高考物理磁场精讲精练回旋加速器和质谱仪等仪器
- 格式:doc
- 大小:1.26 MB
- 文档页数:25
物理科技的理解应用(速度选择器、质谱仪、回旋加速器、霍尔元件、电磁流量计、磁流体发电机)60分钟物理科技的理解应用(速度选择器、质谱仪、回旋加速器、霍尔元件、电磁流量计、磁流体发电机等)(10单选+7多选+3计算)1.(2024·北京昌平·二模)如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
一带电粒子(重力不计)从M 点沿水平方向射入到两板之间,恰好沿直线从N 点射出。
电场强度为E ,磁感应强度为B 。
下列说法正确的是( )。
A .粒子一定带正电B .粒子射入的速度大小B v E=C .若只改变粒子射入速度的大小,其运动轨迹为曲线D .若粒子从N 点沿水平方向射入,其运动轨迹为直线【答案】C【详解】A .粒子从M 点沿水平方向射入,根据左手定则,不管粒子带正电还是负电,粒子受到的电场力方向和洛伦兹力方向均相反,故无法判断粒子的电性,故A 错误;B .粒子恰好沿直线从N 点射出,粒子受到的电场力大小等于受到的洛伦兹力大小,则有:qvB Eq =解得粒子射入的速度大小为:Ev B=故B 错误;C .若只改变粒子射入速度的大小,粒子受到的电场力大小不再等于受到的洛伦兹力大小,粒子做曲线运动,其运动轨迹为曲线,故C 正确;D .若粒子从N 点沿水平方向射入,不管粒子带正电还是负电,根据左手定则,则粒子受到的电场力方向和洛伦兹力方向相同,粒子做曲线运动,其运动轨迹为曲线,故D 错误。
故选C 。
2.(2024·江西鹰潭·模拟预测)第十四届夏季达沃斯论坛发布2023年度突破性技术榜单,列出最有潜力对世界产生积极影响的十大技术,这些新技术的应用正在给我们的生活带来潜移默化的改变。
磁流体发电技术是目前世界上正在研究的新兴技术。
如图所示是磁流体发电机示意图,相距为d 的平行金属板A 、B 之间的磁场可看作匀强磁场,磁感应强度大小为B ,等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 垂直于B 且平行于板面的方向进入磁场。
2024全国高考真题物理汇编质谱仪与回旋加速器一、多选题1.(2024安徽高考真题)空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B。
一质量为m的带电油滴a,在纸面内做半径为R的圆周运动,轨迹如图所示。
当a运动到最低点P时,瞬间分成两个小油滴Ⅰ、Ⅱ,二者带电量、质量均相同。
Ⅰ在P点时与a的速度方向相同,并做半径为3R的圆周运动,轨迹如图所示。
Ⅱ的轨迹未画出。
己知重力加速度大小为g,不计空气浮力与阻力以及Ⅰ、Ⅱ分开后的相互作用,则()A.油滴a带负电,所带电量的大小为mg EB.油滴a做圆周运动的速度大小为gBR EC.小油滴Ⅰ做圆周运动的速度大小为3gBRE,周期为4EgBD.小油滴Ⅱ沿顺时针方向做圆周运动2.(2024湖北高考真题)磁流体发电机的原理如图所示,MN和PQ是两平行金属极板,匀强磁场垂直于纸磁场,极板间便产生电压。
下列说法正确的是()A.极板MN是发电机的正极B.仅增大两极板间的距离,极板间的电压减小C.仅增大等离子体的喷入速率,极板间的电压增大D.仅增大喷入等离子体的正、负带电粒子数密度,极板间的电压增大二、解答题3.(2024湖南高考真题)如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。
以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。
在筒内x≤0区域有一匀强磁场,磁感应强度大小为B ,方向沿x 轴正方向;筒外x ≥0区域有一匀强电场,场强大小为E ,方向沿y 轴正方向。
一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy 平面内,且在x 轴正方向的分速度大小均为v 0。
已知电子的质量为m 、电量为e ,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O 进入电场,求磁感应强度B 的最小值;(2)取(1)问中最小的磁感应强度B ,若进入磁场中电子的速度方向与x 轴正方向最大夹角为θ,求tan θ的绝对值;(3)取(1)问中最小的磁感应强度B ,求电子在电场中运动时y 轴正方向的最大位移。
质谱仪、回旋加速器和带电粒子在交变电磁场中运动考点01质谱仪和回旋加速器1. (2024年高考甘肃卷)质谱仪是科学研究中的重要仪器,其原理如图所示。
