【VIP专享】复化梯形求积公式
- 格式:pdf
- 大小:256.93 KB
- 文档页数:6
武汉工程大学计算机科学与工程学院计算方法》实验报告日期:年月日实验内容设计分析复化数值积分:将区间[a,b]n 等分,取等距节点x i a ih,iba0,1,2,..., n, hn 由定积分的区间可加性,有nf x dxxix i 1f x dx在每个小区间上利用梯形积分公式有x ii f x dx x i 1 h f x i 1 f x i 2i 1 ih n1T n f a f b 2 f x i一般记 2 i1 称做n+1 点复化梯形积分公式。
数学公式:b h n1f xdx f a f b 2 f x ia 2 i1算法描述:i1Step1:输入a,b 和正整数n;Step2:置h=(b-a)/n;Step3:F=f(a)+f(b);l=0;Step4:对j=1,2,⋯,n 循环执行5;Step5:置x=a+jh; l+=f(x);Step6:置T=h(F+2l)/2 Step7:输出T;程序源代码:#include<iostream>#include<math.h>using namespacestd;<<endl; cout<<" 请输入把 0 到 1 的范围几等分?int m1; cin>>m1;EchelonIntegral(m1); cout<<endl; char answer1;cout<<" 是否要继续求该算法? (y/n)"<<"\t"; cin>>answer1;while(answer1=='y'){cout<<"请输入把 0到 1的范围几等分? "<<"\t"; cin>>m1;EchelonIntegral(m1); //3. 直线求积分; cout<<endl;cout<<" 是否要继续求该算法? (y/n)"<<"\t"; cin>>answer1; }cout<<endl;}cout<<"用梯形积分公式求积分1/(1+pow(sin(x),2))的值测试用例实验总结复化数值积分就是为了减少数值积分的误差,可以把积分区间分成若干小区间,在每个小区间上采取低阶数值积分公式,然后把这些小区间上的数值积分结果加起来作为函数在整个区间上的近似,类似于分段差值。
复化求积公式复化求积公式是计算定积分的一种常用方法。
它的基本思想是将区间分成多个小区间,用每个小区间上的函数近似代替原函数,然后将这些小区间的近似结果相加得到总的近似结果。
这个方法的优点是能够适用于各种函数类型,而且在计算机上也可以很方便地实现。
具体来说,我们可以将区间[a, b]均匀地分成n个小区间,每个小区间的长度都为Δx = (b-a)/n。
然后我们在每个小区间上选择一个点xi(可以是小区间的左端点、右端点、中点等)作为代表,然后计算这些小区间上的函数值f(xi)。
这样我们就得到了n个高度为f(xi)的矩形,它们的面积就是Δx * f(xi)。
将这n个矩形的面积相加,就得到了近似的定积分的结果。
单个小区间的近似结果可以表示为Δx * f(xi)。
为了得到更精确的结果,我们可以进一步增加小区间的数量,即取n趋向于无穷大的极限。
这样,我们就可以得到复化求积公式的一般形式:∫[a, b] f(x) dx ≈ Δx/2 * [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(xn)]其中,Δx = (b-a)/n,x0 = a,xn = b,xi 是每个小区间上的代表点。
复化求积公式的精确度与小区间的数量n有关,通常情况下,n越大,近似结果越精确。
但是同时也需要注意,小区间的数量过大会导致计算量过大,需要更多的时间和计算资源。
复化求积公式在实际应用中有很重要的作用,特别是在数值计算和科学工程领域。
通过这个方法,我们可以近似地计算各种复杂的函数的定积分,例如概率密度函数、信号处理中的卷积运算等。
同时,复化求积公式也为数值积分提供了一种计算机实现的思路,可以通过编程语言实现自动计算定积分的功能。
总之,复化求积公式是计算定积分的一种重要方法,通过将区间分成多个小区间,用每个小区间上的函数近似代替原函数,并将这些小区间结果相加,从而获得近似结果。
它在实际应用中具有广泛的适用性和指导意义,为求解各种复杂问题提供了一种有效的数值计算方法。
复合梯形求积公式
复合梯形求积公式是指用于计算梯形的面积公式,其公式为:
$S = frac{(a+b)h}{2} + frac{(a-b)h}{2}$
其中,$a$ 和 $b$ 分别是梯形上底和下底的长度,$h$ 是梯形
的高。
这个公式可以用于计算任意梯形的面积,不论其形状和位置如何。
在计算复合梯形的面积时,需要考虑到梯形中间腰线的变化,根据不同的情况采用不同的公式进行计算。
