质谱仪与回旋加速器
- 格式:ppt
- 大小:3.43 MB
- 文档页数:36
质谱仪、回旋加速器和带电粒子在交变电磁场中运动考点01质谱仪和回旋加速器1. (2024年高考甘肃卷)质谱仪是科学研究中的重要仪器,其原理如图所示。
Ⅰ为粒子加速器,加速电压为U ;Ⅱ为速度选择器,匀强电场的电场强度大小为1E ,方向沿纸面向下,匀强磁场的磁感应强度大小为1B ,方向垂直纸面向里;Ⅲ为偏转分离器,匀强磁场的磁感应强度大小为2B ,方向垂直纸面向里。
从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动、再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示。
(1)粒子带正电还是负电?求粒子的比荷。
(2)求O 点到P 点的距离。
(3)若速度选择器Ⅱ中匀强电场的电场强度大小变为2E (2E 略大于1E ),方向不变,粒子恰好垂直打在速度选择器右挡板的O ¢点上。
求粒子打在O ¢点的速度大小。
【答案】(1)带正电,21212E UB ;(2)1124UB E B ;(3)2112E E B -【解析】(1)由于粒子向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器时的速度为0v ,在速度选择器中粒子做匀速直线运动,由平衡条件011qv B qE =在加速电场中,由动能定理2012qU mv =联立解得,粒子的比荷为21212E q m UB =(2)由洛伦兹力提供向心力2002v qv B mr=可得O 点到P 点的距离为11242UB OP r E B ==(3)粒子进入Ⅱ瞬间,粒子受到向上的洛伦兹力01F qv B =洛向下的电场力2F qE =由于21E E >,且011qv B qE =所以通过配速法,如图所示其中满足2011()qE q v v B =+则粒子在速度选择器中水平向右以速度01v v +做匀速运动的同时,竖直方向以1v 做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O ¢点的要求,故此时粒子打在O ¢点的速度大小为2101112E E v v v v B -¢=++=2. (2023高考福建卷)阿斯顿(F .Aston )借助自己发明的质谱仪发现了氖等元素的同位素而获得诺贝尔奖,质谱仪分析同位素简化的工作原理如图所示。
第一章 4 质谱仪与回旋加速器问题?在科学研究和工业生产中,常需要将一束带等量电荷的粒子分开,以便知道其中所含物质的成分。
利用所学的知识,你能设计一个方案,以便分开电荷量相同、质量不同的带电粒子吗?质谱仪我们都知道,电场可以对带电粒子产生作用力,而磁场同样可以对运动中的带电粒子施加作用力。
因此,我们可以利用电场和磁场来控制带电粒子的运动。
通过电场,我们可以让带电粒子获得一定的速度;而利用磁场,则可以让粒子进行圆周运动。
根据公式 r = 我们可以看出,带电粒子在匀强磁场中做匀速圆周运动的半径与质量有关。
如果磁场强度(B)和速度(v)相同,但质量(m)不同,那么半径(r)也会有所不同。
这样一来,我们就可以利用这种差异将不同的粒子分开。
在19世纪末,汤姆孙的学生 受到这一想法的启发,设计出了质谱仪。
利用质谱仪,他发现了氖-20和氖-22这两种同位素,从而证实了它们的存在。
随着时间的推移,质谱仪经过多次改进,已经发展成为一种非常精密的仪器,成为科学研究和工业生产领域中不可或缺的重要工具。
如图1.4-1所示,一个质量为m 、电荷量为q 的粒子从容器A 下方的小孔S1飘入电势差为U 的加速电场。
该粒子的初速度几乎为0,接着经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后撞击到照相底片D 上。
粒子进入磁场时的速度 v 等于它在电场中被加速而得到的速度。
由动能定理得m v 2 = qU由此可知v = (1)AU SB 7 7 7 7 7SS图1.4-1 质谱仪工作原理粒子在磁场中只受洛伦兹力的作用,做匀速圆周运动,圆周的半径为r = (2)把第(1)式中的v代入(2)式,得出粒子在磁场中做匀速圆周运动的轨道半径r如果容器 A 中粒子的电荷量相同而质量不同,它们进入匀强磁场后将沿着不同的半径做圆周运动,因而被分开,并打到照相底片的不同地方。
在实际操作中,我们通常会让中性的气体分子进入电离室A,在那里它们会被电离成带电的离子。
1.4质谱仪与回旋加速器〖教材分析〗本节内容属于洛伦兹力的应用,教材介绍了质谱仪、多级加速器和回旋加速器。
值得重点介绍的是质谱仪的用途,它可以精确测定粒子的比荷,分析同位素的重要作用。
回旋加速器注意它半径与周期对粒子加速的影响。
