小学六年级数学计算能力竞赛试题(含答案)
- 格式:docx
- 大小:134.77 KB
- 文档页数:6
六年级下册数学竞赛题一、数与代数部分。
1. 计算:1(1)/(2)+2(1)/(6)+3(1)/(12)+4(1)/(20)+5(1)/(30)- 解析:- 首先将带分数拆分为整数部分和分数部分。
- 原式=(1 + 2+3 + 4+5)+((1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30))- 整数部分的和为:1+2 + 3+4+5=((1 + 5)×5)/(2)=15。
- 分数部分:(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)- (1)/(2)=1-(1)/(2),(1)/(6)=(1)/(2)-(1)/(3),(1)/(12)=(1)/(3)-(1)/(4),(1)/(20)=(1)/(4)-(1)/(5),(1)/(30)=(1)/(5)-(1)/(6)。
- 分数部分的和为:1-(1)/(2)+(1)/(2)-(1)/(3)+(1)/(3)-(1)/(4)+(1)/(4)-(1)/(5)+(1)/(5)-(1)/(6)=1-(1)/(6)=(5)/(6)。
- 所以原式=15+(5)/(6)=15(5)/(6)。
2. 一个数的(2)/(3)比它的(1)/(2)多10,求这个数。
- 解析:- 设这个数为x。
- 根据题意可列方程:(2)/(3)x-(1)/(2)x = 10。
- 通分得到:(4)/(6)x-(3)/(6)x=10,即(1)/(6)x = 10。
- 解得x = 60。
3. 化简比:1.2:(3)/(4)- 解析:- 把1.2化为分数为(6)/(5)。
- 则(6)/(5):(3)/(4)=(6)/(5)÷(3)/(4)=(6)/(5)×(4)/(3)=(8)/(5)=8:5。
4. 解方程:(3x - 1)/(4)-1=(5x - 7)/(6)- 解析:- 首先去分母,两边同时乘以12得:3(3x - 1)-12 = 2(5x - 7)。
小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程共15分,每小题5分二、填空题共40分,每小题5分1.在下面的“□”中填上合适的运算符号,使等式成立:1□9□9□2×1□9□9□2×19□9□2=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边;那么,这个等腰梯形的周长是__厘米;3.一排长椅共有90个座位,其中一些座位已经有人就座了;这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻;原来至少有__人已经就座;4.用某自然数a去除1992,得到商是46,余数是r;a=__,r=__;5.“重阳节”那天,延龄茶社来了25位老人品茶;他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000;其中年龄最大的老人今年____岁;6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本;那么,至少____个学生中一定有两人所借的图书属于同一种;7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分;那么得分最少的选手至少得____分,至多得____分;每位选手的得分都是整数8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管;那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少;三、解答下面的应用题要写出列式解答过程;列式时,可以分步列式,可以列综合算式,也可以列方程共20分,每小题5分1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米;现由甲工程队先修3天;余下的路段由甲、乙两队合修,正好花6天时间修完;问:甲、乙两个工程队每天各修路多少米2.一个人从县城骑车去乡办厂;他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米;又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程; 3.一个长方体的宽和高相等,并且都等于长的一半如图12;将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米;求这个大长方体的体积;4.某装订车间的三个工人要将一批书打包后送往邮局要求每个包内所多35本;第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包;这批书共有多少本四、问答题共35分1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输;问:保证一定获胜的对策是什么5分小学生数学报杯”少年数学文化传播活动六年级数学思维能力竞赛试卷时间:9:00~11:00总分120分一、填空题;每题5分,共60分1.计算:1/3×5+1/5×7+7×9++1/2001×2003=;2.计算:4×5+5×6+6×7++25×26+26×27=;3.已知a、b是两个自然数,并且a2=2b;如果b不超过100,那么a的最大值是;4.一个正方形的一条对角线长20厘米,这个正方形的面积是平方米;5.1111×9999的积里含有个奇数; 2006个l2006个96.从任意n个不同的整数中,一定可以找到两个数,它们的差是8的倍数,那么n的最小值是; 7.小明和爸爸同去靶场打靶,他们约定:每人各射击6次,每次打中靶的话,再追加射击2次;这样小明共射击了18次,小明没有射中靶的共有次;8.如图1,5×5的正方形内有25个方格,至少要涂黑个方格,才能使其中每一个3×3的正方形内正好都有4个黑格;9.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数对应情况如下表:颜色红黄蓝白紫绿l花的朵数l23456现将上述大小相等,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体如图2,从左往右第二个立方体的下底面有朵花;10.如图3,正方形ABCD的边长是20厘米,E、F分别是AB和BC的中点,那么,四边形BEGF 的面积是平方厘米;备课吧免费下载备课吧——课件,试卷,教案,图片,论文共30万多个资料供您免费下载11.将数字2,3,4,5组成没有重复数字的四位数,则所有这样的四位数的和是;12.将1~16这16个数分别填人图4中的16个小圆圈内,使每个正六边形顶点处6个数的和相等,那么,这个和最大是,最小是;二、应用题;每题9分,共18分1.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出,按照“先进后出”的原则;如图5,堆栈1的2个连续存储单元已依次存人数据b,a,取出数据的顺序是a,b;堆栈2的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e;现在要从这两个堆栈中取出这5个数据每次取出1个数据,那么不同顺序的取法共有多少种2.如图6,用一块边长是18厘米的正方形硬纸片,在四个角上截去4个相同的小正方形,然后把四边折合起来,做成一个没有盖的长方体纸盒;请你试算一下,截去的4个相同的小正方形的边长是多少厘米时,长方体纸盒容积最大最大容积是多少图6三、操作题;1.