弹性动力学中的基本波汇总
- 格式:ppt
- 大小:4.83 MB
- 文档页数:99
学习意义:理解不同边界条件下的地震波波动方程的含义,理解各种弹性力学参数的物理意义并将参数和地下介质的岩性问题联系起来,最终为地震剖面的岩性解释服务。
刚体:变形忽略不计的物体弹性波:扰动在弹性介质中的传播波前面:波在介质中传播的某个时刻,介质内已扰动的区域和未扰动区域间的界面称为波前面地震波分类:纵波横波,平面波球面波柱面波,体波界面波表面波 哑指标:在同一项中重复两次从而对其应用求和约定的指标 自由指标:在同一项中出现一次因而不约定求和的指标各项同性张量:如果一个张量的每个分量都是坐标变换下的不变量,则称此张量为各项同性张量张量性质:二阶实对称张量的特征值都是实数:二阶实对称张量对应于不同特征值的两个特征向量垂直:二阶实对称张量总存在三个相互垂直的主方向:在主轴坐标系内二阶实对称张量的矩阵形式是对角形:三个相互垂直主方向的右手坐标系为主轴坐标系弹性:物体受外力时发生形变,外力消除时物体回到变形前的水平 弹性变形:在弹性范围内发生的可恢复原状的变形 弹性体:处于弹性变形阶段的物体弹性波动力学基本假设:物体是连续的:物体是线性弹性的:物体是均匀分布的:物体是各项同性的:小变形假设:无体物初应力假设 位形:弹性体在任意时刻所占据的空间区域参考位形:弹性体未受外力作用处在自然情况下的位形 运动:刚性平移,刚性转动,变形应变主方向:如果过p 点的某个方向的线源,在变形后只沿着他原来的方向产生相对伸缩主应变:沿着应变主方向的相对伸缩体力:连续分布作用于弹性体每个体元上的外力称为体力 面力:连续分布作用于弹性体表面上的力 运动微分方程的物理意义:表示应力张量在弹性体内部随点位置变化时应满足的关系式内能:弹性体在某个变形状态下,其内部分子的动能以及分子之间相互作用具有的势能总和应变能密度:单位体积内的弹性体所具有的应变能 广义胡克定律:线性弹性体内一点处的应力张量分量可以表示为该点处应变量张量的线性齐次方程动弹性模量:由介质的速度参数表达的弹性模量极端各向异性弹性体:过p 点任意方向都不同的弹性体粘滞力:实际流体中两层流体相互滑动流体间相互作用的阻力 理想流体介质:可以将粘滞力忽略的流体无旋波:无旋位移场的散度对应弹性体的涨缩应变场以波的形式传播(涨缩应变场)无散波:无散位移场的旋度对应弹性体的转动情况以波的形式运动平面波:波前面离开波源足够远时脉冲型和简谐型均匀和非均匀平面波 非频散波:波的传播速度仅仅依赖媒介密度拉美系数等而与波的频率无关 频散波:波的传播速度与频率有关频散:初始扰动的没一个简谐成分都以不同速度前进,从而初始波形在行进中发生了变化相速度:简谐波的传播速度群速度:由简谐波叠加而成的波其合成振幅的传播速度非均匀平面波:如果波的等位相面各点振幅不同,既等位相面和等振幅面不平行球面波:弹性媒质的位移矢量场具有球对称性,且只是空间变量和时间变量的函数 1、证明:kmjn kn jm im n ijk e e δδδδ-=;2、321321321n n n m m m i i i imne δδδδδδδδδ=3、321321321n n n m m m i i i ijkimn ijk e e e δδδδδδδδδ=4、kmjn kn jm knkm ki jn jm ji inim ii δδδδδδδδδδδδδ-==5、如果i i e a a =,ii e b b =,i i e c c=,证明:c b a b c a c b a )()()(∙-∙=⨯⨯;k ijk j i e e c b c b =⨯)()()(k ijk j i m m k ijk j i e e c b e a e e c b a c b a ⨯=⨯=⨯⨯n m kn ijk j i m k m ijk j i m e e e c b a e e e c b a=⨯=)(njn im jm in j i m n knm kij j i m e c b a e e e c b a)(δδδδ-==nn m m n m n m n n m m m n m e c b a e c b a e c b a c b a-=-=)(c b a b c a e c b a e b c a n n m m n n m m)()(∙-∙=-=分析:由于标量对坐标的选择无关,因此,如果证明了物理量在坐标变换前后相等,即可以认为此物理量是标量。
