36非化学计量化合物
- 格式:ppt
- 大小:191.50 KB
- 文档页数:21
一、名词解释1.非化学计量化合物;2.一致熔融化合物;3.无序扩散:4. 均匀成核与非均匀成核;5.固相反应中的海德华定律;6.置换型固溶体;7.溶解-沉淀传质;8. 一级相变;9. 肖特基缺陷;10.晶子学说。
11.弗伦克尔缺陷;12.非化学计量缺陷;13.无规则网络学说;14.网络成型体与变性体,单建强、聚合与解聚;15. 烧结;16.一致熔化合物;17.稳定扩散;18.马氏体相变;19.非均匀成核;20. 二次再结晶;21非均匀成核;22 本征扩散;23 烧结;24 二次再结晶;25、热缺陷与杂质缺陷;26、熔融温度、烧结温度、泰曼温度;27、泥浆的触变性、泥团的可塑性;28、水型物质与硫型物质;29、烧结与烧成;30、粘土的离子交换性;31、等同点,空间格子,单位平行六面体;32点群,平移群,空间群,晶胞二.简答题1、影响熔体粘度的因素有哪些?2、试比较杨德方程和金斯特林格方程的优缺点及其适用条件。
3、烧结过程中,晶界遇到夹杂物时会出现几种情况?从实现致密化目的的考虑,晶界应如何移动,怎样控制?4、比较硅酸盐玻璃与硼酸盐玻璃结构与性能上的差异5、简述玻璃的通性,并与晶体进行比较。
6、比较机械混合物、固溶体、化合物及非化学计量化合物之间的异同点。
7、加入0.1mol%的ZrO2增韧Al2O3,写出缺陷反应式和固溶分子式。
8、简述硅酸盐熔体聚合物结构形成的过程和结构特点。
9、什么是ζ—电位,它与扩散层厚度的有何关系。
10、简述晶体的本质及其与性能的关系。
11、试比较石墨和金刚石的结构和性质。
12、什么是润湿,它有几种类型,请分别予以表述。
13、与一般的液、气反应相比、固相反应有什么特点。
14、加入0.2mol%的ZrO2增韧Al2O3,写出缺陷反应式和固溶分子式。
15、材料烧结时四种最基本的传质机理是什么?少量添加剂能促进烧结,其原因是什么?16、大块石英经煅烧后,易于破碎是根据什么原理?17、简述硼酸盐玻璃由于Na2O加入量的不同,出现的硼反常现象。
非计量化合物非计量化合物是指一类由两种或多种化合物组成的混合物,无法精确地进行计量和化学配方。
这些化合物一般是从天然资源中提取的,或者通过人工加工而成,其组成和质量难以确定。
本文将会介绍非计量化合物的相关内容。
非计量化合物具有以下几个特点:1. 无法确定其准确的组成和质量。
这是由于混合物中包含的物质种类及比例不一,且尚无确切的分析方法来确定其组成。
2. 物性难以控制。
混合物的组成不稳定,会受到外界因素(如温度、湿度等)的影响而发生变化,因此其物性也不稳定。
3. 应用领域广泛。
非计量化合物广泛应用于工业、制药、食品、化妆品等多个领域。
非计量化合物的种类多种多样,下面介绍几种常见的非计量化合物。
1. 天然植物提取物天然植物提取物是从天然植物中提取得到的混合物,含有多种成分,如酚类、黄酮类、生物碱等。
由于植物来源的不同,其组成和质量差异很大。
因此,这种非计量化合物多应用于草药制品、中药饮片等领域。
2. 化妆品原料化妆品原料一般是由多种化合物组成的混合物,包括表面活性剂、防腐剂、保湿剂、单体等。
由于化妆品原料的组成复杂,无法精确计算其质量,因此化妆品行业中使用的很多原料属于非计量化合物。
3. 油漆油漆是一种由树脂、颜料、溶剂等多种组分混合而成的复杂混合物。
由于油漆中溶剂的挥发、水分的蒸发等都会影响到油漆的物性,因此其组成的精确计算是比较困难的。
4. 萃取物萃取物是一种从天然资源中提取的混合物,包括植物提取物、动物提取物、微生物代谢物等。
由于其来源复杂、组成复杂,因此难以进行准确的定量分析。
由于非计量化合物在多个领域具有重要应用,因此其市场需求也越来越大。
下面列举几个应用较为广泛的领域。
2. 食品工业食品工业中的调味料、食品添加剂等也包含了大量的非计量化合物。
这些化合物通常是从天然资源中提取的,如香料、色素等,其组成会因为生长环境的差异而有所不同。
3. 制药行业制药行业中使用的很多药剂也是由多种化合物组成的混合物。
§5.5 非化学计量化合物道尔顿的定比定律圆满地解释了有机化学中分子晶体的许多现象,虽然它有时需要加以修正,才能用以说明单键、双键、叁键、链状或环状化合物的结构问题[4]。
