函数图像的画法
- 格式:ppt
- 大小:3.45 MB
- 文档页数:10
考点名称:函数图象∙定义:点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。
∙函数图像的画法:(1)描点法:一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。
(2)用函数的性质画图一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。
(3)通过图像变换画图(一)平移变化:Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到;Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到.(二)对称变换:Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到;Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到;Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到;Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.函数图像的判断:这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。
常用结论:(1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a 成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。
函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。
在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。
在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。
一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。
直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。
当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。
绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。
首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。
2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。
平方函数的一般形式为y=x^2。
平方函数的图像对称于y轴,开口向上。
绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。
3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。
开方函数的一般形式为y=sqrt(x)。
开方函数的图像对称于x轴,开口向右。
绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。
4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。
绝对值函数的一般形式为y=|x|。
绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。
以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。
一元二次函数图像一、一元二次函数型式y =ax 2+bx +c 或f (x)=ax 2+bx +c二、一元二次函数图像画法1、 形状:抛物线2、 开口:a >0,开口向上;a <0,开口向下3、 对称轴:x =-ab 2 4、 与x 轴的交点:方程的根5、 最大最小值:ab ac 424-三、例题1、 y =x 2-5x +6解:a =1,开口向上对称轴:x =-a b 2=25 方程根:x 2-5x +6=0 x =2或x =3最小值:a b ac 424-=-412、 y =x 2+5x +6解:a =1,开口向上对称轴:x =-a b 2=-25 方程根:x 2+5x +6=0 x =-2或x =-3 最小值:a b ac 424-=-413、 y =-x 2+5x -6解:a =-1,开口向下对称轴:x =-a b 2=25 方程根:-x 2+5x -6=0 x =2或x =3最大值:a b ac 424-=414、 y =-x 2-5x -6解:a =-1,开口向下对称轴:x =-a b 2=-25 方程根:-x 2-5x -6=0 x =-2或x =-3 最大值:a b ac 424-=415、 y =x 2-2x解:a =1,开口向上对称轴:x =-a b 2=1 方程根:x 2-2x =0 x =0或x =2 最小值:a b ac 424-=-16、 y =-x 2-2x解:a =-1,开口向下对称轴:x =-a b 2=-1 方程根:-x 2-2x =0 x =0或x =-2 最大值:a b ac 424-=17、 y =x 2-2x +1解:a =1,开口向上对称轴:x =-ab 2=1 方程根:x 2-2x +1=0 x =1最小值:a b ac 424-=08、 y =-x 2+2x -1解:a =-1,开口向下对称轴:x =-ab 2=1 方程根:-x 2+2x -1=0 x =1最大值:ab ac 424-=09、 y =x 2解:a =1,开口向上对称轴:x =-a b 2=0 方程根:x 2=0x =0最小值:a b ac 424-=010、 y =-x 2解:a =-1,开口向下对称轴:x =-a b 2=0 方程根:-x 2=0 x =0最大值:a b ac 424-=011、 y =x 2+x +1解:a =1,开口向上对称轴:x =-a b 2=-21 方程根:△<0,方程无解 最小值:a b ac 424-=4312、 y =-x 2+x -1解:a =-1,开口向下对称轴:x =-a b 2=21 方程根:△<0,方程无解 最大值:a b ac 424-=-43一元二次函数图像题1、y=x2-7x+102、y=x2+3x+23、y=-x2+7x-124、y=-x2-6x-85、y=x2+7x6、y=-x2+7x7、y=x2+4x+48、y=-x2+6x-99、y=x2+x+210、y=-x2+2x-4。
函数图像的画法知识点总结函数图像的画法是高中数学中的重要内容,也是数学建模和分析问题中不可或缺的一部分。
函数图像的画法知识点包括了如何确定函数图像的范围、如何确定函数图像的对称性、如何确定函数图像的拐点和极值点、如何确定函数图像的渐近线等等。
下面我们将对这些知识点进行详细总结。
一、确定函数图像的范围1. 确定函数的定义域和值域在绘制函数图像之前,首先需要确定函数的定义域和值域。
定义域指的是函数能够取得的输入值的范围,而值域则是函数能够取得的输出值的范围。
确定函数的定义域和值域能够帮助我们确定函数图像的范围,避免在绘制图像时出现遗漏的情况。
2. 确定函数的增减性和奇偶性通过对函数的导数进行分析,可以确定函数的增减性和奇偶性。
函数的增减性可以帮助我们确定函数的上升区间和下降区间,从而确定函数图像的近似范围;而函数的奇偶性可以帮助我们确定函数图像的对称性,从而进一步确定函数图像的范围。
二、确定函数图像的对称性1. 确定函数的奇偶性函数的奇偶性可以通过对函数的表达式进行分析来确定。
如果函数的表达式中只包含偶次幂的项,则函数是偶函数;如果函数的表达式中只包含奇次幂的项,则函数是奇函数;如果函数的表达式中包含奇次幂和偶次幂的项,则函数则是既非奇函数又非偶函数。
2. 利用坐标轴进行对称变换对于不具有明显奇偶性的函数,可以通过对称变换来确定函数图像的对称性。
例如,可以利用y轴进行对称变换来确定函数的奇偶性,通过利用x轴进行对称变换来确定函数的周期性。
这些对称变换可以帮助我们更准确地绘制函数图像。
三、确定函数图像的拐点和极值点1. 确定函数的导数和导数的性质通过对函数的导数进行分析,可以确定函数的拐点和极值点。
函数的导数表示了函数的斜率,通过对导数的性质进行分析,可以确定函数的拐点和极值点的位置。
拐点和极值点是函数图像的重要特征点,确定它们的位置能够帮助我们更准确地绘制函数图像。
2. 利用二阶导数进行分析如果函数的导数存在零点,可以通过对导数的二阶导数进行分析,确定这些零点对应的是函数的极大值点还是极小值点。