有一叠300张卡片,从上到下依次编号为1~300,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张原来的第三张拿掉,把下一张卡片放在这一叠卡片的最下面依次重复这样做,直到手中剩下一张卡片;那么剩下的这张卡片是原来300张卡片的第几张2、如图,方格纸的每一个小方格是边长为1的小正方形,A、B两点在小方格的顶点上;现在要在小方格的顶点上缺点一点C,连接AB、AC和BC后,三角形ABC的面积为2;请你找出5个符合条件的C点;在图中标出来四、问答题;1.甲、乙两地相距100米,大刚和小明两人同时从甲、乙两地出发,相向而行,分别到达两地后立即返回,不断在两地间往返行走;大刚每秒行米,小明每秒行米,在30分钟内两人相遇多少次2.图8是由10~10的小方格组成的大正方形,能否在每个小正方形中分别填上l,2,3这三个数之一,使得大正方形的每行、每列及对角线上的各个数的和互不相同为什么3.张大妈最近在医院动了一次手术,花去医药费25000元;张大妈参加了农村大病医疗保险,医药费具体报销办法是:全年累计医药费总额超过4000元4000元以下自理,凡4001元~10000元的部分报销50%,10001元~20000元的部分报销65%,20001元以上部分报销80%;参保对象属“三老”优抚对象的,其报销标准比普通5%;参保对象每年每人报销的最高金额不超过16000元;请问:张大妈作为“三老”优抚对象,实际需要支付的医药费是多少小学数学教师解题能力竞赛试题整理2010-4-3ByHandtalk填空部分:1、在1—100的自然数中,的约数个数最多;2、一个质数的3倍与另一个质数的2倍之和为100,这两个质数之和是;3、在1~600这600个自然数中,能被3或5整除的数有个;4、有42个苹果34个梨,平均分给若干人,结果多出4个梨,少3个苹果,则最多可以分给个人;5、甲、乙两人同时从A点背向出发沿400米环行跑道行走,甲每分钟走80米,乙每分钟走50米,这二人最少用分钟再在A点相遇;6、11时15分,时针和分针所夹的钝角是度;7、一个涂满颜色的正方体,每面等距离切若干刀后,切成若干小正方体块,其中两面涂色的有60块,那么一面涂色的有块;8、六一儿童节游艺活动中,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分摸时看不到颜色,结果发现总有两个人取的球相同,由此可知,参加取球的至少有人;9、一批机器零件,甲队独做需11小时完成,乙队独做需13小时完成,现在甲、乙两队合做,由于两人合作时相互有些干扰,每小时两队共少做28个,结果用了小时才完成;这批零件共有个;10、李然从常熟虞山下的言子墓以每分12米的速度跑上祖师山,然后以每分24米的速度原路返回,他往返平均每分行米;11、常熟市乒乓比赛中,共有32位选手参加比赛,如果采用循环赛,一共要进行场比赛;如果采用淘汰赛,共要进行场比赛;12、甲、乙、丙三人各拿出同样多的钱合买一种英语本,买回后甲和乙都比丙多要6本,因此,甲、乙分别给丙元钱,每本英语本元;13、一个表面都涂上红色的正方体,最少要切刀,才能得到100个各面都不是红色的正方体;14、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果,每千克售价元;最次的是三等苹果每千克售价元;这三种苹果的数量之比为2:3:1;若将这三种苹果混在一起出售,每千克定价元比较适宜;15、在一次晚会上男宾与每一个人握手但他的妻子除外,女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手次;16、百米赛跑,假定各自的速度不变,甲比乙早到5米,甲比丙早到10米;那么乙比丙早到米;17、一件工作,甲独干8天后,乙又独干13天,还剩下这件工作的1/6;已知甲乙合干这件工作要12天,甲单独完成这件工作要天;18、小华有2枚5分硬币,5枚2分硬币,10枚1分硬币,他要取出1角钱,共有种不同的取法;19、一个正方体,它的表面积是20平方厘米,现在把它切割成8个完全相同的小正方体;这些小正方体的表面积之和是;20、小明从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路;小明上学两条路所用的时间一样,已知下坡的速度是平路的3/2,那么上坡的速度是平路速度的;21、9点整时,时针与分针组成的角是角,此后时针与分针再成这种角是9时分;22、五1班全班45人选中队长,每人投一票,现已统计到李辰已得票16票,王莹得票18票,王莹至少再得票就能保证当选得票多者当选23、自然数A的所有约数两两求和,又得到若干个自然数;在这些和中,最小的是4,最大的是500,那么A=24、甲、乙、丙三个电台,分别有4、4、3人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话次;;解决问题部分:1、六1班男、女人数之比为5:3;体育课上,老师按每3个男生、2个女生分成一组进行游戏;这样,当女生分完时男生还剩4人;求这个班女生一共有多少人2、常熟市举行小学生“百科知识竞赛”,大约有381~450名学生参加,测试结果是全体学生的平均分是76分,男生平均分是79分,女生平均分是71分;求参加测试的男生和女生至少各有多少人;3、中国古代算书张丘建算经中有个“百鸡问题”:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;凡百钱,买鸡百只;问鸡翁、母、雏各几何4、在AB一段公路上,甲骑自行车从A往B,乙骑摩托车从B往A,他们同时出发,经过80分钟两人相遇,乙到A后马上折回,在第一次相遇后40分钟追上甲,乙到B地后马上返回,再过多少时间甲与乙再相遇5、两辆汽车从甲乙两地同时相向而行,在距乙地95千米处相遇,相遇后两车又继续前进,它们各自到达甲乙后又立即返回,两车在距甲地25千米处相遇;假设两车的速度不变,甲乙两地的距离是多少千米6、百货公司委托运输公司运送1000只花瓶,双方商定每只的运费为元,如打破一只,这只花瓶不但不计运费,还要赔偿元;结果运输公司共得到了1456元运费;问运输过程中打破了几只花瓶7、用长72米的篱笆靠墙围成一个长方形;长和宽各多少时围成的面积最大面积是多少8、甲乙丙三人合作完成一件工程,共得报酬1800元;三人完成这项工作的情况是:甲乙合作8天完成工程的13;接着乙丙又合作2天,完成余下的14;以后三人合作5天完成了这项工程;按劳付酬,各人应得报酬多少元9、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的倍,甲车到达途中C站的时刻为凌晨5:00,乙车到达途中C站的时刻为同一天的下午3:00,问这两车相遇是什么时刻10、蓄水池有甲、丙两条进水管,和乙、丁两条排水管;要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时;现在池内有61池水,如果按甲、乙、丙、丁、甲、乙的顺序,轮流各开一小时,多少时间后水开始溢出水池11、某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度8角收费;某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电12、小轿车、面包车和大客车的速度分别为60千米/小时、48千米/小时和42千米/小时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车;甲、乙两地相距多远13、制作一个玩具熊,甲需5分钟,乙需6分钟,丙需分钟;现在将制作555个玩具熊的任务交给他们,要求他们三人在相同时间内完成任务,那么每人各应加工多少个14、用丰商场从批发部购进100副手套和80个帽子,共花去2800元;商场零售时,每副手套加价5%,每个帽子加价10%,这样卖出后共收入3020元,原来1副手套和1个帽子一共多少元15、某风景区门票的票价如下:50人以