具体来说,如果梯形中间腰线的两段长度之和等于梯形上底和下底的长度,则可以使用以下公式:
$S = frac{(a+b)h}{2} - frac{(a-b)h}{2}$
如果梯形中间腰线的两段长度之和大于等于梯形上底和下底的
长度,则可以使用以下公式:
$S = frac{(a+b)h}{2} + frac{(a-b)h}{2}$
公式中的 $frac{(a+b)h}{2}$ 表示梯形上底和下底的长度之和,$frac{(a-b)h}{2}$ 表示梯形上底和下底的长度之差。
在使用这些公式进行计算时,需要确保梯形的高低度和上底下底的长度都符合要求。
复化梯形求积公式
复化梯形求积公式是一种常用的数学计算方法,通常用于计算定积分的近似值。
该公式基于将被积函数的图像划分为若干个梯形,然后计算这些梯形的面积之和来近似计算定积分的值。
具体而言,复化梯形求积公式可以表示为:
∫a^b f(x)dx ≈ h/2 [f(a) + 2f(x1) + 2f(x2) + … + 2f(xn-1) + f(b)]
其中,a和b分别是定积分的上限和下限,f(x)是被积函数,h=(b-a)/n 是每个梯形的宽度,n是将被积函数图像分成的梯形个数,x1、x2、…、xn-1是每个梯形的右端点。
复化梯形求积公式的精度与分割后梯形的数量有关,通常情况下,分割的数量越多,计算结果越精确。
但也应该注意到,过多的分割会导致计算量增大,从而影响计算效率。
除了复化梯形求积公式外,还存在其他的数值积分方法,如复化矩形求积公式、辛普森公式等。
每种数值积分方法都有其适用的场景和特点,需要根据实际情况选择合适的方法进行计算。
总之,复化梯形求积公式是一种简单易用的数值积分方法,可以在不求解原函数的情况下近似计算定积分的值,具有较广泛的应用价值。
复化梯形公式和复化辛普森公式1. 引言嘿,大家好!今天我们来聊聊数学里那些看似高深莫测的公式,尤其是复化梯形公式和复化辛普森公式。
这些名字听起来就像是从某部科幻片里蹦出来的角色,但其实它们是我们在数值积分中不可或缺的好帮手。
你知道吗?它们就像是数学世界里的“超能英雄”,让我们轻松搞定积分,简直是妙不可言。
2. 复化梯形公式2.1 你知道什么是梯形吗?首先,咱们得聊聊复化梯形公式。
说白了,就是把一个复杂的积分任务,分解成几个小的梯形来求解。
想象一下,你在河边钓鱼,河水流得可欢了。
为了找一个合适的钓鱼点,你可能得把河分成几段,然后每一段的宽度就是你的小梯形。
你看,这就是复化梯形的魅力所在!2.2 如何运用复化梯形公式?用这个公式的时候,你只需把整个区间分成N个小区间,每个区间的宽度都是一样的。
然后,把每个小区间的函数值拿来加一加,再乘上宽度的一半,最后再把头尾的函数值加上。
这听起来是不是很简单?比如,你想算从0到1的某个函数的积分,只要把这个区间分成若干段,像切蛋糕一样,每一片都求个函数值,然后把结果合起来就行了。
简单得就像吃个冰淇淋,大家都喜欢。
3. 复化辛普森公式3.1 辛普森是谁?接下来,让我们来看看复化辛普森公式。
辛普森这个名字,大家可能都听过,或者说过“这是辛普森家的事儿”。
其实,他是一位牛逼的数学家,专门研究如何让积分变得更加简单。
辛普森公式就像是对梯形公式的一次升级,像换了个新款手机,功能更强大,效果更好。
3.2 如何运用复化辛普森公式?用复化辛普森公式的时候,我们也是把整个区间分成N个小区间,不过这里的N必须是偶数哦!每个小区间的宽度仍然是一样的。
然后,用函数值的加权平均法来计算。
换句话说,你把每个小区间的头尾和中间的函数值都考虑进来,像是为你的冰淇淋加上各种口味的配料。
最后,你的结果就会比单纯用梯形公式得来的要精准多了,仿佛一口下去,味蕾都在舞蹈。
4. 比较与应用4.1 谁更强?说到这儿,很多人就会问,复化梯形公式和复化辛普森公式,谁更厉害呢?其实,这就像问“苹果和橘子,哪个更好吃”。
数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。
1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。
f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。
复化梯形求积公式复化梯形求积法是一种用于数值积分的常见方法,它可以帮助我们求解一元定积分(即 integrals 或者是积分函数)。
在复化梯形求积法中,我们需要对函数 f(x) 在某一区间 [a,b]内的值进行插值,并将插值后的函数值相加,以计算该函数在该区间上的积分值。
复化梯形求积法的步骤如下:第一步:分解积分区间[a,b],将其分解为 n 个子区间,其中区间长度为 h=(b-a)/n。
第二步:对积分区间[a,b] 中每个子区间使用复化梯形公式来计算它们的积分值。