〖教学目标与核心素养〗物理观念∶知道其质谱仪和回旋加速器工作原理,会解决带电粒子运动的相关问题。
科学思维∶通过带电粒子在质谱仪和回旋加速器中的运动分析,体会物理模型在探索自然规律中的作用。
科学探究:了解质谱仪和回旋加速器的结构,知道其工作原理,会解决带电粒子加速的相关问题。
科学态度与责任∶通过质谱仪和回旋加速器在实际生活中的应用,体会科学技术对社会发展的促进作用。
〖教学重难点〗教学重点:质谱仪和回旋加速器工作原理。
教学难点:回旋加速器中粒子的加速周期与电场变化周期之间的关系的表达式。
〖教学准备〗多媒体课件〖教学过程〗一、新课引入在科学研究和工业生产中,常需要将一束带等量电荷的粒子分开,以便知道其中所含物质的成分。
利用所学的知识,你能设计一个方案,以便分开电荷量相同、质量不同的带电粒子吗?二、新课教学(一)质谱仪我们知道,电场可以对带电粒子施加作用力,磁场也可以对运动的带电粒子施加作用力,可以利用电场和磁场来控制带电粒子的运动。
由 qB mv r = 可知,带电粒子在匀强磁场中做匀速圆周运动的半径与质量有关,如果B 、v 相同,m 不同,则r 不同,这样就可以把不同的粒子分开。
19世纪末,汤姆孙的学生阿斯顿就按照这样的想法设计了质谱仪,并用质谱仪发现了氖-20和氖-22,证实了同位素的存在。
后来经过多次改进,质谱仪已经成为一种十分精密的仪器,是科学研究和工业生产中的重要工具。
质谱仪是用来分离同位素的、检测它们的相对原子质量和相对丰度的仪器。
用它测定的原子质量的精度超过化学测量方法。
(最后动图展示质谱仪分离同位素的画面)1.下质谱仪的基本结构。
①粒子源:能生成离子束。
②加速电场:离子束经过加速电场获得了一定的速度。
第4节质谱仪与回旋加速器核心素养导学物理观念(1)了解质谱仪和回旋加速器的构造和工作原理。
(2)了解回旋加速器面临的技术难题。
科学思维经历质谱仪工作原理的推理过程,体会逻辑推理的思维方法。
科学探究探究质谱仪、回旋加速器、速度选择器、磁流体发电机、霍尔元件等的工作原理。
科学态度与责任体会科学与技术之间的相互影响,能了解科学、技术、社会、环境的关系,在理论与实践结合的过程中体会成功的喜悦。
一、质谱仪1.构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成。
2.原理:粒子由静止被加速电场加速,根据动能定理可得12m v2=由此可知:v=2qU m①粒子在磁场中只受洛伦兹力的作用,做匀速圆周运动的半径为r=②由①②两式可得r=1B2mUq可见:q相同而m不同的粒子,r不同,因而被分开,打在照相底片的不同地方。
又qm=2UB2r2,可根据圆周运动的半径r,算出粒子的比荷qm。
3.应用:测量带电粒子的质量和分析同位素。
(1)粒子的运动是先在电场中加速,然后在磁场中偏转。
(2)比荷qm不同的粒子偏转距离不同。
二、回旋加速器1.多级加速器(1)各加速区的两极板用独立电源供电。
(2)要获得高能量的粒子,加速器装置要很长。
2.回旋加速器(1)构造:如图所示,D1、D2是两个中空的半圆金属盒,D形盒的缝隙处接交流电源。
D形盒处于匀强磁场中。
(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速。
(3)周期:粒子每经过一次加速,其轨道半径就大一些,但粒子做圆周运动的周期不变。
1.如图所示是质谱仪示意图,它可以测定单个离子的质量,图中离子源S产生带电荷量为q的离子,经电压为U的电场加速后垂直射入磁感应强度为B的匀强磁场中,沿半圆轨道运动到记录它的照相底片P上。
判断下列说法的正误。
(1)只要带电粒子的电荷量相同,经加速电场加速后的末速度都相同。
质谱仪和回旋加速器知识点
质谱仪(Mass Spectrometer)是一种广泛应用于化学、生物、环境等领域的科学仪器,用
于分析物质的成分和结构。
其基本原理是通过将待分析样品中的分子或原子化为离子,然后根据离子的质量-电荷比(m/z)来进行分析和检测。
质谱仪的主要组成部分包括离子化源(Ionization Source)、质量分析器(Mass Analyzer)和检测器(Detector)。
离子化源将待分析样品中的分子或原子转化为离子,常用的离子化方法包
括电离(Ionization)、化学电离、电子轰击电离等。
质量分析器根据离子的质量-电荷比(m/z)来对其进行分析和筛选,常见的质量分析器有磁扇质谱仪(Magnetic Sector Mass Analyzer)、
四极杆质谱仪(Quadrupole Mass Analyzer)、飞行时间质谱仪(Time-of-Flight Mass Analyzer)等。
检测器用于检测离子的到达时间和强度,常见的检测器包括离子多道器(Multi-Channel Plate)、光电倍增管等。