下每张12元,51-100人每张10元,100人以上每张8元;现在有甲、乙两个旅游团,若分开购票,两个旅游团总共需门票费1142元;若两个旅游团合在一起作为一个团体购票,总共只需付门票864元;这两个旅游团各有多少人16、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样的一段后,发现长纸带剩下的长度是短纸带剩下的长度的2倍;请问:剪下的一段有多长17、小星有48块巧克力,小强有36块巧克力;如果每次小星给小强8块,同时小强又给小星4块,经过多少次这样的交换后,小强的块数是小星的2倍18、袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了3次,袋中还有6个球;请问:袋中原有多少个球19、有一根长180厘米的绳子,从一端开始,每3厘米作一个记号,每4厘米也作一记号;然后将标有记号的地方剪断,绳子共被剪成多少段20、某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有多少人21、学校一次选拔考试,参加的男生与女生之比是4:3,结果录取91人,其中男女生人数之比是8:5,在未被录取的学生中,男女生人数之比是3:4,那么,参加这次考试共有多少名学生22、甲、乙两人各做一项工程;如果全是晴天,甲需12天,乙需15天完成;雨天甲的工作效率比晴天低40%,乙降低10%;两人同时开工,恰好同时完成;问工作中有多少个雨天23、甲、乙两车往返于相距270千米的A、B两地,甲车先从A地出发,12分钟后,乙车也从A地出发,并在距A地90千米的C地追上甲车;乙车到B地后立即按原速返回,甲车到B地休息5分钟后加快速度,向A地返回,在C地又将乙车追上;最后甲车比乙车早几分钟到达A地24、甲乙两人分别从相距130千米的AB两地同时沿笔直的公路乘车相向而行,各自前往B 地、A地;甲每小时行28千米,乙每小时行32千米;甲乙各有一个对讲机,当他们之间的距离不大于10千米时,两人可用对讲机联络;问:1两人出发后多久可以用对讲机联络2他们能用对讲机联络多长时间25、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨元;当超过4吨时,超过部分每吨3元;某月甲、乙两户用水量之比为5:3,共缴水费元;问甲、乙两户各应缴水费多少元26、某服装公司第一季度销售一批服装,单件成本为400元,售价510元;卖完后公司的有关部门作市场调查,决定第二季度降低成本,同时把售价降低4%,结果第二季度销量增加了10%,总利润提高了5%;问第二季度的每件成本是多少元27、某火车站的检票口,在检票开始前已经有一些人排队等待检票;检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站;如果只有一个检票口,检票开始8分钟就没有人排队检票,如果有两个检票口,检票开始后分钟就没有人排队检票28、一列快车和一列慢车从A、B两地同时相向而行,6小时相遇,相遇后两车又继续行驶2小时,这时快车距B地还差全程的20%,慢车共行了400千米,A、B两地之间的路程共多少千米29、某班学习小组有12人,一次数学测验只有10人参加,平均分是分;后来,缺考的李明和张红进行了补考,李明补考成绩比原10人平均分少分,而张红的补考成绩却比12人的平均分多分,张红考了多少分30、火车站的检票口前已经有一些人排队等候检票进站,假如每分钟前来检票口排队检票的人数一定,那么当开一个检票口时,需要20分钟可以检完;当开两个检票口时,8分钟就可以无人排队;如果开三个检票口时,需要多少分钟可以检完教师解题能力竞赛试题参考答案个人整理,仅供参考填空部分:1、60;约数中尽量含有2、3、5,由此可以判断出可能是30、60、90其中的一个;2、49;3a+2b=100,由于2b是偶数,所以3a也是偶数,即a是偶数,又是质数,所以a=2,从而求出b=47,a+b=493、280;600÷3=200;600÷5=120;600÷15=40,200+120-40=2804、15;34-4=30;42+3=45;30和45的最大公约数是155、40;甲、乙跑一圈分别是5分钟和8分钟,5和8的最小公倍数是406、;30×4-30/4=7、150;60÷12=5,5×5×6=1508、16;摸两个球,有5+4+3+2+1=15种情况,所以要16人才能保证至少有2人相同;9、3575;28÷24/143-4/25;24/143表示甲乙工作效率和,4/25表示甲乙相互干扰后的工作效率和;10、16;设路程为1,2/1/12+1/24=1611、496和31;单循环赛:1+2+3+31=496;淘汰赛:比赛一场淘汰1人,决出冠军意味着要淘汰掉31人,所以比赛31场;12、元;+÷6+6÷3=13、17;首先要切6刀把表皮切掉,底面切成25个小正方形:4+4刀,然后竖着再切3刀,就是100个了;也就是6+8+3=1714、;×2+×3+×1÷2+3+1=15、84;无限制两人握手16×15÷2=120次,去掉女士相互握手8×7÷2=28次,去掉夫妻握手8次,最后求出:120-38-8=8416、100/19米;甲跑100米,乙跑95米,丙跑90米,他们跑的路程成正比,95:90=100:X,X=1800/19;100-1800/19=100/1917、20;1/12-5/6-1/12×8÷13-818、10种;用列举法得出;19、40;大正方形每个面分成4块,所以表面积为4×6=24块,当拆开后,表面积为6×8块,面积增加1倍;20、;因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间==1/3,上坡时间=1-1/3=2/3,上坡速度=1/2/2/3=3/4=21、直、360/11;分针每小时可以追上时针330o,追上180o需要180÷330时=360/11分22、5;王莹得到23票超过半数就能当选,只要再得23-18=5票;23、375;4=3+1;500÷4×3=37524、40次;4×4+4×3+4×3=40次25、0;因为1—99有189个数字;100—699有300×解决问题部分1、思路点拨:男女学生分的组数相同;设男女生都分成了a组,列方程得:3a+4/2a=5/3;a=12;男生人数:3a+4=40;女生人数:2a=24;2、思路点拨:求出男女生人数的比例;设男生a人,女生b人,列方程得:79a+71b/a+b=76,整理后得3a=5b,即a:b=5:3,也就是总人数a+b是8的倍数;381÷8=475,所以总人数至少是48×8=388人,从而求出男生人数为388×5/8=240人;女生人数为388-240=144人;3、思路点拨:“百鸡问题”可以通过列出不定方程解出其中两种鸡的数量关系,再利用鸡的取值范围和数的整除性解出得数;设:鸡翁、母、雏各有a、b、c只;列方程得:a+b+c=100①;5a+3b+1/3c=100②,将②两边乘3得15a+9b+c=300③,用③-①得14a+8b=200,整理后得b=25-7a/4④;可以看出a必定是4的倍数,并且a小于15,所以a可能是4、8、12分别代入④,最终得出3种不同结果;即鸡翁、鸡母、鸡雏的只数分别是12、4、84或8、11、81或4、18、78;4、思路点拨:⑴可以先求出甲乙的速度比;⑵可以从整体上考虑:三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法一:假设甲的速度是X,乙的速度是Y;那么80X+80Y=AB,考虑到80分钟第一次相遇后40分钟又相遇了,说明甲还没有走道B点就被乙追到了,所以120Y-120X=AB;80X+80Y=120Y-120X;5X=Y;乙的速度是甲的5倍,这样可以推理到第三次相遇时,甲还是没有走到B点,再假设第三次相遇的时间为m,那么mX+mY=3AB,套用80X+80Y=AB,m=240分钟;最后用三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法二:不需要求出甲乙的速度比;甲、乙共走一个全程AB需80分钟,整体上考虑,从同时出发到最后第二次相遇,甲、乙共走了三个全程AB,总时间是80×3=240分钟;三个全程时间240分钟-第一次相遇时间80分钟一追上时间40分钟=追上后第二次相遇时间120分钟;方法三:设AB一段公路为x,乙骑摩托车在第一次相遇后40分钟追上甲,说明行进速度是自行车5倍这句话想要理解的话需要花费一点时间的;从第一次相遇后40分钟甲实际仅仅走了摩托车8分钟的路程;也就是距B地还有80-8=72分钟的摩托车路程,也就是乙骑摩托车还需要72分钟才到b地能返回;此时甲骑自行车距b地还有72-72/5=分钟的路程;到再相遇即分钟/=48分钟+72分钟=120分钟;其中表示1+1/55、思路点拨:当甲乙两车第二次相遇时,两车一共行驶的距离正好是甲乙全程距离的3倍;首先要作图分析图略第一次相遇,乙行驶了95千米,第二次相遇,由于是双方一共行驶了甲乙全程距离的3倍,所以乙一共行驶了95×3=285千米;又因为第二次相遇时,乙行驶了一个甲乙的全程再加上25米,所以甲乙两地的距离等于95×3-25=260千米;6、思路点拨:可以列出二元一次方程解出或者采用假设法;假设法:假设所有的花瓶都没有打破,应该得到的运费是1500元,实际只得了1456元运费,少得了44元,这是因为把打破的花瓶看出成了没有打碎的花瓶;没有打破得元运费,打破了要陪元,两者相差+=11元,也就是每打破一个花瓶,一来一去要少得11元的运费;44÷11=4个,所以打破了4个;7、思路点拨:要注意这道题是靠墙围的长方形,最大面积不是正方形;其实靠墙围出的最大面积的长方形正好是半个大正方形假设围墙的另一面也有半个大正方形,也就是长是宽的2倍; 方法一:设长方形宽a米,长72-2a,面积是72-2aa=2a36-a,当a=36-a时,面积最大,也就是a=18;长方形的长36米,宽18米,面积是648平方米;方法二:长方形的长是宽的2倍,把宽看成1倍,长就是2倍;72÷1+1+2=18,18×2=368、思路点拨:分别求出甲乙丙的工作效率,然后根据甲乙丙工作占的比例求出各自的报酬;根据“甲乙合作8天完成工程的1/3”求出甲乙合作完成需要24天;根据“乙丙又合作2天,完成余下的1/4”求出乙丙合作完成需要:2÷2/3×1/4=12天;根据“以后三人合作5天完成了这项工程”求出甲乙丙三人合作完成需要:5÷1-1/3-1/6=10天;所以丙的工作效率=1/10-1/24=7/120;甲的工作效率=1/10-1/12=1/60;乙的工作效率=1/24-1/60=1/40;整个工程,甲做了13天,占了总量的13/60;乙做了15天,占了总量的15/40即3/8;丙做了7天,占了总量的49/120;甲的报酬=1800×13/60=390元;乙的报酬=1800×3/8=675元;丙的报酬=1800×49/120=735元;9、思路点拨:当未知量很多时,通常把其中的一个或几个量设成1;设甲、乙两车的速度分别是和1,当甲到达C站时,乙还需要10小时才能到达C站,这时两车的距离等于10×1=10,相遇的时间=10÷1+=4小时,5+4=9时上午9时;10、思路点拨:同上解法一:设水池容量为1,设甲乙丙丁四个水管每小时进出水量分别为a、b、c、d,则有a=1/3,b=1/4;c=1/5;d=1/6;易知甲乙丙丁循环一次的总进水量为7/60,本题的关键是动态的考虑水池的剩余容量,5/6-a=1/2,而7/60×4<1/2,故经过4×4=16小时是不会溢出的,再经过两小时的剩余容量=5/6-28/60-a-b=17/60>c,所以再过两小时也不会溢出,至此经过20小时,剩余容量=1/4<a,需要1/4÷a=3/4小时,所以小时后溢出;列式解答方法同解法一:61+31=21先通过甲管放进31水,现在水池一共有水211-21=21还需要进水21。
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.。
2.计算:= 。
3.计算:。
4.计算:.5.计算:.6.计算: .7. .8.计算:9.计算:.10.计算:.11.计算:.12.计算:13.计算:14.计算:15.二、计算题1.=2.3.=4.5.计算:6. =7.8.计算:9._______10.11.计算:=12.。
13.计算:14.计算:15.计算:16.17.18.计算:19.20.21.22.23.计算:24.计算:25.26.27.28.29.30.计算:31.32.33.34.35.36.计算:37.38.39.三、解答题全国六年级小学数学竞赛测试答案及解析一、填空题1.。
【答案】【解析】原式提醒学生注意要乘以(分母差)分之一,如改为:,计算过程就要变为:.2.计算:= 。
【答案】【解析】原式3.计算:。
【答案】【解析】原式4.计算:.【答案】【解析】原式5.计算:.【答案】【解析】如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第个数恰好为的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.原式也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为,所以,再将每一项的与分别加在一起进行裂项.后面的过程与前面的方法相同.6.计算: .【答案】【解析】原式为阶乘的形式,较难进行分析,但是如果将其写成连乘积的形式,题目就豁然开朗了.原式7. .【答案】【解析】这题是利用平方差公式进行裂项:,原式8.计算:【答案】【解析】,,……所以,原式9.计算:.【答案】【解析】原式10.计算:.【答案】【解析】,,,……由于,,,可见原式11.计算:.【答案】【解析】式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为,,,……,,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了.原式12.计算:【答案】【解析】原式13.计算:【答案】【解析】原式14.计算:【答案】【解析】原式15.【答案】【解析】所以原式二、计算题1.=【答案】【解析】原式2.【答案】【解析】原式3.=【答案】【解析】本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。
小学六年级数学竞赛计算专题试卷(含答案)3 学校:___________姓名:___________班级:___________考号:___________一、计算题1.a◎b=a+b,求9◎5的值。
2.定义新运算“★”,a★b=a-b,求45.2★38.9的值。
3.定义新运算“⊙ ”,m⊙n=m÷n×2.5。
求:① 60.4⊙0.4的值是多少?② 351⊙0.3的值是多少?4.设a、b表示两个数,a⊙b=a×b-a+b,已知a⊙7=37,求a的值。
5.设a、b表示两个数如果a≥b,规定:a◎b=3×a-2×b;如果a<b,规定:a◎b=(a +b)×3。
求:①9◎6 ② 8◎8 ③2◎76.定义一种新运算“”,已知a b=5a+10b,求37+58的值。
7.对于任意两个自然数,定义一种新运算“*”,a*b=(a-b)÷2,求34*(52*48)值。
8.定义两种新运算“◇”和“*”,对于任意两个数x、y,规定x◇y=x+5y,x*y=(x-y)×2 ,求5◇6+3.5*2.5的值。
9.定义一种新运算“※”,规定A※B=4A+3B-5,求:(1)6※9 (2)9※610.定义两种运算“”和“⊙”,对于任意两个整数a,b,a b=a+b-1,a⊙b=a×b-1。
计算4⊙[(68)(35)]。