后来研究发现,这种严格按化学计量形成的化合物其实是一种很特殊的情况,大多数原子或离子晶体化合物并不符合定比定律,其正负离子的比,并不是一个简单、固定的值。
它们呈现范围很宽的组成,并且组成和具体结构之间没有简单的对应关系(或化学同一性)[18],这些化合物被称为非化学计量化合物[7, 8, 19, 20]、非化学计量比化学物[32]、非化学配比化合物[5]或非整比化合物[3,4](英文一般统称为nonstoichiome-tric compounds),或被称为偏离整比的化合物[4](compounds deviated from stoichiometry)。
基于这些理由,苏勉曾指出[4],非化学计量化合物可以从以下两个方面加以规定:一、纯粹化学定义所规定的非化学计量化合物,是指用化学分析、X射线衍射分析和平衡蒸气压测定等手段能够确定的、组成偏离化学计量的、均匀的物相,例如FeO1+y等。
二、从点阵结构上看,非化学计量化合物组成的偏离值也可能很小,以致不能用化学分析或X射线衍射分析等觉察出来,但可以由测量其光学、电学和磁学的性质来研究它们。
这类低偏离化学计量的化合物具有重要的技术性能,是固体化学因而也是无机材料化学要重点讨论的对象。
自20世纪20年代起人们便已知道,化学计量FeO的组成并没有落在实际存在的Fe2+氧化物的稳定范围(FeO1.05)内[18]。
传统的观点认为这是由于它存在着缺陷,导致组成偏离~1.15实际上是非化学计量氧化亚铁组成的稳定范围。
对非化学计量化合物化学计量。
FeO1.05~1.15的进一步研究导致了这样一种相反的观点:既然“缺陷”之间会发生显著的相互作用(例如缔合)并使自己有序化,以至有时它们的存在甚至对固体的完整结构是必不可少的[3](例如像超亲水TiO2薄膜的氧离子空位V O··那样[21~23],详见§4.8);既然缺陷的存在有时会在很大的程度上决定了固体物质(例如半导体)的性质,那么又怎能把它们看成是一种“缺陷”[3]?5.5.1 晶体的点缺陷和化学计量的关系,基本的缺陷反应方程式从第四章缺陷化学对点缺陷的描述中可以推论出,在化合物中如果只存在某类缺陷中的一种缺陷(例如弗仑克尔缺陷中的填隙原子),会导致一个成分过量或另一个成分短缺。
第三章缺陷化学第三章缺陷化学 (1)3.1 缺陷化学基础 (1)3.1.1 晶体缺陷的分类 (2)3.1.2 点缺陷和电子缺陷 (5)3.2 缺陷化学反应方程式 (9)3.3 非化学计量化合物 (12)3.3.1 非化学计量化合物主要类型 (13)3.3.2 化学式 (17)3.3.3 化合物密度计算 (18)3.4 缺陷缔合 (20)3.5 电子结构(电子与空穴) (21)3.5.1 能带结构和电子密度 (21)3.5.2 掺杂后的点缺陷的局域能级 (22)3.6 半导体的光学性质 (25)所有的固体(包括材料),无论是天然的,还是人工制备的,都必定包含缺陷,缺陷可以是晶体结构的不完善,也可以是材料的不纯净,他对固体物的性质有极大的影响,规定了材料,特别是晶体材料的光学、电学、声学、力学和热学等方面的性质及其应用水平。
材料的缺陷控制既是过去和现用材料的主要问题,也是现在和将来新材料研制开发的挂念。
材料的缺陷控制既可以通过减少材料中的缺陷种类和降低缺陷浓度来改善其性能,也可以通过引入某种缺陷而改变材料的某方面性质。
如半导体材料通过引入某些类型的杂质或缺陷而使之获得导带电子或价带空穴,从而大大增强半导体的导电性。
可以说,现在几乎没有哪个工业技术部门或者基础理论研究领域不涉及到固体缺陷的理论研究和应用研究的问题。
而缺陷化学(Defect Chemistry)是研究固体物质(材料)中的微观、显微微观缺陷(主要是点缺陷)的产生,缺陷的平衡,缺陷存在对材料性质的影响以及如何控制材料中缺陷的种类和浓度问题。
缺陷化学是固体化学的一个重要分支学科,属材料科学的范畴。
3.1 缺陷化学基础近几十年来,在晶体缺陷的研究中已经取得了许多杰出的成果,已经建立起关于晶体缺陷的一整套理论,并成为材料科学基础理论的重要组成部分。
在这个领域中,特别值得提出的是瓦格纳(Wagner)首先把固体的缺陷和缺陷运动与固体物性及化学活性联系起来研究;克罗格-文克(Kröger-Vink)应用质量作用定律处理晶格缺陷间的关系,提出了一套缺陷化学符号。
