慢,药物就会在体内积累,因此,要根据反比例函数来决定给药的剂量和给药的时间。
(4) 光度计的校准:光度计是一种用于测量光强度的仪器。
为了确保光度计的准确性,必须进行校准。
反比例函数的应用教学设计
一、教材内容分析
本节教材内容是对前两节知识的综合应用,同时加强了实际问题的理解和实际问题与数学知识之间的紧密联系。
能用学科间的实际题例,数学知识间的综合应用题例,使学生利用反比例函数的性质进一步解释、说明实际问题。
加强数形结合意识。
二、教学目标
1.知识与技能
能根据实际问题中的条件确定反比例函数的解析式,会画出它的图像,并能根据图像指出函数值随自变量变化情况。
2.过程与方法
能通过探索实际问题列出函数关系式,利用反比例函数的性质解决实际问题,细心体会图像在解决问题时的作用。
3.情感态度与价值观
从合作讨论,探索交流中,发展学生从图象中获取信息的能力,渗透数形结合的思想方法,通过对实际问题的分析与解决,让学生体验数学的价值,培养学生对数学的兴趣。
三、重点与难点
重点:将实际问题抽象为数学问题,建立反比例函数模型,并能用反比例函数的性质去解决实际问题。
难点:根据实际问题的条件确定反比例函数的表达式,及反比例函数与其它知识的综合运用。
四、教法与学法
教法:教师通过选用具有现实生活背景,与学行生活密切相关的问题,激发学生的学习兴趣,通过有层次的问题串,引导学生进行探究活动。
学法:学生通过分析实际情境,建立函数模型,进行合作交流和自主探究,最终能够结合函数图象和性质解决实际问题。
五、教学过程
(一)复习回顾,导入新课
1.回顾与思考:反比例函数的图象和性质。
(通过课件展示表格,并找学生回答)
2.引入:实际上反比例函数在实际生活中有着广泛的应用,今天我们就来探讨一下反比例函数的应用问题(板书课题) (二)讲授新课 1.创设情境
我校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地。
你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa )将如何变化?
函数
反比例函数
解析式 图象形状
k>0
位置
增减性 k<0
位置
增减性
如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表式P,P是S的反比例函数吗?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
(4)在平面坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
问题(1)(2)学生举手回答,其余问题可讨论后回答。
特别是问题(3)(4)老师和学生一起要对不同的方法和所画图象进行点评,使学生明白每种方法的区别以及画图象时要注意哪些问题。
解:(1)利用物理中压强的计算公式P=F/S,可知当压力一定时,压强与受力面积成反比。
因此P是S的反比例函数,即P=600/S(S>0)
(2)P=3000pa
(3)至少0.1m2
(4)列表:
描点,连线 注意:
一是画函数图像的三个步骤,二是画出的图象应符合实际问题的实际意义,也就是列表时应注意自变量的取值范围,并可根据图像的性质回答相关的问题。
(5)问题(2)是已知图像上某点的横生标为0.2,求该点的纵坐标。
问题(3)是已知图像上点的纵坐标不大于6000,求这些点所处的位置及它们的横坐标的取值范围。
由图象可得S ≥0.1m 2
【设计意图】通过探究会用实际问题中的一个量来求另一个量,进一步发展把实际问题转化为数学问题的能力,增强学生的数学应用意识。
2、做一做
(1)蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示.
①蓄电池的电压是多少?你能写出这一函数的表达式吗?
解:∵IR=U(U 为定值),把点A (9,4)代入,得U=36.
O
S/m
2
p/Pa 0.2
0.4
0.6
2000
4000
6000
∴蓄电池的电压U=36V.这一函数的表达式为:I=36\R
②如果以此蓄电池为电源的用电器电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
解:由题意得: 36\R ≤10 ∵R >0 ∴R ≥3.6Ω 当I ≤10A 时,R ≥3.6Ω.所以可变电阻应不小于3.6Ω.
【设计意图】通过从形到的数的应用,让学生体会解决这类问题时要充分挖掘图象中的信息,从而求出函数表达式,进而解决问题。
(2)如下图,正比例函数y =k 1x 的图象与反比例函数y = 2
k x
的图象相交于A ,B 两点,其中点A 的坐标为3 ,23. ①分别写出这两个函数的表达式.
解:把A 点坐标3 ,23分别代入y=k 1x,和y=
2
k x
解得k 1=2.k 2=6;所以所求的函数的表达式为:y=2x,和y= — ② 你能求出点B 的坐标吗?你是怎样求的?与同伴进行交流.
解:由题意可得方程组 解得 3 或 x=3y=3 y=3-
所以, 点B 坐标是(3-,3-) ③ 点A 和点B 的位置有什么样的关系? 解:两交点关于原点对称。
此题留出足够的时间让学生自主完成,并请小组代表黑板上板演。
【设计意图】通过探究使学生掌握了解一次函数与反比例
x
6 y=2x
y=6
x
函数的组合图象的方法和技巧,提高学生综合知识的运用。
同时老师要强调结论:反比例函数的图象与一次函数的图象相交,两交点关于原点对称。
(三)巩固练习
1.已知矩形的面积为10,若长与宽分别为x,y,则y与x之间的函
2.某汽车的功率P为一定值,汽车的行驶速度v(m s)与它所受的牵引力F(N)之间的函数关系如图所示。
(1)这辆汽车的功率P为多少?并写出函数解析式。
(2)当它所受的牵引力为900N时,汽车的速度是多少?
(3)如果汽车所爱的牵引力不小于1500N,
那么v在什么范围内?
【设计意图】通过两个练习让学生进一步掌握反比例函数的应用,并进一步体会数形结合的思想。
(四)课堂小结
A B C D
谈谈本节课你有什么样的收获与困惑?
1.建立反比例函数模型来解答实际问题的方法:
(1)观察图象法 (2)关系式计算法
2.反比例函数与正比例函数的图象相交, 两交点关于原点对称
3.数学思想方法:数形结合
(五)布置作业
习题6.4第1、2、3题
板书设计:。