数字微波通信的基本概念
- 格式:ppt
- 大小:2.28 MB
- 文档页数:51
微波通信简介微波通信是一个系统工程,安装、维护、调测涉及的知识面宽,需要扎实的基础知识和丰富的实际经验,在较短的时间内掌握有一定困难。
一、微波通信的基本概念:微波通信是现代化重要通信手段之一,与其他通信方式相比它具有以下优点:建设周期短;投资底;抗自然灾害性能强;不容易遭受人为性的破坏。
对信息传输可靠性比较高,跨越山河比较方便,它的传输方式具有独道的特点。
缺点:微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设。
此外由于微波直线传播的特性,在电波波束方向上,不能有高楼阻挡,因此城市规划部门要考虑城市空间微波通道的规划,使之不受高楼的阻隔而影响通信。
因此,世界许多国家尤其是比较发达的国家作为一种重要的通信手段予以大力的发展形成很大的通信网,在世界通信事业的发展中起过非常重要的作用。
1、微波通信的基本概念通常人们把通信使用什么频率,称为什么通信。
如把30,300千赫称长波用于通信,称长波通信,(电台)把300,3000千赫称为中波,用于广播,称中波广播,把3,30兆赫称短波用于通信称短波通信。
在电信领域通常把3000M,30000M频段的通信,称微波通信。
———————————————————————————————————————————————从另一个概念讲,电磁波有长波中波短波,而波长在1米至0.1毫米之间的电磁波,称为微波。
使用微波进行的通信被称为微波通信。
微波通信具有可用频带宽、通信容量大、传输损伤小、抗干扰能力强等特点,可用于点对点、一点对多点或广播等通信方式。
名词解释:频率 :在单位时间内物体完成全振动的次数叫频率,用f表示单位: HZ KHZ MHZ GHZ 1GHZ=1000MHZ1MHZ=1000KHZ波长波速波长,波速/频率频率,波速/波长电磁波的波速由介质决定的,真空中等于光速,空气中略低于光速,而波速=波长*频率,即波长越长频率越低,波长越短频率越高。
第一章数字微波通信概述本章主要内容:➢微波和微波通信的概念➢微波通信的常用频段➢数字微波通信的特点➢微波通信的分类➢微波通信的应用➢微波站的分类➢数字微波的中继方式➢数字微波通信系统的组成➢数字微波通信系统的技术指标重点:➢什么是微波和微波通信?➢微波通信的分类➢微波站的作用➢中继方式➢数字微波通信系统的组成1.1 数字微波通信的概念本节需要掌握的内容:➢微波通信的概念➢微波通信的频段➢微波的视距传播特性➢微波通信的分类一、微波与微波通信什么是微波?频率在300MHz到300GHz(波长为1m到1mm)范围内的电磁波。
什么是微波通信?利用微波作为载波来携带信息并通过电波空间进行传输的一种无线通信方式。
模拟微波通信和数字微波通信。
与其他通信系统一样,都由模拟微波通信发展为数字微波通信。
微波通信的起源和发展。
微波技术是第二次世界大战期间围绕着雷达的需要发展起来的,由于具有通信容量大而投资费用省、建设速度快、安装方便和相对成本低、抗灾能力强等优点而得到迅速的发展。
20世纪40年代到50年代产生了传输频带较宽,性能较稳定的模拟微波通信,成为长距离大容量地面干线无线传输的主要手段,其传输容量高达2700路,而后逐步进入中容量乃至大容量数字微波传输。
80年代中期以来,随着同步数字序列(SDH)在传输系统中的推广使用,数字微波通信进入了重要的发展时期。
目前,单波道传输速率可达300Mbit/s以上,为了进一步提高数字微波系统的频谱利用率,使用了交叉极化传输、无损伤切换、分集接收、高速多状态的自适应编码调制解调等技术,这些新技术的使用将进一步推动数字微波通信系统的发展。
因此,数字微波通信和光纤通信、卫星通信一起被称为现代通信传输的三大支柱。
我国第一条微波中继通信线路是60年代初开始建立的。
目前已试制成功2,4,6,8,11GHz等多个频段的各种容量的微波通信设备,并正在向数字化、智能化、综合化方向迅速发展。