Ⅰ为粒子加速器,加速电压为U ;Ⅱ为速度选择器,匀强电场的电场强度大小为1E ,方向沿纸面向下,匀强磁场的磁感应强度大小为1B ,方向垂直纸面向里;Ⅲ为偏转分离器,匀强磁场的磁感应强度大小为2B ,方向垂直纸面向里。
从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动、再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示。
(1)粒子带正电还是负电?求粒子的比荷。
(2)求O 点到P 点的距离。
(3)若速度选择器Ⅱ中匀强电场的电场强度大小变为2E (2E 略大于1E ),方向不变,粒子恰好垂直打在速度选择器右挡板的O ¢点上。
求粒子打在O ¢点的速度大小。
【答案】(1)带正电,21212E UB ;(2)1124UB E B ;(3)2112E E B -【解析】(1)由于粒子向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器时的速度为0v ,在速度选择器中粒子做匀速直线运动,由平衡条件011qv B qE =在加速电场中,由动能定理2012qU mv =联立解得,粒子的比荷为21212E q m UB =(2)由洛伦兹力提供向心力2002v qv B mr=可得O 点到P 点的距离为11242UB OP r E B ==(3)粒子进入Ⅱ瞬间,粒子受到向上的洛伦兹力01F qv B =洛向下的电场力2F qE =由于21E E >,且011qv B qE =所以通过配速法,如图所示其中满足2011()qE q v v B =+则粒子在速度选择器中水平向右以速度01v v +做匀速运动的同时,竖直方向以1v 做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O ¢点的要求,故此时粒子打在O ¢点的速度大小为2101112E E v v v v B -¢=++=2. (2023高考福建卷)阿斯顿(F .Aston )借助自己发明的质谱仪发现了氖等元素的同位素而获得诺贝尔奖,质谱仪分析同位素简化的工作原理如图所示。
专题05 质谱仪与回旋加速器1.(2017武汉武昌模拟)回旋加速器的核心部分是真空室中的两个相距很近的D形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下。
连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出。
如果用同一回旋加速器分别加速氚核(13H)和α粒子(24He),比较它们所需要的高频交流电源的周期和引出时的最大动能,下列说法正确的是A.加速氚核的交流电源的周期较大;氚核获得的动能较大B.加速氚核的交流电源的周期较小;氚核获得的动能较大C.加速氚核的交流电源的周期较大;氚核获得的动能较小D.加速氚核的交流电源的周期较小;氚核获得的动能较小【参考答案】C.【命题意图】本题考查回旋加速器、带电粒子在匀强磁场中的匀速圆周运动、周期、动能及其相关的知识点。
【解题思路】由于氚核的比荷q/m小于α粒子的比荷,由带电粒子在匀强磁场中运动的周期公式T=2m qB可知加速氚核的交流电源的周期较大。
粒子通过回旋加速器获得的最大速度v=qBRm,动能E k=12mv2=2222q B Rm,将氚核和α粒子的电荷量q和质量m代入比较可知,α粒子获得的动能较大,选项C正确。
2.(2017云贵川百校大联考)图甲是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒均置于匀强磁场中,并分别与高频交流电源两极相连.带电粒子在磁场中运动的动能E k随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法正确的是()A.(t2﹣t1)=(t3﹣t2)=…(t n﹣t n﹣1)B.高频交流电源的变化周期随粒子速度的增大而减小C.要使得粒子获得的最大动能增大,可以减小粒子的比荷D.要使得粒子获得的最大动能增大,可以增大匀强磁场的磁感应强度【参考答案】AD.3.(2016济南模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示。
第4节质谱仪与回旋加速器学习目标要求核心素养和关键能力1.知道质谱仪、回旋加速器的基本构造、原理及用途。
2.会利用圆周运动知识和功能关系分析质谱仪和回旋加速器的问题。
3.会利用相关规律解决质谱仪、回旋加速器问题。
1.核心素养建立电场加速和磁场偏转的组合场运动模型。
2.关键能力物理建模能力和分析推理能力。
