第一章数字图像处理的基本概念
- 格式:ppt
- 大小:520.00 KB
- 文档页数:42
数字图像处理课程教学大纲课程简介数字图像处理是计算机科学与技术领域的一门重要课程,它研究如何使用计算机和算法来处理和分析数字图像。
本课程旨在介绍数字图像处理的基本原理、方法和应用,并培养学生的图像处理能力和技巧。
课程目标本课程的主要目标是让学生掌握数字图像处理的基本理论和方法,具备图像处理算法设计、图像增强、图像分割、图像压缩等技术的基本能力。
同时,通过实践项目的实施,培养学生的问题解决能力和团队合作能力。
课程安排第一周:课程介绍与基本概念•课程介绍•数字图像的基本概念与特点•数字图像处理的基本步骤第二周:图像预处理•图像采集与获取•图像灰度变换•图像噪声模型与去噪方法第三周:图像增强•直方图均衡化•空域滤波与频域滤波•边缘增强与锐化第四周:图像压缩•图像压缩的基本概念与方法•离散余弦变换(DCT)与JPEG压缩算法•小波变换与JPEG2000压缩算法第五周:图像分割与边缘检测•阈值分割•基于边缘的图像分割•基于区域的图像分割第六周:实践项目1 - 图像识别•项目需求分析与设计•图像特征提取与选择•分类器的训练与测试第七周:实践项目2 - 图像恢复•项目需求分析与设计•图像模型与图像去模糊•图像去噪与图像修复第八周:实践项目3 - 图像处理工具开发•项目需求分析与设计•图像处理算法的实现•图形界面设计与用户交互评估方式•平时成绩:30%•作业与实验报告:30%•期末考试:40%参考教材•Rafael C. Gonzalez, Richard E. Woods. 数字图像处理(第三版). 清华大学出版社,2018.•Richard Szeliski. 计算机视觉:算法与应用. 电子工业出版社,2014.参考资源•MATLAB图像处理工具箱文档•OpenCV计算机视觉库官方文档以上是《数字图像处理》课程的教学大纲,希望通过本门课程的学习,能够让学生对数字图像处理有一个全面的了解,并具备实践应用的能力。
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
数字图像处理概述归纳总结数字图像处理是指将图像的像素信息进行数字化并对其进行处理的一门技术。
它广泛应用于计算机视觉、医学图像处理、工业检测等领域。
本文将对数字图像处理的基本概念、常见算法以及未来发展趋势进行归纳总结。
一、数字图像处理的基本概念数字图像由像素阵列组成,每个像素存储着图像的亮度信息。
在数字图像处理中,常用的表示方法是灰度图像和彩色图像。
灰度图像是指每个像素只包含一个亮度值,通常以8位表示,取值范围为0~255。
而彩色图像则包含了红、绿、蓝三个通道的亮度值,通常以24位表示,每个通道的取值范围也为0~255。
数字图像处理的主要任务包括图像增强、图像恢复、图像分割、图像压缩等。
二、数字图像处理的常见算法1. 图像增强算法图像增强旨在改善图像的视觉品质,常用的算法包括直方图均衡化、灰度拉伸、滤波等。
直方图均衡化可以通过调整图像的亮度分布来增强图像的对比度,从而使图像细节更加清晰可见。
2. 图像恢复算法图像恢复用于去除图像中的噪声,常见的算法有均值滤波、中值滤波、小波去噪等。
其中,中值滤波可以有效地去除椒盐噪声,而小波去噪能够在保持图像细节的同时消除高频噪声。
3. 图像分割算法图像分割旨在将图像划分为不同的区域,常用的算法有阈值分割、边缘检测、区域生长等。
阈值分割根据像素灰度值与设定阈值的大小关系将图像分为前景和背景,而边缘检测则可用于检测图像中的边界。
4. 图像压缩算法图像压缩是指通过减少图像的存储空间来实现数据压缩,常见的算法有无损压缩和有损压缩。
其中,无损压缩保证了图像的质量不受损失,而有损压缩通过舍弃图像中的冗余信息来实现更高的压缩比率。
三、数字图像处理的未来发展趋势1. 深度学习在图像处理中的应用随着深度学习的发展,其在数字图像处理中的应用越来越广泛。
通过深度学习算法,可以实现更精确的图像分类、目标检测等任务,从而提升图像处理的效果和准确性。
2. 多模态图像处理多模态图像处理是指处理多个不同模态的图像,比如红外图像、可见光图像等。
遥感数字图像处理基础知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章数字图像处理基础1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为若干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的基本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规则网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差 3颜色空间模型:RGB模型CMYK模型 HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色 1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规则映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。