二、微波通信的常用频段微波既是一个很高的频率,同时也是一个很宽的频段,在微波通信中所使用的频率范围一般在1GHz~40GHz,具体来讲,主要有以下几个频段:L波段 1.0——2.0GHz C波段 4.0——8.0GHzS波段 2.0——4.0GHz x波段8.0——12.4GHzKu波段12.4——18GHz K波段18——26.5GHz三、微波的传播特性微波除了具有电磁波的一般特性外,还具有一些自身的特性,主要有:1.视距传播特性微波的特点和光有些相似。
关于IP(PTN)数字微波ASB设备说明上海贝尔阿尔卡特是全系列通信产品供应商,和中国的多家运营商有着长期的友好合作,提供包括无线、交换及传输在内的多种产品。
不同于其他专业的微波小厂家,上海贝尔阿尔卡特可为用户提供端到端的解决方案,及完善的服务;ALCATEL-LUCENT拥有业界最全的微波产品线,涵盖所有频段和容量,可提供9400AWY PDH微波系列;9500MXC SDH微波系列;9600LSY长距SDH 微波系列,以及最新的基于Packet的9500MPR微波系列。
同时ALU是业界第一个推出真正基于Packet的微波专业厂家。
9500MPR基于Packet的微波特性如下:●机械结构室内室外型●频率范围 6 GHz 到38 GHz●调制模式 4 QAM /16 QAM /32 QAM /64 QAM /128 QAM /256QAM;支持自适应调节●接口10/100/1000 Ethernet, E1, ATM最多192 E1, 5个嵌入GE端口, 最多53 GE端口●吞吐量每个无线载波容量高达350 Mb/s2Gb/s 无线容量10 GB/s 交换容量●配置1+0, 1+1 HSB, 频率分集, 空间分集,节点配置,每子框多至6个无线方向●特性完全设备保护, 无任何故障点基于VLAN的内部包交叉连接电路仿真和ATM 伪线数据包业务同步分配LTE Ready (支持1Gbs E-Band radio, Synch-E)9500 MRP IP微波传输系统技术优势●多业务汇聚平台●业务识别●10Gbps的分组节点●根据业务需求的自适应调制●通用ODU- 9500MXC与9500MPR采用同样的ODU支持TDM至分组网络的平滑过渡,充分保护已有投资●内置分组交换节点- 基于自适应调制的分组传输- 所有业务会聚到Ethernet●高灵活性:- 模块化设计降低初期投资- 全IP节点优化网络运营●统一的网元管理系统- 可集成到光传输网络1350 OMS- 可集成到数据网络5620 SAM关于业界其他IP微波的一点说明业界一些微波厂家将带有以太接口的PDH微波或者SDH微波称作IP微波,其实这是在偷换概念。
现代通信技术辅导7第七章微波通信和卫星通信一、知识点∙微波通信。
∙卫星通信。
二、重点难点内容微波通信是在20 世纪40 年代至50 年代开始使用的无线电通信技术,经过多年的发展己经获得广泛的应用。
微波通信分为模拟微波通信和数字微波通信两类。
模拟微波通信早已发展成熟,并逐渐被数字微波通信所取代,数字微波通信已成为一种重要的传输手段,并与卫星通信,光纤通信一起作为当今三大传输手段。
卫星通信可看作微波通信的一个具体应用,所以把微波通信和卫星通信放在同一章中。
学习中注意比较卫星通信和地面微波通信的异同点。
(一)微波通信本节主要讲述微波通信的概念和特点,微波通信系统的基本组成,微波站的设备组成及微波的传输特性和抗衰落技术。
1. 微波通信的概念和特点(1)微波的频段划分无线电波波段的划分如表1 所示。
表(一)无线电波波段的划分整个电磁频谱,包含从电波到宇宙射线的各种波、光和射线的集合。
不同频率段落分别γ射线和宇宙命名为无线电波(3kHz~3000GHz)、红外线、可见光、紫外线、x 射线、射线。
微波是超高频率的无线电波。
由于这种电磁波的频率非常高,故微波又称为超高频电磁波。
