厦门大学 材料科学基础(二) 第四章-2 缺陷化学 点缺陷的类型及表示方法
- 格式:ppt
- 大小:731.52 KB
- 文档页数:12
厦门大学,829材料科学基础部分简答题总结第一篇:厦门大学,829材料科学基础部分简答题总结原子结构1、原子间的结合键共有几种?各自的特点如何?【11年真题】答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。
当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。
(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。
因此,七熔点和硬度均较高。
离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。
(3)共价键:有方向性和饱和性。
共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。
共价结合的材料一般是绝缘体,其导电能力较差。
(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。
它没有方向性和饱和性,其结合不如化学键牢固。
(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。
2、陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。
【模拟题一】答:陶瓷材料中主要的结合键是离子键和共价键。
由于离子键和共价键很强,故陶瓷的抗压强度很高、硬度很高。
因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。
第二章固体结构1、为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?【模拟题一】答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。
溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。
一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。
材料科学基础课后习题第1-第4章第一篇:材料科学基础课后习题第1-第4章《材料科学基础》课后习题答案第一章材料结构的基本知识4.简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6.为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9.什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
材料物理化学-第四章晶体的点缺陷与线缺陷第四章晶体结构缺陷晶体缺陷的产⽣与晶体的⽣长条件,晶体中原⼦的热运动以及对晶体的加⼯⼯艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,⾃然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能⽤到含有缺陷的晶体中,亦即晶体理论的基⽯不再牢固。
但缺陷的存在只是晶体中局部的破坏。
作为⼀种统计,⼀种近似,⼀种⼏何模型,缺陷存在的⽐例毕竟只是⼀个很⼩的量(这指的是通常的情况),从占有原⼦百分数来说,晶体中的缺陷在数量上是微不⾜道的。
因此,整体上看,可以认为⼀般晶体是近乎完整的。
因⽽对于实际晶体中存在的缺陷可以⽤确切的⼏何图形来描述,这⼀点⾮常重要。
它是我们今后讨论缺陷形态的基本出发点。
事实上,把晶体看成近乎完整的并不是⼀种凭空的假设,⼤量的实验事实(X射线及电⼦衍射实验提供了⾜够的实验证据)都⽀持这种近乎理想的对称性。
当然不能否认,当缺陷⽐例过⾼以致于这种“完整性”⽆论从实验或从理论上都不复存在时,此时的固体便不能⽤空间点阵来描述,也不能被称之为晶体。
这便是材料中的另⼀⼤类别:⾮晶态固体。
对⾮晶固体和晶体,⽆论在原⼦结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很⼤差异,有兴趣的同学可以对此作进⼀步的理解。
缺陷是晶体理论中最重要的内容之⼀。
晶体的⽣长、性能以及加⼯等⽆⼀不与缺陷紧密相关。
因为正是这千分之⼀、万分之⼀的缺陷,对晶体的性能产⽣了不容⼩视的作⽤。
这种影响⽆论在微观或宏观上都具有相当的重要性。
4.1热⼒学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热⼒学平衡当晶体的温度⾼于绝对零度时,晶格内原⼦吸收能量,在其平衡位置附近温度越⾼,热振动幅度加⼤,原⼦的平均动能随之增加。
热振动的原⼦在某⼀瞬间可以获得较⼤的能量,挣脱周围质点的作⽤,离开平衡位置,进⼊到晶格内的其它位置,⽽在原来的平衡格点位置上留下空位。