11.定义新运算“※”,若2※3=2+3+4,5※4=5+6+7+8。
求2※(3※2)的值。
12.计算(44332-443.32)÷(88664-886.64)13.计算(1)98+998+9998+99998+999998(2)3.9+0.39+0.039+0.0039+0.0003914.计算1+3+5+7+……+65+67(1)438.9×5 (2)47.26÷5 (3)574.62×25 (4)14.758÷0.25 16.计算.0.9+9.9+99.9+999.9+9999.9+99999.917.计算1120×122112211221-1221×11201120112018.计算(1)1234×432143214321-4321×123412341234(2)2002×60066006-3003×4004400419.计算(1)0.11+0.13+0.15+……+0.97+0.99(2)8.9×0.2+8.8×0.2+8.7×0.2+……+8.1×0.220.计算.2+4+6+8……+198+20021.计算1.8+2.8+3.8+……+50.822.计算2002-1999+1996-1993+1990-1987+……+16-13+10-7+423.计算.1 35+235+335+……+343524.计算.(1)362548361362548186+⨯⨯-(2)(89+137+611)÷(311+57+49)25.计算.(1)2006÷200620062007(2)9.1×4.8×412÷1.6÷320÷1.326.计算.1 12⨯+123⨯+134⨯……+199100⨯27.计算.(1)238÷238238239(2)3.41×9.9×0.38÷0.19÷3310÷1.128.计算.113-712+920-1130+1342-15562 13⨯+235⨯+257⨯+……+29799⨯+299101⨯30.计算.1 12⨯+123⨯+134⨯+145⨯+156⨯+167⨯31.计算。
小学六年级数学竞赛计算专题试卷(含答案)1 学校:___________姓名:___________班级:___________考号:___________一、选择题1.平均每小时有36至45人乘坐游览车,那么3小时中有人乘坐游览车。
A.少于100 B.100与150之间C.150与200之间D.200与250之间2.小马虎做一道减法题,把减数75看成了57,结果算出的差比正确的差()。
A.多18 B.少18 C.无法比较3.4784×5589=()A.56786 B.26737776 C.256476674.小明在做连续自然数1、2、3、4、5、…求和时,把其中一个数多加了一次,结果和为149,那么多加的这个数是()A.13 B.14 C.15 D.165.已知a※b=a×6+b×2,那么6※5=( )。
A.46 B.42 C.306.用循环小数表示7.1÷11的商是()。
A.B.C.D.7.下面各数中,()是最大的。
A.9.171 B.9.171 (171是循环节)C.9.171 (71是循环节)8.11a0.5b c25%d35+=+=+=+,a、b、c、d中最大的是( )A.a B.b C.c D.d 9.下面哪一行和其他三行不一样?()A.3,5,6,7B.3,4,6,7C.0,2,4,6D.7,5,3,4二、填空题10.已知10101010123 (11)100101102110A=++++,则A的整数部分是____。
11.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____.12.小马虎在计算4.26加上一个一位小数的时候,由于错误地把加数的末尾对齐,结果得到4.78,这个一位小数是_____,这道题的正确的结果是_____.13.一本故事书共29页,那么最中间的一页是第________ 页.14.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△6的结果是(_______)。
小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得 __ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
六年级上学期数学计算能力竞赛试卷(40分钟,100分)一、我会填。
1、一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是()厘米。
2、16/()=24÷()=0.8=()%=( )折3、要画一个周长是25.12分米的圆,圆规的两脚间的距离是(),这个圆的面积是()。
4、六(1)班今天到校48人,请病假1人,请事假1人,该班出勤率是() %.5、40cm增加它的20﹪后是().6、把8克糖溶解在56克水中,糖占糖水的()%。
7.数学竞赛题共20道。
每做对一题得8分,做错一题倒扣4分。
小丽得了100分,她做对了()道题。
8、圆的半径是2厘米,如果半径增加到5厘米,那么圆的面积增加了()平方厘米,周长增加了()厘米。
10、若甲数是乙数的8倍,乙数是丙数的16 ,则丙数是甲数的()%,乙数比甲数少()%。
11.加工一批零件,甲乙合做,6小时完成;乙丙合做8小时完成;甲丙合做,12小时完成。
三人合做,()小时()分钟完成。
12、一个分数加上它的分数单位等于1,减去它的一个分数单位等于,这个分数是()。
13、用两个同样的正方体拼成一个长方体,表面积减少14.4平方分米,这个长方体的表面积是()平方米。
14、一个分数,它的分母加上3可约分成37 。
它的分母减去2可以约分成23 ,这个分数是()。
二、选择。
(每题2分,共10分)1、一个圆和一个正方形的周长相等,他们的面积比较()A、正方形的面积大B、圆的面积大C、一样大2、现在的成本比原降低了15%,现在的成本是原的( )。
A、15%B、85%C、115%3、一台电冰箱的原价是2100元,现在按七折出售,求现价多少元?列式()A、2100÷70%B、2100×70%C、2100×(1-70%)4、一个圆环形跑道,内外道相差1米,小明从内道,小昂从外道,各跑一圈。
小学六年级数学计算能力竞赛试题 (时间: 60分钟 总分100分)一、口算(每题0.5分, 共20分)=-6121=+10351=⨯2483=÷12141 =⨯946=÷353821=+12531=⨯2054 =+5232=⨯4.025=⨯3429=⨯8361 =÷1065=÷724=÷4360=⨯8398 =⨯94125=÷27632=⨯158165=⨯20365 =-3265=÷271326=⨯14921=+4132 =⨯1116.6=÷10195=÷4185=⨯45790 =⨯206.5=+34.176.2=-75.34=⨯3.04.8=÷01.0135.0=+1.139=÷1003.72=+6.64.4=250=32.0=2)91(=⨯⨯2514.32 二、计算下面各题(24分)1584352⨯+452582⨯-)5332(12-÷343433÷-÷85415)2143(⨯÷+169)]4183(1[÷+-54)4365(125+-÷)1011(2391-÷⨯910]32)276[(÷⨯-三、用简便方法计算。
(每题3分, 共30分)16)4385(⨯+75927597⨯+⨯)9212131(36+-⨯10799107+⨯114135115137⨯+⨯311253127⨯-÷98)9281(⨯⨯+51)994125.0(÷⨯+1811895181913-÷+⨯231232224+⨯四、完成下列各题。
(22分)1.(3分)一个小数, 如果把它的小数部分扩大4倍, 就得到5.4;如果把它的小数部分扩大9倍, 就得到8.4, 那么这个小数是()。
2.(3分)设A 和B 都是自然数, 并且满足,那么A +B =( )。