电磁波的传播速度υ与其频率f 、波长又有下列固定关系:若微波是在真空中传播,则速度为微波频段的波长范围为lm~lmm,频率范围为300MHz~300GHz,可细分为特高频(UHF) 频段/分米波频段、超高频(SHF)频段/厘米波频段、极高频(EHF)频段/毫米波频段和至高频频段/亚毫米波频段。
实际工程中常用拉丁字母代表微波小段的名称,例如S , C , X 分别代表10厘米波段、5 厘米波段和3厘米波段;Ka,U,F分别代表8毫米波段和3毫米波段等等,详见表2。
表(二)微波频段的划分(2)微波中继通信的概念微波中继通信是利用微波作为载波并采用中继(接力)方式在地面上进行的无线电通信。
A ,B 两地间的远距离地面微波中继通信系统的中继示意如图1 所示。
微波信号的调制解调技术微波技术是现代通信技术的重要组成部分,具有广泛应用和重要作用。
微波通信中的信号调制和解调技术是微波通信系统中的关键技术之一,对于提高通信系统的可靠性和有效性具有重要意义。
本文将从微波信号的基本概念、调制原理、解调技术、应用等方面进行探讨。
一、微波信号的基本概念微波信号是指频率在300MHz至30GHz之间的无线电信号,波长为1mm至10mm之间。
微波信号的传输具有高速度、高可靠性和高带宽等优点,因此得到了广泛的应用。
微波信号是由基带信号和载波合成而成的,其调制和解调技术对于微波信号的传输具有至关重要的作用。
二、微波信号的调制原理微波信号的调制是将基带信号调制到高频载波上,使其具有在微波通信中传输的能力。
微波信号的调制方法有幅度、频率和相位调制三种。
其中,幅度调制是通过改变高频载波的幅度来表示信号;频率调制是通过改变高频载波的频率来表示信号;相位调制是通过改变高频载波的相位来表示信号。
不同的调制方法适用于不同的通信需求,可以根据具体的情况进行选择。
三、微波信号的解调技术微波信号的解调是将高频载波上调制的信号恢复回来,以便于信号的处理和理解。
常见的微波信号解调技术有包络检波、相干解调和同步检波三种。
其中,包络检波是一种简单的解调方式,通常用于幅度调制的信号;相干解调是一种高效的解调方式,用于频率和相位调制的信号;同步检波则是一种广泛应用的解调方式,通常用于数字通信中的调制解调。
四、微波信号调制解调技术的应用微波信号的调制解调技术在现代通信技术中应用广泛。
微波通信系统、雷达系统、干扰对抗系统等都需要使用到微波信号的调制解调技术。
在军事领域中,微波通信还具有高速率、抗干扰性高、无线传输隐蔽等优点,因此在军事领域中得到了广泛的应用。
总之,微波信号的调制解调技术是现代通信技术中的重要组成部分,对于提高通信系统的可靠性和有效性具有重要意义。
通过深入了解和探索,可以不断优化微波信号调制解调技术,为人们在通信、导航、遥感等方面提供更加准确、高效的信息传输服务。
WEIBO TONGXIN JISHU微波通信技术(microwave communication techniques) 微波通信是指利用波长为1米~0.1毫米(频率为0.3~3000吉赫)的无线电波进行的通信。
包括微波视距接力通信、卫星通信、散射通信、一点多址通信、毫米波通信及波导通信等。
微波通信特点是:频率范围宽,通信容量大,传播相对较稳定,通信质量高,采用高增益天线时可实现强方向性通信,抗干扰能力强,可实施点对点、一点对多点或广播等形式的通信联络。
它是现代通信网的主要传输方式之一,也是空间通信的主要方式。
微波通信在军事战略通信和战术中占有显著的地位。
微波按照波长可分为分米波、厘米波、毫米波和丝米波,其中部分波段用一些常用代号来表示(见表)。
L以下频段适用于移动通信。
S至Ku波段适用于以地球表面为基地的通信,其中,C波段的应用最为普遍。
60GHz的电波在大气中衰减较大,适用于近距离的保密通信。
94GHz的电波在大气中衰减很小,适合地球站与空间站之间的远距离通信。
系统组成及工作原理微波通信系统由发信机、收信机、多路复用设备、用户设备和天馈线等组成(见图1)。