根据复化梯形求积公式,积分区间 [a,b] 中每个子区间的积分值如下:Ii = h/2 * [f(xi) + f(xi+1)] (i=0,1,...,n-1)其中,xi 是第 i 个(0≤i≤n-1)子区间的左端点,xi+1 是第 i 个子区间的右端点,f(xi) 是第 i 个子区间左端点处的函数值,f(xi+1) 是第 i 个子区间右端点处的函数值。
第三步:将所有子区间积分值进行累加,得到积分区间[a,b]的总积分值。
按照复化梯形求积法,积分区间 [a,b] 的总积分值计算公式如下:I=h/2 * [f(x0)+f(xn)+∑(i=1,2,...,n-1)[f(xi)+f(xi+1)]]以上就是复化梯形求积法的基本原理及其用于求解一元定积分的步骤:首先将积分区间分解为子区间,然后使用复化梯形公式计算每个子区间的积分值,最后将子区间积分值相加得到积分区间的总积分值。
这种求积方法容易理解,计算量小,计算速度快,因此复化梯形求积法在积分计算中有着重要的应用价值。
在复化梯形求积法中,可以使用高斯公式来加快积分值的计算。
高斯公式的定义如下:I=h/2 * [f(x0)+f(xn)+c1f(x1)+c2f(x2)+...+cnf(xn-1)]其中,c1,...,cn 是某些常数,x1,...,xn-1 为积分区间上的中点。
应用高斯公式,可以将积分计算量减小一半以上,同时也大大减少计算精度上的误差。
摘要求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。
这时我们可以通过数值方法求出函数积分的近似值。
在用近似值代替真实值时,遇到的问题就是近似值的代数精度是否足够。
当代数精度不足够时,很显然提高插值函数的次数是一种方法,但是考虑到数值计算的稳定性,当次数过高时,会出现龙格现象,用增大n的方法来提高数值积代数精度是不可取的。
因此,提出类似于分段插值,为了减少数值积分的误差,可以把积分区间分成若干个小区间,在每个小区间上采用低阶数值积分公式,然后把这些小区间上的数值积分结果加起来作为函数在整个区间上的近似值,这个就是复化数值积分的思想。
本实验针对在每个小区间上利用梯型积分公式,即阶数为1,进行实验。
关键词:龙格现象复化数值积分代数精度1、实验目的1)通过本次实验体会并学习复化梯形积分公式的优点。
2)寻找复化梯形积分公式的不足,尝试着对其进行改进。
3)通过对复化梯形积分公式进行编程实现,提高自己的编程能力。
4)用实验报告的形式展现,提高自己在写论文方面的能力。
2、算法流程根据数学知识,我们知道积分区间可划分,且不改变积分值,即如下所示:针对上式,在每一个小区间上利用梯型积分公式有根据以上两式可以得到并称其为复化梯形积分公式。
一般记称作n+1点复化梯形积分公式3、算法实例用复化梯形积分公式计算积分解:复化梯形积分公式就是将区间n等分, h=1/n,具体计算时给n取值并带如公式就可以得到结果。
具体程序如下:#include "stdafx.h"#include <math.h>#include <iostream>using namespace std;const int num(1000);void main(){double a=0;double b=0;double h=0;int n=0;int i=0;double Sn=0;double x[num]={0};double y[num]={0};cout<<"请输入积分上下限和等分数"<<endl;cout<<"请输入积分下限a=";cin>>a;cout<<"请输入积分上限b=";cin>>b;cout<<"请输入等分数n=";cin>>n;h=(b-a)/n;for(i=0;i<n+1;i++){x[i]=a+h*i;y[i]=4/(1+x[i]*x[i]);}for(i=1;i<n;i++){Sn=Sn+2*y[i];}Sn=h/2*(Sn+y[0]+y[n]);cout<<"积分结果为:Sn="<<Sn<<endl;}运行结果:4、对结果进行分析通过用编程实现对上例的求解,可以看出结果较为准确,但是由于复化梯形积分公式原理是用一次曲线去逼近真实值,所以本身存在误差,而且当等分数较小时,误差较大。
复化梯函数的积分误差与分割后的小区间长度h之间存在一个反比关系。
也就是说,当小区间长度h越小,误差就会越小;反之,当小区间长h越大,误差就会相应地增大。
这是因为复化梯函数在不同的区间上具有不同的近似性质,而小区间长度h决定了我们能够将原问题划分成多少个这样的区间进行近似求解。
因此,如果小区间长度h足够小,我们就可以得到更精确的近似解,从而减小误差。
然而,小区间长度h也不能无限地小,因为这会增加计算的复杂度和时间成本。
因此,我们需要在精度和效率之间找到一个合适的平衡点,以确定一个合适的小区间长度。