知识点一质谱仪当带电粒子垂直射入匀强电场和匀强磁场时,分析带电粒子在电场和磁场中的运动有何不同?提示(1)当v0⊥E时,带电粒子在匀强电场中做匀变速曲线运动,用运动的合成与分解知识处理。
(2)当v0⊥B时,带电粒子在匀强磁场中做匀速圆周运动,利用洛伦兹力提供向心力和圆周运动知识处理。
❶质谱仪构造:主要构件有加速电场、偏转磁场和照相底片。
❷工作原理(如图)(1)带电粒子经过电压为U的加速电场加速,由动能定理得qU=12m v2。
(2)垂直进入磁感应强度为B的匀强磁场中,做匀速圆周运动,r=m vqB,可得r=1 B 2mU q。
❸分析:从粒子打在底片D上的位置可以测出圆周的半径r,进而可以算出粒子的比荷qm。
[思考] 在质谱仪的原理图中(1)S1、S2之间的电场起什么作用?(2)粒子打在底片上的位置到S3的距离有多大?提示(1)使粒子加速,获得一定的速度。
(2)由于粒子在磁场中运动的轨迹半径为r=m vqB=1B2mUq,所以打在底片上的位置到S3的距离s=2r=2B 2mU q。
1.带电粒子的运动分析(1)加速电场加速:qU=12m v2。
(2)匀强磁场偏转:q v B=m v2 r。
(3)结论:r=1B2mUq,粒子比荷qm=2UB2r2,质量m=qB2r22U。
2.质谱仪区分同位素:同位素电荷量q相同,质量不同,由r=1B2mUq知,在质谱仪照相底片上显示的位置就不同,故能据此区分同位素。
[例1] 如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直。
质谱仪与回旋加速器知识点:质谱仪与回旋加速器一、质谱仪1.质谱仪构造:主要构件有加速电场、偏转磁场和照相底片.2.运动过程(如图)(1)带电粒子经过电压为U的加速电场加速,qU=12m v2.(2)垂直进入磁感应强度为B的匀强磁场中,做匀速圆周运动,r=m vqB,可得r=1B2mUq.3.分析:从粒子打在底片D上的位置可以测出圆周的半径r,进而可以算出粒子的比荷.二、回旋加速器1.回旋加速器的构造:两个D形盒,两D形盒接交流电源,D形盒处于垂直于D形盒的匀强磁场中,如图.2.工作原理(1)电场的特点及作用特点:两个D形盒之间的窄缝区域存在周期性变化的电场.作用:带电粒子经过该区域时被加速.(2)磁场的特点及作用特点:D形盒处于与盒面垂直的匀强磁场中.作用:带电粒子在洛伦兹力作用下做匀速圆周运动,从而改变运动方向,半个圆周后再次进入电场.技巧点拨一、质谱仪1.加速:带电粒子进入质谱仪的加速电场,由动能定理得qU=12m v2①2.偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,由洛伦兹力提供向心力得q v B=m v2 r ②3.由①②两式可以求出粒子运动轨迹的半径r、质量m、比荷qm等.由r=1B2mUq可知,电荷量相同时,半径将随质量的变化而变化.二、回旋加速器回旋加速器两D形盒之间有窄缝,中心附近放置粒子源(如质子、氘核或α粒子源),D形盒间接上交流电源,在狭缝中形成一个交变电场.D形盒上有垂直盒面的匀强磁场(如图所示).(1)电场的特点及作用特点:周期性变化,其周期等于粒子在磁场中做圆周运动的周期.作用:对带电粒子加速,粒子的动能增大,qU=ΔE k.(2)磁场的作用改变粒子的运动方向.粒子在一个D形盒中运动半个周期,运动至狭缝进入电场被加速.磁场中q v B=m v2r,r=m vqB∝v,因此加速后的轨迹半径要大于加速前的轨迹半径.(3)粒子获得的最大动能若D形盒的最大半径为R,磁感应强度为B,由r=m vqB得粒子获得的最大速度v m=qBRm,最大动能E km =12m v m 2=q 2B 2R 22m.(4)两D 形盒窄缝所加的交流电源的周期与粒子做圆周运动的周期相同,粒子经过窄缝处均被加速,一个周期内加速两次.例题精练1.(2021•浙江模拟)如图所示为质谱仪的结构图,该质谱仪由速度选择器与偏转磁场两部分组成,已知速度选择器中的磁感应强度大小为B 0、电场强度大小为E ,荧光屏PQ 下方匀强磁场的方向垂直纸面向外,磁感应强度大小为2B 0。