其中发信机由调制器、上变频器、高功率放大器组成;收信机由低噪声放大器、下变频器、解调器组成;天馈线设备由馈线、双工器及天线组成。
图1微波通信系统组成其工作原理是:用户设备把各种要传输的信息变换成基带信号或把基带信号变换成原信息。
多路复用设备可使多个用户的信号共用一个传输信道。
调制器把基带信号调制到中频(频率一般为数十至数百兆赫)上,也可直接调制到射频上。
解调器的功能与调制器相反。
上、下变频器实现中频信号与微波信号之间的频率变换。
高功率放大器把发射信号提高到足够的电平,以满足在信道中传输的需要。
百瓦以下的设备中,功率放大器采用固态微波功放;当射频输出电平在百瓦以上直至数十千瓦时,通常采用行波管或速调管放大器。
低噪声放大器用于提高接收机的灵敏度,主要采用微波低噪声场效应管放大器。
微波通信| [<<][>>]微波通信(microwave communication)利用微波作为载波的一种重要的无线通信方式。
微波波长一般为1m至1mm(频率为300MHz~300GHz)。
微波既是一个很高的频率,同时也是一个很宽的波段。
目前研究微波通信所用的频段主要是L 波段(1.0~2.0GHz)、S波段(2.0~4.0GHz)、C 波段(4.0~8.0GHz)、X波段(8.0~12.4GHz)、Ku波段(12~18GHz)、K波段(18~27GHz)以及Ka 波段(27~40GHz)。
特点微被通信是微波和通信相结合的一门学科,是通信科学的一个分支,工作于微波波段。
微波波段具有很宽的频带,包括分米波、厘米波和毫米波,是现有的长波、中波和短波波段总和的约1000倍。
频带宽意味着信息容量大,这样宽的频带可以建立大容量的语言、文字、数据和图像等信息的传输线路。
由于微波频率高,它不受天电干扰和工业干扰以太阳黑子变化的影响。
因此,微波信道传输质量较高,通信稳定可靠。
由于微波通信与其他通信方式相似,同样具有信息采集、处理、变换、发送、传输,直至接收、检测、反变换、加工处理,并进行复接和交换等过程。
微波通信与其他波长较长的无线通信以及有线通信相比,能较方便地克服地形带来的障碍,有较大的灵活性,且建设投资和维护费用低,施工也较快。
组成一般微波通信系统是由天馈系统、发信机、收信机、多线复用设备以及用户终端设备等组成,如下图所示。
微波通信系统图天馈系统是用来发射、接收或转接微波信号的设备,由馈线、双工器及天线组成。
馈线主要用波导或同轴电缆。
微波天线的基本形式有喇叭天线、抛物面天线、喇叭抛物面天线和潜望镜天线等。
目前,常用的一种具有双反射器的抛物面天线,称做卡塞格伦天线。
发信机用于将基带信号转变成大功率的射频信号,主要由调制器、中频放大器、上变频器和射频功率放大器组成。
收信机用于将基带信号的射频信号转变成基带信号,主要由低噪声放大器、下变频器、中频放大器及解调器组成。
填空:1、分集技术是指通过两条或两条以上的途径传输同一信息,以减轻衰落的技术措施。
2、微波中继通信最基本的特点是:微波、多路、接力。
3、微波频率波段频率为300M~300GHZ,波长为1mm~1m范围的电磁波。
4、SDH三大核心特点是:同步复用、标准的光接口、强大的网络管理能力。
5、基带传输系统频带利用率的最大值,也就是说任何基带传输系统在单位频带最多每秒钟传输2个码元,不管二元还是多元码。
6、数字微波中继通信线路是由终端站、中继站、枢纽站、分路站等组成。
7、在传输线路上以1000bit/s的速率传输数据,经测试1小时内共有50bit的误码,则该系统的误比特率为50X100%1000X3600选择:当电波的电场强度方向垂直于地面时,此电波就为垂直极性波。
在SDH微波中继通信系统中,没有上下话路功能的站是中继站。
两个以上的电台使用同一频率而产生的干扰就是同频干扰。
在天线通信系统中,很多都采用两个接收天线,以达到空间分极效果。
厘米波频率范围是3G~30GHZ地球表面传播的无线电波称为散射波。
判断:无线通信可以传送电报电话传真图像数据以及广播和电视节目等通信业务。