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
《地震波理论》复习最终版《地震波理论》复习内容⼀、弹性理论基础1. 柯西公式的意义;因此弹性体内⼀点的应⼒状态可以完全由作⽤于垂直坐标轴⽅向的三个截⾯上的应⼒向量或其分量所确定。
2. 应⼒与应变的关系;(为单位函数)3. 杨⽒模量E(纵向应⼒与纵向应变的⽐例常数就是材料的弹性模量E,也叫杨⽒模量)泊松⽐ν(横向应变与纵向应变之⽐值称为泊松⽐,也叫横向变性系数,它是反映材料横向变形的弹性常数);4. 拉梅常数λ、µ;为引⼊均匀各向同性介质中应⼒与应变关系,引⼊λ、µ,µ表⽰剪切模量。
5. 运动的应⼒⽅程和位移⽅程;运动应⼒⽅程:运动位移⽅程:6. 介质受应⼒作⽤产⽣位移由哪⼏部分组成;由式上式可以看出处于应⼒应变状态下的物体其质点位移由三部分组成:①平动: u,v,w,这是和参考点M⼀起作同样的运动,它不使物体形状改变;②弹性应变: eij,i,j=x,y,z 这是⼀种使物体形状和体积发⽣改变的运动,称为弹性应变.应变有九个分量,考虑到它的对称性,只有其中六个分量独⽴的。
exx,eyy,ezz称为正应变,exy,eyz,ezx称为切应变;③旋转: ωx,ωy,ωz这是质点围绕参考点M的旋转运动,不使物体形状和体积发⽣改变,不属弹性应变范畴.7. 导出拉梅⽅程的前提条件;在对空间求导时,只有λ、µ不随空间变化,即在均匀介质中才能导出拉梅⽅程。
8. 能流密度。
表⽰在单位时间内通过与它垂直的单位截⾯积的机械能。
⼆、弹性动⼒学中的基本波1. 由拉梅⽅程导出纵波、横波⽅程;拉梅⽅程对上式进⾏散度运算,得到:对上式进⾏旋度运算,得到:2. 平⾯波、不均匀平⾯波;平⾯波:等相位为平⾯,且与波的传播⽅向垂直的波动。
不均匀平⾯波:平⾯波传播的⽅向余弦为l 、m 、n 是复数,这样的波为不均匀平⾯波。
3. 在什么情况下才能称为平⾯波;离震源较远时可以将在局部等相位内,将点震源产⽣的球⾯波看成⼀个平⾯。
弹性波与结构动力学引言:弹性波是物质中传播的一类波动现象,它在结构动力学中起着重要的作用。
通过研究弹性波的传播特性,我们可以深入了解结构的振动行为,进而为工程结构的设计和安全性评估提供理论支持。
一、弹性波的基本概念弹性波是一种沿着介质中传递的机械波,其传播过程中介质的形状和体积保持不变。
弹性波包括两种类型:纵波和横波。
纵波是沿传播方向的波动,介质中的粒子在波传播过程中沿波的传播方向振动。
而横波是垂直于传播方向的波动,介质中的粒子在波传播过程中垂直于传播方向振动。
二、弹性波的传播特性弹性波在传播过程中受到介质本身刚度和密度的影响。
根据介质的性质不同,弹性波的传播速度也不同。
例如,在固体中,纵波的传播速度大于横波的传播速度;而在液体中,纵波和横波的传播速度相等。
此外,弹性波的传播还受到外部条件的限制,如介质的边界条件和存在的障碍物。
这些因素会使波动的传播方向改变,产生反射、折射和散射现象。
三、结构动力学中的应用结构动力学旨在研究结构体在受到外界力作用下的响应行为。
通过研究弹性波的传播和结构的振动特性,我们可以了解结构在承受外力时的变形和应力分布情况,从而评估结构的安全性和稳定性。
1. 弹性波的成像技术利用弹性波的传播特性,我们可以将其应用于结构的成像技术中。
通过在结构表面上布置传感器,并采集传感器上的信号信息,可以获得结构内部的振动分布情况。
这对于检测结构的缺陷和损伤以及评估结构的健康状况具有重要意义。
2. 弹性波在地震工学中的应用地震是一种具有较高频率和较大能量的弹性波。
研究地震波的传播行为可以帮助我们了解地震的发生机理和地震波对结构的影响。
通过地震波的预测和分析,可以为建筑物的抗震设计和城市的抗震规划提供科学依据。
3. 结构动力响应的数值模拟结构动力学中的数值模拟是利用计算机模拟方法来分析结构体在受到外力激励下的响应行为。
其中,弹性波的传播特性被广泛应用于模拟结构的振动响应。
通过建立结构的有限元模型和适当的边界条件,可以计算结构在不同外力作用下的动态行为,为工程师提供设计和评估结构安全性的参考。