回旋加速器和质谱仪等仪器1.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中.(2)原理:交变电流的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2R ,得E km =q 2B 2R22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径R 决定,与加速电压无关.2.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU =12mv 2可知进入磁场的速度v =2qUm.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB =mv2r .由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.判断正误(1)经回旋加速器加速的带电粒子的最大初动能由D 形盒的最大半径决定,与加速电压无关.(√) (2)质谱仪只能区分电荷量不同的粒子.(×) 3.速度选择器(1)平行板间电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =EB .4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 板是发电机正极.(3)磁流体发电机两极板间的距离为d,等离子体速度为v ,磁场磁感应强度为B ,则两极板间能达到的最大电势差U = BdV5.电磁流量计(1)如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.(2)原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =U d q ,可得v =UBd ,液体流量Q =Sv=πd 24·U Bd =πdU4B.6.霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差.这个现象称为霍尔效应,所产生的电势差称为霍尔电势差或霍尔电压,其原理如图所示.特别提示:分析带电粒子在复合场中的运动时,如果没有明确指出,则对于微观粒子如电子、质子、α粒子、离子等其重力可忽略不计;对于实际物体,如带电小球、液滴、金属块等一般应考虑重力.例题1.(多选)图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小解析:选AC.电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力方向与其电性有关,由左手定则可知A 正确;由轨迹半径R =mvqB知,若电子与正电子进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B 错误;由R =mv qB =2mE kqB 知D 错误;因为质子和正电子的速度未知,半径关系不确定,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C 正确.回旋加速器和质谱仪要点讲解 1.质谱仪的主要特征将质量数不等,电荷数相等的带电粒子经同一电场加速后进入偏转磁场.各粒子由于轨道半径不同而分离,其轨道半径r =mv qB =2mE k qB =2mqU qB =1B2mUq.在上式中,B 、U 、q 对同一元素均为常量,故r ∝m ,根据不同的半径,就可计算出粒子的质量或比荷.2.回旋加速器的主要特征(1)带电粒子在两D 形盒中回旋周期等于两盒狭缝之间高频电场的变化周期,与带电粒子的速度无关. (2)将带电粒子在两盒狭缝之间的运动首尾连起来是一个初速度为零的匀加速直线运动. (3)带电粒子每加速一次,回旋半径就增大一次,所以各半径之比为1∶2∶3∶…(4)粒子的最后速度v =BqRm ,可见带电粒子加速后的能量取决于D 形盒的最大半径和磁场的强弱.对点自测1. (多选)如图所示是医用回旋加速器的示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是( )A .氘核(21H)的最大速度较大 B .它们在D 形盒内运动的周期相等 C .氦核(42He)的最大动能较大D .仅增大高频电源的频率可增大粒子的最大动能解析:选BC.粒子在回旋加速器中能达到的最大速度,取决于在最外圈做圆周运动的速度.根据qvB =m v 2R ,得v =qBR m ,两粒子的比荷q m 相等,所以最大速度相等,A 错误.带电粒子在磁场中运动的周期T =2πm qB ,两粒子的比荷q m 相等,所以周期相等,B 正确.最大动能E k =12mv 2=q 2B 2R 22m ,两粒子的比荷q m 相等,但质量不等,所以氦核最大动能大,C 正确.回旋加速器加速粒子时,粒子在磁场中运动的周期与交流电的周期相同,否则无法加速,D 错误.2.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .144解析:选D.带电粒子在加速电场中运动时,有qU =12mv 2,在磁场中偏转时,其半径r =mvqB ,由以上两式整理得:r =1B2mU q .