六年级数学数学竞赛试题答案及解析1.瓶子里有同样大小的红球和黄球各5个.要想摸出的球一定有2个同色的,最少要摸出个球.【答案】3【解析】红、黄两种颜色相当于两个抽屉,要保证摸到的球有2个同色,摸的次数比颜色数多1,即假设第一次摸出绿色的,第二次摸出黄色的,第三次无论摸到哪一种都会有两个是同色的,所以至少要摸出三个球.解:2+1=3(个);答:最少要摸3球;故答案为:3.【点评】此题做题的关键是弄清把哪个量看作“抽屉”,把哪个量看作物体个数,进而结合题意进行分析,得出结论.2.一个不透明的盒子里装了红、黑、白玻璃球各2个,要保证取出的玻璃球三种颜色都有,他应保证至少取出个;要使取出的玻璃球中至少有两种颜色,至少应取出个.【答案】5,3.【解析】从最极端的情况进行分析:(1)假设把白球和黑球都取完,就是四个,这时,只要取出一个红球就可以符合题意,进而得出结论.(2)假设两次取出的都是同色(取完),然后再取一个,只能是其它的颜色;解:(1)2×2+1=5(个);(2)2+1=3(个);答:要保证取出的玻璃球三种颜色都有,他应保证至少取出5个,要使取出的玻璃球中至少有两种颜色,至少应取出3个.故答案为:5,3.【点评】此题做题的关键是从最极端情况进行分析,进而通过分析得出问题答案.3.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子.A.2B.3C.4D.6【答案】C【解析】把颜色的种类看作“抽屉”,把孩子的数量看作物体的个数,根据抽屉原理得出:孩子的个数至少比颜色的种类多1时,才能至保证少有两个孩子的颜色一样;解:3+1=4(个);故选:C.【点评】此题属于典型的抽屉原理习题,要明确:“若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子.”然后根据抽屉原理进行解答即可.4.10个苹果分放进4个盘子,则至少有一个盘子里的苹果数不少于()个.A.1B.2C.3D.4【答案】C【解析】把4个盘子看作4个抽屉,把10个苹果看作10个元素,那么每个抽屉需要放10÷4=2(个)…2(个),所以每个抽屉需要放2个,剩下的2个不论怎么放,总有一个抽屉里至少有:2+1=3(个),据此解答.解:10÷4=2(个)…2(个)2+1=3(个)答:至少有一个盘子里的苹果数不少于3个苹果.故选:C.【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.5.16支铅笔分给5个学生,其中有一个学生至少分得()A.3B.6C.4D.5【答案】C【解析】把5个学生看做5个抽屉,考虑最差情况:16支铅笔,最差情况是:每个人等分的话,会获得3支;那剩下1支,随便分给哪一个人,都会使得一个人分得4支,由此即可解答.解:16÷5=3(支)…1(支)3+1=4(支)答:其中有一个学生至少分得4支.故选:C.【点评】抽屉原理问题的重点是建立抽屉,关键是在考虑最差情况的基础上得出均分数(商);然后根据:至少数=商+1(在有余数的情况下).6.某班的小图书库,有诗歌、童话、小人书三类课外书,如果每位同学最多可以借阅两种不同类型的书.至少有多少位同学来借书,才一定有两位同学借阅的书的类型相同.【答案】7位【解析】首先把诗歌、童话、小人书三类课外书任意两本排列,一共有(诗歌,童话),(童话,小人书),(诗歌,小人书)三种情况;任意借1本,又有3种情况;一共是6种情况,看做6个抽屉,只要学生数比抽屉多1就可以使同学来借阅时就一定会有两位同学借阅图书的种类相同.解:一共有(诗歌,童话),(童话,小人书),(诗歌,小人书)三种情况;任意借1本,又有3种情况;一共是6种情况,构造6个抽屉,6+1=7(位),至少要7位学生借阅才能保证其中一定有2个人所借阅的图书属于同一种类.【点评】此题属于典型的抽屉原理习题,解答此类题的关键是找出把谁看作“抽屉个数”,把谁看作“物体个数”,然后根据抽屉原理解答即可.7.幼儿园买来了很多白兔、熊猫、长颈鹿塑料玩具,每个小朋友可以任意选择两件,那么不管怎样挑选,在任意7个小朋友中总有两个小朋友的玩具相同,请说明道理.【答案】见解析【解析】已知共有三种玩具,每个小朋友任意选择两件相同的玩具有3种情况;选择两件不同的玩具一共有3种不同的情况,所以一共有6种不同的拿法,最差情况是6个小朋友选择的玩具各不相同,此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的,所以在任意7个小朋友中总有两个小朋友的玩具相同;据此解答.解:每个小朋友可以任意选择两件,选择情况有:2个白兔、2个熊猫、2个长颈鹿、白兔和熊猫、白兔和长颈鹿、熊猫和长颈鹿,一共有6种拿法;最差情况是6个小朋友选择的玩具各不相同,分别是上面的6种情况;此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的;6+1=7(个);所以,在任意7个小朋友中总有两个小朋友的玩具相同.【点评】完成本题要注意先要找出从三种玩具中选择两件共有几种组合方法,再据最差原理进行分析解答.8.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?【答案】最少摸出3枚;至少摸出5枚。
数学六年级竞赛试题带答案数学竞赛试题通常包含多种类型的题目,如选择题、填空题、解答题等。
以下是一份模拟的六年级数学竞赛试题及答案:一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?- A. 0- B. 1- C. 2- D. 3答案:C2. 一个数的平方等于其本身,这个数可能是:- A. 0- B. 1- C. -1- D. 所有选项答案:D3. 如果一个圆的半径是5厘米,那么它的周长是:- A. 10π cm- B. 20π cm- C. 30π cm- D. 40π cm答案:B4. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,它的体积是:- A. 480立方厘米- B. 480平方厘米- C. 48立方厘米- D. 4800立方厘米答案:A5. 一个分数的分子和分母同时除以它们的最大公约数,这个分数的值: - A. 变大- B. 变小- C. 不变- D. 无法确定答案:C二、填空题(每题3分,共15分)1. 一个数的约数除了1和它本身外,没有其他约数,这个数叫做______。
答案:质数2. 一个数的平方根是它本身的数有两个,它们分别是______和______。
答案:0,13. 如果一个三角形的底是6厘米,高是4厘米,那么它的面积是______平方厘米。
答案:124. 一个数的立方等于它本身,这个数可能是______,______,______。
答案:1,-1,05. 一个数的最小公倍数是它自己,这个数是______。
答案:任何正整数三、解答题(每题5分,共20分)1. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的表面积和体积。
答案:表面积= 2(12×10 + 12×8 + 10×8) = 592平方厘米;体积= 12×10×8 = 960立方厘米。
2. 一个班级有48名学生,其中1/3是男生,2/3是女生。
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、计算题1.若表示,求的值。
2.如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算(3※2)×5。
二、解答题1.定义新运算为a△b=(a+1)÷b,求值:6△(3△4).2.、表示数,表示,求3(68) .3.表示.4.对于任意的整数x与y定义新运算“△”:,求2△9。
5.“*”表示一种运算符号,它的含义是:,已知,求。
