第二章短波和超短波通信系统2-8
- 格式:ppt
- 大小:328.00 KB
- 文档页数:20
超短波通信系统干扰问题分析及其应对策略超短波通信系统作为一种传输速度快、信号传输稳定可靠的通信系统,被广泛应用于各个领域,如公共安全、铁路、气象、军事等。
然而,随着通信设备的增多,超短波通信系统面临着越来越严峻的干扰问题。
本文将分析超短波通信系统干扰问题及应对策略。
一、超短波通信系统干扰问题1.电磁干扰由于超短波通信系统的频率在300MHz-3GHz之间,这个频段被许多电子设备使用,如电视、微波炉、雷达、商业广播等,它们发出的电磁波会对超短波通信系统产生不同程度的干扰影响,影响通信效果。
2.天气干扰超短波通信系统的天线必须直接对准接收位置,如果有天气干扰就会影响信号的传输。
在雷暴、大雨、雾、雪等恶劣天气下,电离层中的天空波会受到天气条件的不同而发生改变,从而影响信号的传输。
3.建筑物遮挡超短波通信系统需要采用室外设备,如天线、转发器等,但这些设备往往会被建筑物、山、树等遮挡,导致信号衰减或者完全丧失,从而影响通信质量。
二、超短波通信系统应对策略1.调整工作频率超短波通信系统可以通过调整频率的方式避免或减少电磁干扰,但这需要进行其他联络系统,因为在使用频率带时必须遵循特定规定和协议。
2.选择合适的天线应该选择最适合工作环境的合适天线。
在建筑物中,可以采用高分辨率天线,而在山区或多树林的地区,可以采用大方向天线,以避免遮挡。
3.加强通信安全加强通信系统安全是应对干扰问题的一种重要策略。
可以采用加密技术、访问密码、密钥管理等安全措施,防止外部入侵和非法盗窃信息。
4.增强设备防护加强设备的防护工作可有效减少天气因素对通信设备的影响。
可以采用防水工艺和耐用的防水材料,对设备进行外壳加固和防雨处理,以提高设备的可靠性和耐用性。
5.有效维护设备保持设备干净、整洁、工作正常是有效应对干扰问题的另一项重要措施。
可以定期对设备进行维护和保养,及时修复设备故障,以保证通信系统设备的正常工作状态。
综上所述,随着超短波通信系统的不断应用,干扰问题日益突出。
短波通信原理尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。
其原因主要有三:(一)短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。
无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;(二)在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;(三)与卫星通信相比,短波通信不用支付话费,运行成本低。
近年来,短波通信技术在世界范围内获得了长足进步。
这些技术成果理应被中国这样的短波通信大国所用。
用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。
这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。
1、短波通信的一般原理1.1.无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。
无线电波一般指波长由100,000米到0.75毫米的电磁波。
根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。
频率与波长的关系为:频率=光速/波长。
电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。
为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。
常见的传播方式有:地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波。
现代通信与通信指挥管理信息系统技术摘要:军事通信和通信指挥管理信息系统是现代综合电子信息系统的重要组成部分。
论述了现代军事通信系统的短波通信、超短波通信、卫星通信、散射通信、流星余迹通信、军事光通信等多种传输手段、军事认知无线电等特点和发展趋势及新技术、关键技术,并论述了通信指挥管理信息系统相关技术。
关键词:军事通信;指挥管理;信息处理;认知无线电;网络管理未来作战需要通信设备具有高效的机动通信能力、可靠的再生保障能力、电磁环境和电磁兼容性。
通信和举报设备必须实施信息传输和处理能力。
系统必须有良好的顶层设计和相互兼容的开放标准。
系统必须形成路由优化协议。
要着眼于联合作战的要求,突出各种通信手段的融合。
强调通信平台和武器平台之间的相互连接,以满足无缝链接的要求。
通信设备系统要适应新技术开发的要求等。
1卫星通信指挥系统卫星通信指挥系统是指利用卫星通信技术提供移动业务,指挥通信信息的传输、传输、存储和处理的通信系统。
卫星通信指挥系统具有非常典型的特点,通过卫星中继站向所有用户提供各种移动通信业务。
因此,卫星移动通信系统本质上是现代移动通信和传统卫星通信相结合而诞生的产品。
1.1CDMA的应用在卫星通信指挥系统中,由于CDMA具有许多无可取代的独特优点,因此得到了非常广泛的应用。
CDMA应用的主要优势如下:(1)容量限制比较小,可以顺利地增加用户;(2)可以扩频增益,相邻波束之间可以使用的频率一样,频率具有很强的复用能力;(3)在宽带信息传输中具有良好的抗多径衰落性能;(4)具有良好的软切换功能,可以运用语音激活功能极大地提高容量;(5)具有良好的抗干扰能力强,信号频谱的接收和扩展保护性和隐蔽性良好。