正确无线电波的传播不受气候和环宽的影响。
错基本同步传输模块是STU-1,其速率为155.520µb/s,STU-N是将STM-1同步复用并插入一些字节实现的。
错由于大气折射作用实际的电波不是按直线传播,是按曲线传播的。
正确QAM是一种调幅调制模式,不是调相调制模式。
错(既调幅又调相)简答:1、SDH结构图及各部位作用1)信息净负荷(payload)是存放各种信息的负载。
2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护字节。
3)管理单元指针(AU-PTR)AU-PTR是用来指示信息净负荷的第一个字节的准确位置,以便接收端能进行正确分接。
各种信号装入SDH帧结构的净负荷区需经过三个步骤:映射、定位、复用。
微波通信的主要技术与应用摘要:微波是一种具有极高频率(通常为300 MHz—300GHz),波长很短,通常为1m—1mm的电磁波。
在微波频段,由于频率很高,电波的绕射能力弱,所以信号的传输主要是利用微波在视线距离内的直线传播,又称视距传播。
微波通信是现代通信传输的重要手段之一,在微波接力通信、移动通信、广播电视通信、卫星通信等一系列领域得到了广泛的发展。
关键词:微波通信;数字微波通信;相关技术引言微波是通信的一种传输方式,微波与短波相比,虽然具有传播较稳定,受外界干扰小等优点,但在电波的传播过程中,却难免受到地形、地物和气候状况的影响而引起反射、折射、散射和吸收现象,产生传播衰落和传播失真。
数字微波通信技术是基于时分复用技术的一种多路数字通信体制,其应用是非常广泛的,尤其是伴随着科学技术的飞速发展,数字微波通信技术的发展及应用前景正在变得越来越广阔。
数字微波通信技术就是通过微波来实现对于数字信息的传送,与此同时,借助于电波空间,能够对于各种各样的相互之间不存在任何关联的信息进行传输,并在此基础上实现再生中继,这是一种现代化的发展非常快速的通信方式。
一微波的发展微波的发展是与无线通信的发展分不开的。
无线电波可以按照频率或波长来分类和命名。
由于各波段的传播特性各异, 因此可以用于不同的通信系统微波通信是20世纪50年代的产物。
由于其通信的容量大、建设速度快、抗灾能力强等优点而取得迅速的发展。
20世纪40年代到50年代产生了传输频带较宽、性能较稳定的微波通信, 成为长距离、大容量地面干线无线传输的主要手段,并可同时传输高质量的彩色电视,而后逐步进入中容量乃至大容量数字微波传输。
微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通信手段。
最初的微波通信系统都是模拟制式的,它与当时的同轴电缆载波传输系统同为通信网长途传输干线的重要传输手段,70年代起研制出了中小容量的数字微波通信系统,这是通信技术由模拟向数字发展的必然结果。
数字微波通信原理
数字微波通信是一种利用微波频段进行数据传输的通信技术。
它通过将数据进行数字化处理,然后利用微波信号进行传输,实现远距离高速数据传输。
数字微波通信的原理主要包括数据数字化、调制解调和微波传输三个方面。
首先,数据数字化是指将传输的数据进行数字化处理,将其转换为数字信号。
这样可以减小信号的失真和干扰,提高数据的准确性和可靠性。
数字化处理通常包括采样、量化和编码等步骤。
其次,调制解调是指将数字信号转换为适合微波传输的调制信号。
调制通常采用调幅、调频或调相等技术,通过改变信号的幅度、频率或相位来传输数据。
解调则是将接收到的微波信号转换为数字信号,还原出原始数据。
最后,微波传输是指利用微波信号进行数据传输。
微波信号具有高频率、短波长、传输距离远等特点,可以实现高速传输和长距离传输。
传输过程中需要考虑信号的传播损耗、多径效应和干扰等问题,以保证数据的可靠传输。
总的来说,数字微波通信利用数字化处理、调制解调和微波传输等技术,可以实现远距离高速数据传输。
在现代通信领域中得到了广泛的应用,例如无线通信、卫星通信和雷达等领域。