第一章原子结构和键合原子中一个电子的空间和能量的描述(1)主量子数 ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数 K、L 、M 、N、O、 P、Q(2)轨道动量量子数 li :给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关, s, p,d, f(3)磁量子数 mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向(4)自旋角动量量子数 si:表示电子自旋的方向,取值为 +1/2 或 -1/2 核外电子的排布规律(1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。
而在同一电子层,电子依次按 s,p,d,f 的次序排列。
(2)Pauli 不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。
因此,主量子数为 n 的壳层,最多容纳2n2 电子。
(3)Hund 原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。
原子间的键(见作业)第二章固体结构晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。
即存在长程有序。
性能上两大特点:( 1)固定的熔点;( 2)各向异性空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境晶胞:代表性的基本单元(最小平行六面体)选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。
晶体结构与空间点阵的区别:空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14 种。
晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。
第2节点缺陷5.2.1 分类1. 按照位置和成分分类1)空位:正常结点没有被原子或离子所占据,成为空结点,称为空位或空穴,参见图5-1。
2)填隙质点:原子或离子进入晶体中正常结点之间的间隙位置,成为填隙原子(或离子)或间隙原子(或离子)。
从成分上看,填隙质点可以是晶体自身的质点,也可以是外来杂质的质点,参见图5-2。
3)杂质缺陷:外来杂质质点进入晶体中就会生成杂质缺陷,从位置上看,它可以进入结点位置,也可以进入间隙位置,参见图5-3。
杂质原子(或离子)如取代原来晶格中的原子(或离子)而进入正常结点的位置,称为取代原子(或离子);杂质原子(或离子)如进入结点之间的间隙位置,那么生成间隙式杂质原子(或离子)。
杂质进入晶体中可以看成是一个溶解过程,杂质为溶质,原来晶体为溶剂,这种溶解了杂质原子(或离子)的晶体称为固体溶液,简称固溶体,将在后面章节进行详细介绍。
2. 按照缺陷产生原因分类1)热缺陷:当晶体的温度高于0K时,由于晶格上质点热振动,使一部分能量较高的质点离开平衡位置而造成缺陷,这种缺陷称为热缺陷。
热缺陷有两种形式:弗仑克尔缺陷(Frenkel)和肖特基缺陷(Schottky)。
(1)弗仑克尔缺陷:在晶格热振动时,一些能量较大的质点离开平衡位置后,进入到间隙位置,形成间隙质点,而在原来位置上形成空位,这种缺陷称为弗仑克尔缺陷,如图5-4(a)所示。
它的特点是间隙质点与空位总是成对出现。
从能量状态分析,间隙质点的能量要高于结点位置上的能量,因此形成弗仑克尔缺陷需要克服较高的位垒。
由于间隙质点能态高,因而它处于一种亚稳定状态,当其周围存在空位时,就有可能重新与空位复合,回到能态较低的结点平衡位置。
为了实现与空位复合,它仍然需要克服一定的势垒u(见图5-5)。
间隙质点也有可能获得足够能量迁移到邻近其他间隙位置。
在一定温度下,对一定材料来说,弗仑克尔缺陷的数目是一定的,并且无规则地均匀分布在整个晶体材料中。
缺陷化学总结(二)(二)引言概述:缺陷化学是研究材料中的缺陷结构对其性质和功能影响的学科。
本文将从五个主要方面对缺陷化学进行深入探讨,分析缺陷结构产生的原因、缺陷结构对材料性能的影响以及缺陷调控的方法与应用。
正文内容:1. 缺陷结构的形成机制- 晶格缺陷:点缺陷、线缺陷、面缺陷- 晶体生长过程中的缺陷:原子迁移、激发扩散、拉普拉斯增长- 外部条件对缺陷结构的影响:温度、压力、成分变化2. 缺陷结构与材料性能的关系- 电学性质的变化:导电性、电阻率、电子迁移率- 光学性质的变化:吸收率、透光性、发光性能- 机械性质的变化:强度、韧性、硬度- 热学性质的变化:导热性、热膨胀系数、热稳定性3. 缺陷调控的方法与技术- 材料合成过程中的控制:温度、压力、溶剂、添加剂- 结构调控方法:合金化、掺杂、热处理、离子注入- 表面修饰技术:化学修饰、物理修饰、生物修饰- 动态调控方法:外场作用、电磁辐射、力学应变4. 缺陷化学在材料研究中的应用- 电子器件领域:半导体材料、光电材料、导电涂层- 能源材料领域:储能材料、光催化材料、电解质材料- 生物医学领域:药物输送材料、组织工程材料、生物传感器 - 环境保护领域:吸附材料、催化剂、气体分离材料5. 未来发展方向与挑战- 高效调控缺陷结构的方法与技术的发展- 缺陷调控在材料设计与合成中的应用- 多尺度缺陷结构与性能的关联研究- 可持续发展与环境友好型缺陷控制总结:缺陷化学作为一门跨学科的研究领域,对于理解材料性能与功能的关系具有重要意义。
通过深入理解缺陷结构的形成机制、缺陷对材料性能的影响以及缺陷调控的方法与应用,可以进一步推动材料科学与工程的发展,并为新型功能材料的设计与合成提供理论指导和技术支持。