1.2多址访问方式卫星通信系统的一个显著特点便是具有多点对多点或多址访问的通信能力。
其多址方式主要包括FDMA、SDMA、TDMA和CDMA,与地面上的移动通信中的多址方式极为相似。
卫星通信系统的独特优势表现在其多址访问能力。
第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。
试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。
【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。
根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。
【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。
试确定信号()s t 通过该信道后的输出表达式并讨论之。
【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。
其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。
超短波通信系统干扰问题分析和抗干扰方法超短波通信又称米波通信,它是利用30MHz-300 MHz的超短波频段的电磁波进行的无线电通信。
它的波长范围在1米到10米之间,主要依靠地波传播和空间波视距传播,其频带宽度是短波频带宽度的10倍之多。
因其具有频带较宽,传输性能较强等方面的优势,超短波通信不仅被广泛应用于电视、调频广播、雷达探测、移动通信等领域,而且成为我国军事通信中的主要手段之一,在部队战术通信、部队现场通信指挥等方面发挥重要作用。
然而随着当今社会信息技术的飞速发展,用频设备日益多样化,各种干扰现象也随之增多,直接影响通信的效果及其日后的发展。
因此,对超短波通信过程中产生的干扰现象进行分析,找出干扰来源并最大限度的对其进行抑制和防范,从而进一步优化通信过程是十分必要的。
1、主要干扰来源分析(1)邻道干扰邻道干扰是指在两个相邻或相近的波道,所传输的信号超过了波道的宽度,从而对临近波道所传播信号造成的干扰。
我们认为,这种干扰来源主要有两方面形成:一方面来源于紧随的若干波道的寄生辐射,包含发信边带扩展、边带噪声、杂散辐射等等。
另一方面则来源于移动通信网内一组空间离散的邻近工作频道。
(2)发信机噪声干扰除了邻道干扰之外,发信机噪声干扰也会直接影响到通信质量。
所谓发信机噪声干扰是指以载频为核心,分布频率范围相当宽的噪声。
其频率大小可在在数十千赫到数兆赫的区间,从而对其他发信机所造成的干扰。
这种干扰噪声的大小主要由新频器以及调制器等因素决定。
(3)互调干扰互调干扰通常产生于传输信道中的非线性电路。
当我们在非线性电路中输入两个或多个不同频率的信号时,在非线性器件的作用之下,会有很多谐波和组合频率分量产生。
这时,接近于所需要的信号频率ω0的组合频率分量就会顺利通过接收机,从而形成互调干扰。
我们认为,互调干扰产生的原因主要有三方面,分别是发信机互调、接收机互调和外部效应引起的互调。
①发动机互调发射机互调干扰是基站使用多个不同频的发射机(频分多址(FDMA)系统)所产生的特殊干扰。
一、短波通信短波通信(Short-wave Comunication)是无线电通信的一种。
波长在10 米~100 米之间,频率范围 3 兆赫~30 兆赫。
发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段。
由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。
目前,它广泛应用于电报、电话、低速传真通信和广播等方面。
尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘汰,还在快速发展。
1. 短波传播途径短波的基本传播途径有两个:一个是地波,一个是天波。
如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。
海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000 公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。
短波信号沿地面最多只能传播几十公里。
地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的。
短波的主要传播途径是天波。
短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。
但天波是很不稳定的。
在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。
2. 电离层的作用电离层对短波通信起着主要作用。
电离层是指从距地面大约60 公里到2000 公里处于电离状态的高空大气层。
上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X 射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。
产生电离的大气层称为电离层。
电离层分为D、E、F1、F2 四层。
D 层高度60~90 公里,白天可反射2~9MHz 的频率。