6.我们规定:符号表示选择两数中较大数的运算,例如:53=35=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:的结果是多少?7.对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
8.定义新运算为,⑴求的值;⑵若则x的值为多少?9.对于任意的两个自然数和,规定新运算:,其中、表示自然数.如果,那么等于几?10.定义为与之间(包含、)所有与奇偶性相同的自然数的平均数,例如:,.在算术的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?11.有一个数学运算符号,使下列算式成立:,,,,求12.如果、、是3个整数,则它们满足加法交换律和结合律,即⑴a+b=b+a;⑵。
现在规定一种运算"*",它对于整数a、 b、c 、d 满足:(a,b)*(c,d)=(a×c+b×d,a×c-b×d)。
例:请你举例说明,"*"运算是否满足交换律、结合律。
13.x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.14.对于任意的两个自然数和,规定新运算:,其中、表示自然数.⑴求1100的值;⑵已知1075,求为多少?⑶如果(3)2121,那么等于几?15.两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8="2." (8级)(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x=2,而x小于20,求x;(3)已知(19☉x)☉19=5,而x小于50,求x.16.设a,b是两个非零的数,定义a※b.(1)计算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.17.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.18.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.数360的约数有多少个?这些约数的和是多少?2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?3.写出从360到630的自然数中有奇数个约数的数.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?7. 3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长千米,中圈跑道长千米,外圈跑道长千米.甲每小时跑千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?8.甲数和乙数的最大公约数是6,最小公倍数是90.如果甲数是18,那么乙数是多少?9.A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有l0个约数,那么A,B两数的和等于多少?10.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?11.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组?12.3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?13.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?14. a>b>c是3个整数.a,b,c的最大公约数是15;a,b的最大公约数是75;a,b的最小公倍数是450;b,c的最小公倍数是1050.那么c是多少?15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?16.把一张长1米3分米5厘米、宽1米5厘米的纸裁成同样大小的正方形纸块,而没有剩余,问:能裁成最大的正方形纸块的边长是多少?共可裁成几块?17.一个房间长450厘米,宽330厘米.现计划用方砖铺地,问需要用边长最大为多少厘米的方砖多少块(整块),才能正好把房间地面铺满?18.有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?在每份礼物中,三样水果各多少?19.把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?20.教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工,问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?21.现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?22.用这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数.23.两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.24.一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?25.一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有多少人?26.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?27.一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满100人,那么得差的学生有多少人?28.动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得多少粒?29.大雪后的一天,小明和爸爸同时步测一个圆形花圃的周长,他俩的起点和步行方向完全相同,小明每步长54厘米,爸爸每步长72厘米.由于两人脚印有重合的,所以各走完一圈后,雪地上留下60个脚印.求圆形花圃的周长.30.甲、乙两人同时从A点背向出发,沿400米的环形跑道行走,甲每分钟走80米,乙每分钟走50米,两人至少经过多长时间才能在A点相遇?31.有甲、乙、丙三个人在操场跑道上步行,甲每分钟走80米,乙每分钟走120米,丙每分钟走70米.已知操场跑道周长为400米,如果三个人同时同向从同一地点出发,问几分钟后,三个人可以首次相聚?32.已知两个自然数的积为240,最小公倍数为60,求这两个数.33.已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?34.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数.35.两个自然数的和是125,它们的最大公约数是25,试求这两个数.36.甲数是36,甲、乙两数最大公约数是4,最小公倍数是288,那么乙数是多少?37.如图,鼹鼠和老鼠分别从长157米的小路两端A、B开始向另一端挖洞。
小学数学六年级下册竞赛试题一.(共8题,共16分)1.如果我们规定海平面为0米,甲地海拔是60米,乙地海拔是20米,丙地海拔是-30米,丁地海拔是-10米,最高的地方比最低的地方高()米。
A.100B.50C.70D.902.将圆柱的侧面展开,将得不到()。
A.平行四边形B.长方形C.梯形D.正方形3.某日黄州最低气温9℃,北京最低气温-15℃,黄州最低气温比北京高()。
A.6℃B.-6℃C.24℃D.19℃4.以直角三角形的一条直角边所在的直线为轴,旋转一周,就能得到一个()。