材料科学基础第 3 章由于化学组成上偏离化学计量而产生的缺陷四种类型 非化学计量化合物阴离子缺位型 TiO 2-X阳离子填隙型 Zn 1+X O 阴离子填隙型 UO 2+X 阳离子缺位型 Fe 1-X O阴离子缺位型产生原因环境中缺氧,晶格中的氧逸出到大气中,使晶体中出现了氧空位。
阴离子缺位型(TiO 2-x )缺氧的TiO 2可以看作是四价钛和三价钛氧化物的固溶体简化式中 e´=Ti Ti ´Ti 4+获得电子降为 Ti 3+三价钛占据四价钛的位置氧空位上束缚2个自由电子有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)阴离子缺位型(TiO2-x)根据质量作用定律,平衡时:由晶体电中性条件:氧空位的浓度与氧分压的1/6次方成反比阴离子缺位型F-色心TiO2-x结构缺陷示意图色心由于电子补偿而引起的一种缺陷。
研究最详细的色心是F-色心(F-Center),由一个阴离子空位和一个在此位置上的电子组成。
因陷落电子能吸收一定波长的光而使材料出现某种颜色。
TiO2 在还原气氛下 黄色→灰黑色NaCl 在蒸气中加热 呈现黄棕色产生原因过剩金属离子进入间隙位置,带正电。
等价电子被束缚在间隙位置金属离子周围,形成一种色心。
间隙阳离子+电子为保持电中性e由于间隙阳离子使金属离子过剩型结构1+xZnO在锌蒸汽中加热,颜色会逐渐加深,就是形成这种缺陷的缘故。
与上述反应同时进行的还有氧化反应 :Zn(g) + 1/2O2 = ZnO1+x 平衡时 [Zn i ·]=[e´],得:根据质量作用定律:(单电荷间隙锌)锌不完全电离时1+x实测 650℃下ZnO电导率与氧分压的关系单电荷锌间隙模型的正确性产生原因•存在间隙阴离子使阴离子过剩。
为保持电中牲,结构中引入电子空穴,相应的阳离子升价。
•电子空穴在电场作用下会运动,材料为P型半导体。
h由于存在间隙阴离子,使阴离子过剩型结构阴离子填隙型( UO 2+x )随着氧分压的提高间隙氧浓度增大等价于目前只发现UO 2+x ,可看作铀氧化物间形成的固溶体。
§5.5 非化学计量化合物道尔顿的定比定律圆满地解释了有机化学中分子晶体的许多现象,虽然它有时需要加以修正,才能用以说明单键、双键、叁键、链状或环状化合物的结构问题[4]。
后来研究发现,这种严格按化学计量形成的化合物其实是一种很特殊的情况,大多数原子或离子晶体化合物并不符合定比定律,其正负离子的比,并不是一个简单、固定的值。
它们呈现范围很宽的组成,并且组成和具体结构之间没有简单的对应关系(或化学同一性)[18],这些化合物被称为非化学计量化合物[7, 8, 19, 20]、非化学计量比化学物[32]、非化学配比化合物[5]或非整比化合物[3,4](英文一般统称为nonstoichiome-tric compounds),或被称为偏离整比的化合物[4](compounds deviated from stoichiometry)。
基于这些理由,苏勉曾指出[4],非化学计量化合物可以从以下两个方面加以规定:一、纯粹化学定义所规定的非化学计量化合物,是指用化学分析、X射线衍射分析和平衡蒸气压测定等手段能够确定的、组成偏离化学计量的、均匀的物相,例如FeO1+y等。
二、从点阵结构上看,非化学计量化合物组成的偏离值也可能很小,以致不能用化学分析或X射线衍射分析等觉察出来,但可以由测量其光学、电学和磁学的性质来研究它们。
这类低偏离化学计量的化合物具有重要的技术性能,是固体化学因而也是无机材料化学要重点讨论的对象。
自20世纪20年代起人们便已知道,化学计量FeO的组成并没有落在实际存在的Fe2+氧化物的稳定范围(FeO1.05)内[18]。
传统的观点认为这是由于它存在着缺陷,导致组成偏离~1.15实际上是非化学计量氧化亚铁组成的稳定范围。
对非化学计量化合物化学计量。
FeO1.05~1.15的进一步研究导致了这样一种相反的观点:既然“缺陷”之间会发生显著的相互作用(例如缔合)并使自己有序化,以至有时它们的存在甚至对固体的完整结构是必不可少的[3](例如像超亲水TiO2薄膜的氧离子空位V O··那样[21~23],详见§4.8);既然缺陷的存在有时会在很大的程度上决定了固体物质(例如半导体)的性质,那么又怎能把它们看成是一种“缺陷”[3]5.5.1 晶体的点缺陷和化学计量的关系,基本的缺陷反应方程式从第四章缺陷化学对点缺陷的描述中可以推论出,在化合物中如果只存在某类缺陷中的一种缺陷(例如弗仑克尔缺陷中的填隙原子),会导致一个成分过量或另一个成分短缺。