回旋加速器(Cyclotron)是一种用于加速离子的设备,其基本原理是通过在强磁场中不断加速的方式,使离子绕着一个闭合轨道做圆周运动,并不断增加速度和能量。
回旋加速器的核心部分是一个圆形加速腔室,离子通过加速前部分的加速腔室进入回转腔室,然后在回转腔室内受到周期性变化的电场加速,最终达到所需的能量。
加速腔室中的强磁场用于控制离子在加速过程中的运动轨迹。
回旋加速器可以用于产生高能量的离子束,常见的应用包括核物理研究、粒子物理实验和医学放射治疗等领域。
第04讲质谱仪与回旋加速器课程标准课标解读了解质谱仪和回旋加速器的工作原理。
1.知道质谱仪的构造及工作原理,会确定粒子在磁场中运动的半径,会求粒子的比荷。
2.知道回旋加速器的构造及工作原理,知道交流电的周期与粒子在磁场中运动的周期之间的关系,知道决定粒子最大动能的因素。
知识点01 质谱仪1.质谱仪构造:主要构件有加速电场、偏转磁场和照相底片.2.运动过程(1)带电粒子经过电压为U的加速电场加速,qU=12mv2.知识精讲目标导航(2)垂直进入磁感应强度为B 的匀强磁场中,做匀速圆周运动,r =mv qB ,可得r =1B 2mU q. 3.分析:从粒子打在底片D 上的位置可以测出圆周的半径r ,进而可以算出粒子的比荷.【知识拓展1】1.加速:带电粒子进入质谱仪的加速电场,由动能定理得qU =12mv 2① 2.偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,由洛伦兹力提供向心力得qvB =m v 2r② 3.由①②两式可以求出粒子运动轨迹的半径r 、质量m 、比荷q m 等.由r =1B2mU q 可知,电荷量相同时,半径将随质量的变化而变化.【即学即练1】如图所示为质谱仪结构简图,质量数分别为40和46的正二价钙离子先经过电场加速(初速度忽略不计),接着进入匀强磁场,最后打在底片上。
实际加速电压通常不是恒定值,而是有一定范围。
若加速电压取值范围为(U - ∆U ,U + ∆U ),两种离子打在底片上的区域恰好不重叠,则U U ∆的值约为( )A .0.07B .0.10C .0.14D .0.17 【即学即练2】速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( )A .该束带电粒子带负电B .速度选择器的P 1极板带负电C .能通过狭缝S 0的带电粒子的速率等于1E BD .粒子打在胶片上的位置越靠近狭缝S 0,粒子的比荷越小知识点02 回旋加速器1.回旋加速器的构造:两个D 形盒,两D 形盒接交流电源,D 形盒处于垂直于D 形盒的匀强磁场中,如图。
质谱仪回旋加速器知识点总结质谱仪和回旋加速器是两个分别用于物质分析和粒子加速的科学仪器,它们在不同的领域有着重要的应用。
接下来,我将分别总结质谱仪和回旋加速器的相关知识点。
1.质谱的基本原理质谱是一种用于分析物质中各组分的相对丰度和质量的方法。
它基于粒子的质量-电荷比(m/z)的差异,通过离子化,加速,分离和检测等过程来实现。
2.质谱的离子化方法常用的离子化方法有电子轰击、化学电离、电喷雾、激光解吸等。
其中,电子轰击是最常用的方法,通过高能电子与分子碰撞,使分子中的电子被轰击出来,产生离子。
3.质谱的加速和分离分离过程是通过质量分析器(mass analyzer)来实现的。
常见的质量分析器包括离子阱、四极杆、磁扇形质谱仪、飞行时间质谱仪等。
它们利用静电场、磁场和时间差等原理,按照离子的质量-电荷比进行分离和检测。
4.质谱的检测方法检测方法主要包括离子流计(Ion Current Detector, ICD)、质荷比分析器(mass-to-charge analyzer)等。
离子流计通过测量离子的电流或电荷量来检测离子信号,质荷比分析器则根据质量分析器中的离子在检测器中的位置来确定离子的质量-电荷比。
5.质谱的应用领域质谱仪广泛应用于各个领域,如环境科学、生物医药、食品安全、石油化工等。
它可以用于分析物质的成分、确定分子结构、定量分析、鉴别真伪和追溯等。
1.回旋加速器的基本原理回旋加速器是一种用于加速带电粒子的装置,其基本原理是利用静电场和磁场的作用,对电荷加速并使其沿着环形或螺旋轨道运动,从而提高其能量。
2.回旋加速器的工作过程回旋加速器主要分为加速和分束两个过程。
加速过程中,静电场和磁场作用使粒子在环形的轨道上不断加速;分束过程中,通过引入剖面磁场和多极磁场进行分束,使粒子束达到所需的束流特性。
3.回旋加速器的结构和组成部分回旋加速器由加速腔、磁铁、注入和提取系统、束流诊断和控制系统等组成。
加速腔提供电场加速粒子,磁铁通过产生磁场使粒子束束流;注入和提取系统负责将粒子注入和提取出束流;束流诊断和控制系统用于监测和控制粒子束的参数。