A.长方体B.圆锥C.圆柱D.正方体5.某市十二月份的平均气温是-2℃,十一月份的平均气温比十二月份的高了8℃,该市二月份的平均气温是()。
A.8℃B.6℃C.10℃D.-8℃6.某商店的老板习惯用正数记录赢利,负数记录亏损,如果这一个月来,该商店每天亏损10元,那么其一周的利润是()元。
A.10B.-300C.70D.-707.某商店进了一批笔记本,按30%的利润定价。
当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售。
问销完后商店实际获得的利润百分数是()。
A.1.2%B.17%C.20%D.18%8.表示x,y正比例关系的是()。
A.x﹣y=5B.y=x×C.y+x=20D.xy=7二.(共8题,共16分)1.除数一定,被除数和商正比例。
()2.一块地的产量,今年比去年增长二成五,就是增长十分之二点五。
()3.含有未知数的比例也是方程。
()4.整数可以分成正整数和负整数。
()5.一个数与它的倒数成反比例。
()6.节约的钱数和节约的天数不成比例。
()7.把一个圆柱体削成一个最大的圆锥体,削去部分的体积与原来圆柱体的体积之比是2∶3。
()8.车轮的半径一定,所行驶的路程与车轮的转数成正比例。
()三.(共8题,共25分)1.在-5、6、0、+7、-12、+4、-1这些数中,正数有________,负数有________个。
小学六年级数学计算能力比赛试卷小学六年级数学计算能力比赛试卷一、选择题1、下列哪个数是另一个数的因数? A. 10 B. 16 C. 25 答案:C 解释:25是另一个数的因数,因为它可以被5和7整除。
2、下列哪个数是质数? A. 10 B. 17 C. 23 答案:B 解释:17和23是质数,因为它们只能被1和它们本身整除。
3、下列哪个图形是正多边形? A. 正方形 B. 菱形 C. 梯形答案:A 解释:正多边形是指各边相等,各角也相等的多边形,正方形符合这个定义。
二、填空题4、将下列分数化为最简分数: (1) 2/4 = _______; (2) 6/8 = _______;(3) 9/12 = _______。
答案:(1)1/2;(2)3/4;(3)3/4。
解释:将分数化为最简分数,即分子和分母没有公共因数。
41、如果a是一个奇数,那么下列哪个数是偶数? A. a B. a+2 C. a-1 答案:B 解释:根据奇数和偶数的定义,奇数+奇数=偶数,因此a+2是偶数。
411、下列哪个数是另一个数的平方根? A. 8 B. 10 C. 16 答案:C 解释:16是另一个数的平方根,因为它的平方等于16。
三、计算题7、求下列各式的值: (1) 3√25 (2) 5√20 (3) 7√49 答案:(1) 3√25 = 5;(2) 5√20 = 10;(3) 7√49 = 7。
解释:求一个数的立方根或平方根,直接开方即可。
71、求下列各式的值: (1) (2√3) × (3√2) (2) (5√3) × [(3√2) × (2√5)] 答案:(1) (2√3) × (3√2) = 6;(2) (5√3) ×[(3√2) × (2√5)] = 30。
解释:求两个根式的乘积,可以将根式化简后再相乘。
四、解答题9、一个正方形的边长为4cm,求它的周长和面积。
小学六年级数学计算能力竞赛试题
(时间:60分钟 总分100分)
一、口算(每题0.5分,共20分)
=-6121=+10351=⨯2483=÷12
141 =⨯946=÷353821=+12531=⨯205
4 =+5232=⨯4.025=⨯3429=⨯8
361 =÷1065=÷724=÷4360=⨯8
398 =⨯94125=÷27632=⨯158165=⨯20
365 =-3265=÷271326=⨯14921=+4
132 =⨯1116.6=÷10195=÷4185=⨯45
790 =⨯206.5=+34.176.2=-75.34=⨯3.04.8
=÷01.0135.0=+1.139=÷1003.72=+6.64.4
=250=32.0=2)9
1(=⨯⨯2514.32 二、计算下面各题(24分)
1584352⨯+452582⨯-)5
332(12-÷
343433÷-÷85415)2143(⨯÷+
169)]4183(1[÷+-54)4365(125+-÷
)1011(2391-÷⨯9
10]32)276[(÷⨯-
三、用简便方法计算。
(每题3分,共30分)
16)4385(⨯+7
5927597⨯+⨯
)9212131(36+-⨯10
799107+⨯
114135115137⨯+⨯3
11253127⨯-÷
98)9281(⨯⨯+51)994125.0(÷⨯+
1811895181913-÷+⨯231232224+⨯
四、完成下列各题。
(22分)
1.(3分)一个小数,如果把它的小数部分扩大4倍,就得到5.4;如果把它的小数部分扩大9倍,就得到8.4,那么这个小数是()。
2.(3分)设A 和B 都是自然数,并且满足45
2395=+B A ,那么A +B =( )。
3.(4分)把1,2,3,4,5,6,7,8,9这九个数字分别填入下面的括号里,使等式成立。
( )×( )×( )=48
( )+( )+( )=15
( )×( )×( )=63
4.巧算。
(每题4分,共16分)
)201811()411()311()211(-⨯⋅⋅⋅⋅⋅⋅⨯-⨯-⨯-
5614213012011216121++++++
128
16413211618141211-------
)50
49502501()434241()3231(211+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅+++++++
参考答案
一、口算(每题0.5分,共20分)
答案略
二、计算下面各题(每步1分,共24分)
答案略
三、用简便方法计算。
(每题3分,共30分)
前8题答案略 1381137138137139⨯-⨯200612005200420042004+÷ =138137138137139-⨯ =138137)1139(⨯
- =137
四、完成下列各题。
(22分)
1.(3分)3.6
2.(3分)3
3.(4分)把1,2,3,4,5,6,7,8,9这九个数字分别填入下面的括号里,使等式成立。
( 2 )×( 3 )×( 8 )=48
( 4 )+( 5 )+( 6 )=15
( 1 )×( 7 )×( 9 )=63
4.巧算。
(每题4分,共16分)
)201811()411()311()211(-⨯⋅⋅⋅⋅⋅⋅⨯-⨯-⨯- 20182017433221⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯= 20181=
5614213012011216121++++++ 81717161615151414131312121-+-+-+-+-+-+= 811-= 87=
12816413211618141211------- 1281128112816413211618141211+--------= 1281)12811281(6413211618141211++-------= 128
16416413211618141211+-------= 128
13213211618141211+------= 128
11611618141211+-----= 128
1818141211+----= 128
14141211+---= 128121211+--= 128111+-= 1281= )5049502501()434241()3231(21+⋅⋅⋅⋅⋅⋅+++⋅⋅⋅⋅⋅⋅++++++ 249325223121+⋅⋅⋅⋅⋅⋅++++++= )249252321()24321(+⋅⋅⋅⋅⋅⋅+++++⋅⋅⋅⋅⋅⋅+++= 225)24921(224)241(÷⨯++÷⨯+=
1250300+= 1550=。