质点振动部分一 基本概念1) 构成振动系统的各部分都可看成是一个物理性质集中地元件,这种振动系统也称为质点振动系统。
OR 由物理性质集中的元件构成的振动系统。
2)单自由度系统A 简谐振动(无阻尼自由振动):物体在线性恢复力或线性恢复力矩的作用下的运动。
B 阻尼自由振动:因摩擦,声波辐射等原因阻碍震动的进行(阻尼),而导致震动幅度随时间衰减。
C 受迫振动:(策动力)在策动力作用下的振动称作受迫振动。
3)什么是3dB 带宽?在但自由度振动系统的震速振幅的频率特性曲线上,速度振幅比共振峰值处下降0.707倍所对应的两个频率分别为 和 ( > ),则3分贝带宽定义为 ,可以用3分贝带宽的大小表示频率特性曲线的平坦程度。
0.00.5 1.0 1.5 2.0012345678910B z z1z2二 基本原理与技能1) 简谐振动、阻尼振动和受迫振动表达式简谐振动:阻尼振动:欠阻尼状态:x(t)= cos( )过阻尼状态:x(t)=临界阻尼状态:x(t)=(受迫振动:2) 频率特性曲线的测量扫频法:将幅值相等但不同频率的简谐力加在振动系统上,测量每个频率的速度振幅,用描点法作出频率特性曲线。
脉冲法:将含有等幅值的各种频率成分的时域信号(强迫力)加在振动系统上,测量系统响应。
流体中声场部分一基本概念11)声压:设流体体积元受声扰动后压强由改变为P,则由声扰动产生的逾量压强(简称逾压)就称为声压,2)声场:媒质中有声波存在的区域。
3)声波传播速度:常数,温度为t(℃)时理想气体中的声速为(m/s)温度为20℃的空气中的声速约为334米/秒,常温下水中声速约为1500米/秒4)质点振动速度:5)声阻抗率:声场中某位置的声压与该位置的质点的速度的比值定义为该位置的声阻抗率。
== -26)声压级:声场中某点的声压级定义为该点的声压的有效值与参考声压的比值取常用对数,再乘以20。
空气中参考声压水中参考声压7)声强级:声场中某点的声强级定义为该点的声强与参考声强的比值取常用对数,再乘以10空气中参考声强一般取瓦米在空气中声压级与声强级数值上近于相等声强:通过垂直于声传播方向的单位面积上的平均能量流称为平均能量流密度或称为声强,即:I=38)临界角:光线从光密介质射向光疏介质时,折射角将大于入射角;当入射角为某一数值时,折射角等于90°,此入射角称临界角。
第1章 绪论1.1 弹性波场论概述在普通物理的力学部分,我们曾经着重讨论过物体在外力作用下的机械运动规律。
在讨论时,由于物体变形影响很小,我们将其忽略,而将物体视为刚体或简化为质点,这是完全正确的。
然而,实际上任何物体在外力作用下不仅会产生机械运动,而且会产生变形。
由于变形物体内部将相互作用,产生内力、应力和应变。
当应力或应变达到一定极限时,物体就会破坏,这一点在研究材料和工程力学中尤其要考虑,地球介质也不例外,地壳运动或地震都会产生地质体的应力或应变。
在弹性力学中,主要讨论对物体作用时的变形效应,物体不再假定为刚体,而是弹性体、塑性体,应当视为可变形体,我们研究的视角也从外部整体过渡到内部局部。
长期的生产实际和科学实验均已表明,几乎所有的物体都具有弹性和塑性。
所谓的弹性是指物体的变形随外力的撤除而完全消失的这种属性。
所谓的塑性是指物体的变形在外力的撤除后仍部分残留的这种属性。
物体的弹性和塑性受诸多因素影响而发生改变,并在一定的条件下相互转化。
因此,确切地,应当说成物体处于弹性状态或塑性状态,而非简单地说物体是弹性体或塑性体。
在弹性力学中,只讨论物体处于弹性状态下的有关力学问题,这时物体可称为弹性体。
由上所述,弹性力学又称弹性理论,研究的对象是弹性体,其任务是研究弹性体在外界因素(包括外力,温度等)作用下的应力、应变和位移规律。
简单地说,弹性力学就是研究弹性体的应力、应变和位移规律的一门学科。
弹性力学是固体力学中很重要的一个分支。
而固体力学是从宏观观点研究固体在外力作用下的力学响应的科学,它主要研究固体由于受外力作用所引起的内力(应力)、变形(应变)以及与变形有直接关系的位移的分布规律及其随时间变化的规律。
可见,应力、应变和位移是空间和时间的函数。
与固体力学对应的还有流体力学等。
固体力学还包括材料力学,断裂力学等等。
弹性力学本身又分为弹性静力学(Elasticity Statics )和弹性动力学(Elasticity Dynamics )。