由于质子与一价正离子的电荷量相同,B 1∶B 2=1∶12,当半径相等时,解得:m 2m 1=144,选项D 正确.3.(多选)如图所示为一种获得高能粒子的装置,环形区域内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形区域的宽度非常小).质量为m 、电荷量为q 的带正电粒子可在环中做半径为R 的圆周运动.A 、B 为两块中心开有小孔的距离很近的平行极板,原来电势均为零,每当带电粒子经过A 板刚进入AB 之间时,A 板电势升高到+U ,B 板电势仍保持为零,粒子在两板间的电场中得到加速.每当粒子离开B 板时,A 板电势又降为零.粒子在电场中一次次加速使得动能不断增大,而在环形区域内,通过调节磁感应强度大小可使绕行半径R 不变.已知极板间距远小于R ,则下列说法正确的是( )A .环形区域内匀强磁场的磁场方向垂直于纸面向里B .粒子从A 板小孔处由静止开始在电场力作用下加速,绕行N 圈后回到A 板时获得的总动能为NqUC .粒子在绕行的整个过程中,A 板电势变化周期不变D .粒子绕行第N 圈时,环形区域内匀强磁场的磁感应强度为1R2NmUq解析:选BD.由题意知粒子在轨道内做顺时针圆周运动,根据左手定则可判断匀强磁场的磁场方向垂直于纸面向外,所以A 错误;由于粒子在做圆周运动的过程中洛伦兹力不做功,在AB 板间电场力做功W =qU ,所以粒子绕行N 圈后回到A 板时获得的总动能为NqU ,故B 正确;由于粒子的轨道半径R 不变,而粒子做圆周运动第N 圈的速度为v N ,根据NqU =12mv 2N ,可得粒子圆周运动的速度增大,根据R =mv Bq ,T =2πmBq =2πR v ,所以周期减小,故A 板电势变化周期变小,故C 错误;粒子绕行第N 圈时,NqU =12mv 2N ,所以v N2NqU m ,又R=mv NBq,联立得B=1R2NmUq,所以D正确.=2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,将一交流发电机的矩形线圈abcd通过理想变压器外接电阻R=5Ω,已知线圈边长ab=cd=0.1m,ad=bc = 0.2m,匝数为50匝,线圈电阻不计,理想交流电压表接在原线圈两端,变压器原副线圈匝数比n1︰n2=l︰3,线圈在磁感应强度B=0.2T的匀强磁场中绕垂直磁场的虚线轴以ω=200rad/s的角速度匀速转动,则()A.从图示位置开始计时,线圈中产生的电动势随时间变化的关系式为e=40sin200t(V)B.交流电压表的示数为202VC.电阻R上消耗的电动率为720WD.电流经过变压器后频率变为原来的2倍2.完全相同的两列高铁在直铁轨上相向行使,速度为350km/h,两列车迎面交错而过时,双方驾驶员看到对方列车从眼前划过的时间大约是2s,以下说法正确的是()A.由以上数据可以估算出每列车总长约为200mB.由以上数据可以估算出每列车总长约为400mC.坐于车尾的乘客看到对方列车从身边划过的时间大约是4sD.坐于车尾的乘客看到对方列车从身边划过的时间大约是1s3.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的()A.波长B.频率C.能量D.动量4.如图所示,光滑绝缘水平面上有甲、乙两个带电小球,t=0时,甲静止,乙以6m/s的初速度向甲运动。
它们仅在静电力的作用下沿同一直线运动(整个运动过程中没有接触),它们运动的v—t图像分别如图(b)中甲、乙两曲线所示。
则由图线可知A.两小球带电的电性一定相反B.甲、乙两球的质量之比为2∶1C.t2时刻,乙球的电势能最大D.在0~t3时间内,甲的动能一直增大,乙的动能一直减小5.如图所示,边长为L的等边三角形ABC内、外分布着两方向相反的匀强磁场,三角形内磁场方向垂直纸面向里,两磁场的磁感应强度大小均为B.顶点A处有一粒子源,粒子源能沿∠BAC的角平分线发射不同速度的粒子粒子质量均为m、电荷量均为+q,粒子重力不计.则粒子以下列哪一速度值发射时不能通过C点()A.qBLmB.2qBLmC.23qBLmD.8qBLm6.如图所示,质量为50kg的同学在做仰卧起坐运动.若该同学上半身的质量约为全身质量的35,她在1min内做了50个仰卧起坐,每次上半身重心上升的距离均为0.3m,则她克服重力做的功W和相应的功率P约为A.W=4500J P=75W B.W=450J P=7.5WC.W=3600J P=60W D.W=360J P=6W7.如图甲所示为历史上著名的襄阳炮,因在公元1267-1273年的宋元襄阳之战中使用而得名,其实质就是一种大型抛石机。