(优选)线性规划问题基本概念和基本理论
- 格式:ppt
- 大小:500.50 KB
- 文档页数:20
线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。
通过线性规划,可以优化资源分配,最大化利润或者最小化成本。
本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。
一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。
1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。
1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。
二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。
2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。
2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。
三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。
3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。
3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。
四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。
4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。
线性规划的理论与实例分析线性规划(Linear Programming,简称LP)是一种重要的运筹学工具,常常被应用于生产、物流、金融等领域中的优化问题。
本文将从理论和实例两个角度,介绍线性规划的基本概念、模型及求解方法。
一、线性规划的基本概念线性规划的基本概念包括决策变量、目标函数、约束条件等。
(一)决策变量决策变量是指影响问题结果的变量,通常用x1、x2、 (x)表示。
例如,生产线上的机器数量、产品的产量等都是决策变量。
(二)目标函数目标函数是指要最大化或最小化的某个指标,通常用z表示。
例如,最小化成本、最大化利润等都是目标函数。
(三)约束条件约束条件是指在问题求解中要满足的条件。
例如,不超过机器限制数量、满足生产需求等都是约束条件。
通常用不等式或等式形式表示。
二、线性规划的模型线性规划的一般形式可表示为:最大化或最小化目标函数:Z = c1x1 + c2x2 + … + cnxn约束条件:a11x1 + a12x2 + … + a1nxn ≤ b1a21x1 + a22x2 + … + a2nxn ≤ b2……am1x1 + am2x2 + … + amnxn ≤bm或x1, x2, … , xn ≥ 0 (非负性约束条件)其中,c1、c2、…、cn为各决策变量的系数,a11、a12、…、amn为各约束条件中各决策变量的系数,b1、b2、…、bm为约束条件的值,x1、x2、…、xn为决策变量,非负性约束条件也称为非负约束。
三、线性规划的求解方法线性规划有多种求解方法,这里主要介绍两种:单纯性法和对偶理论。
(一)单纯性法单纯性法是线性规划的一种基本算法,其实质是在各约束条件限制下寻找目标函数最大或最小值。
单纯性法基于以下两个原则:①某个极值点必定满足目标函数的所有约束条件;②各个变量所形成的可行解区域有限,且该区域的可行解点数有限。
单纯性法的具体过程如下:Step 1 建立初始单纯形表将约束条件转化为标准形式,即将约束条件化为”≤“的形式,并加入人工变量,得到初始单纯形表。
线性规划知识点总结一、概述线性规划(Linear Programming,简称LP)是一种数学优化方法,用于解决线性约束下的最优化问题。
它的基本思想是通过线性目标函数和线性约束条件,找到使目标函数取得最大(或最小)值的变量取值。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c1x1 + c2x2 + ... + cnxn,其中c1, c2, ..., cn为常数,x1,x2, ..., xn为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,用于表示问题的解。
决策变量通常用x1, x2, ..., xn表示。
3. 约束条件:约束条件是对决策变量的限制条件,用于限定解的可行域。
约束条件通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1, a21x1 + a22x2 + ... + a2nxn ≤ b2, ..., am1x1 + am2x2 + ... + amnxn ≤ bm,其中a11, a12, ..., amn为常数,b1, b2, ..., bm为常数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或最小)值的解称为最优解。
三、线性规划的解法线性规划问题可以通过以下几种方法求解:1. 图形法:对于二维线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线图,找到最优解。
2. 单纯形法:单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。
它从一个可行解开始,每次迭代都朝着更优的方向移动,直到找到最优解或证明问题无解。
3. 对偶理论:线性规划问题可以通过对偶理论转化为对偶问题,并通过求解对偶问题来获得原始问题的最优解。
4. 整数线性规划:当决策变量需要取整数值时,问题称为整数线性规划。
整数线性规划问题通常比线性规划问题更难求解,可以使用分支定界法等方法进行求解。
线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在诸多领域中都有广泛的应用,如生产计划、物流调度、投资组合等。
本文将对线性规划的基本概念、模型建立、解法和应用进行详细总结。
一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
它通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性等式或不等式,限制了决策变量的取值范围。
约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为常数,b为常数。
3. 可行解:满足所有约束条件的决策变量取值组合称为可行解。
4. 最优解:在所有可行解中,使得目标函数取得最大值或最小值的解称为最优解。
二、模型建立1. 决策变量的确定:根据实际问题,确定需要优化的决策变量及其取值范围。
2. 目标函数的建立:根据问题要求,将目标转化为线性函数,并确定系数。
3. 约束条件的建立:根据问题中给出的限制条件,将其转化为线性等式或不等式,并确定系数。
4. 模型的完整表达:将目标函数和约束条件整合在一起,形成线性规划模型。
三、解法1. 图形法:对于二维或三维的线性规划问题,可以通过绘制约束条件的图形来找到最优解。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法是一种迭代算法,通过不断移动顶点来寻找最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划问题通常比线性规划问题更难求解,可以使用分支定界法等算法进行求解。
四、应用1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,使得生产成本最小化或利润最大化。
2. 物流调度:线性规划可以优化物流调度方案,使得运输成本最低或配送时间最短。
第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。
教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§4.1 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p =,记12(,,,)m T B j j j x x x x =,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -=,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p =就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++,使121(,,,,,,)r r m B p p p p p +=成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点. 证明 由定理4.1.1和定理2.2.2知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p =====求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T Tx x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理4.1.2知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑.设s x 是使(LP )中目标函数值达到最小的基本可行解,即 1min T T s i i kc x c x ≤≤=,则11,kkTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,l d d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑.于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥=和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT T i i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀=,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立. 定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp q si i j p p s q t λλμ=≥==≥=∑使11p p q q sti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论4.1.6及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理2.2.10知,x 为(LP )的可行解,从而由(*)式知,111p p q q stTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理2.2.10知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑,使 11kli i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥=, 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥=.从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。