铝及铝合金的焊接性
- 格式:doc
- 大小:11.50 KB
- 文档页数:2
铝及铝合金在焊接时容易出现哪些问题?1、极易敏化铝不论是固态或液态都极易氧化,生成三氧化二铝薄膜。
氧化膜熔点很高,为2050℃,而铝的熔点仅为658℃。
A1203具有很高的电阻,在电弧焊中,相当于电弧与工件之间有一层绝缘层,使电弧燃烧不稳定。
氧化膜妨碍焊接过程的顺利进行,而且氧化铝的密度大于铝,因此造成焊缝夹渣和成形不良。
2、熔化时无颜色变化铝从固体到液体的升温过程中没有颜色变化,温度稍高就会造成金属塌陷和熔池烧穿。
再者,由于高熔点的氧化膜覆盖在熔池表面,给观察母材的熔化、熔合情况带来困难。
这样就增加了焊接工艺上控制温度的难度,稍不注意,整个接头就会塌落,所以铝的焊接比钢材焊接要困难得多。
3、易变形由于铝的导热系数是铁的2倍,凝固时的收缩率比铁大2倍,所以铝焊件变形大,如果措施不当就会产生裂纹;并且在焊接时,因导热性好,需要较大的焊接热量才能熔化接头。
因此,一般要求对焊件预热,并采用强规范,由此也恶化了焊接工艺条件。
4、易产生气孔铝及铝合金在焊接时,在空气中马上氧化生成A1203,不但阻碍金属熔合,还会吸收一定的水分。
焊丝表面和母材表面氧化膜吸收的水分,在电弧作用下分解出来的氢被液态金属铝吸收。
此外,焊条药皮中的潮气、空气中的水分也都是氢的来源。
铝合金的一个特征是,氢在液态金属中的溶解度随温度变化的幅度大,又由于铝导热性能好,焊缝凝固快,因此来不及逸出的氢气便形成很多气孔。
铝的纯度愈高,产生气孔的倾向就愈大。
5、易开裂铝合金的凝固不是在某一温度下进行,而是在一温度区间进行。
在开始凝固时温度较高,焊缝呈液-固状态,液态金属比较多,此时的收缩量可由未凝固的液态金属补充;在最后凝固之前,焊缝呈固液状态,液态金属已很少,以间层状存在,由于此时温度处于凝固温度区间的下限,已产生很大的收缩,这样就会在液态的层间处拉开,若无液体补充,便形成裂纹。
一般说,纯铝不易产生凝固裂纹,防锈铝合金裂纹倾向也很小,但硬铝、超硬铝等经热处理强化的铝合金的热裂纹倾向较大。
铝及其合金的焊接性(一)铝的氧化铝不论是固态或液态都极易氧化。
在常温下铝及铝合金表面总有一层氧化铝(Al2O3)薄膜。
尤其在高温下铝将发生强烈氧化。
氧化铝的熔点很高(2050℃),远远超过铝合金的熔点(一般为600℃左右),而且氧化铝密度大(3.85g/cm3),而铝合金密度较小(2.6~2.8g/cm3)。
当气焊铝时,如果不用气焊熔剂,会很明显地看到熔池表面一层氧化铝的黑色皱皮,它阻止了焊丝的熔滴进入熔池,使之无法与基本金属熔合。
又因氧化铝在沉入焊缝后形成难熔夹渣,而且氧化铝还吸附了较多的水分,在焊接时会促使焊缝生成气孔。
因此,铝焊接时,为保证焊接质量,必须去除表面的氧化物,并防止在焊接过程中再氧化。
这是铝及铝合金熔化焊的重要特点。
(二)熔池不易掌握铝及铝合金由固态转变成液态时,没有显著的颜色变化,从而增加了工艺上控制温度的困难。
另外,铝在高温时强度很低,如铝在370℃时强度仅为0.1MPa,在焊接时容易引起烧塌或下漏,甚至焊接接头会整个塌落下来。
因此,铝的全位置焊接,比焊接钢材要困难得多,常常要采用垫板。
(三)热裂纹铝的导热系数约是铁的2倍多,因而要求在焊接时,使用较大功率或能量集中的热源。
当焊件厚度大时,还要预热。
而铝的线膨胀系数约是铁的2倍,在凝固时的收缩率约为铁的3倍,再者铝与钢比较,铝及其合金高温时塑性很差、强度也低,所以,铝件的焊接变形大,恶化了焊接的工艺条件。
如工艺措施不当,还容易产生热裂纹。
工业纯铝和铝锰合金的抗裂性良好,在焊接薄板时不产生裂缝。
但若焊缝金属中,硅的含量大于铁的含量(Fe/Si<1)或焊接接头刚性较大时,则焊缝金属产生热裂纹的倾向将会增大。
铝镁合金焊接时的热裂纹倾向随含镁量的变化而变化。
若焊缝中含镁量较少,产生的低熔点共晶不足以形成连续的晶间薄层,热裂纹倾向不大;若焊缝中含镁量虽较多,但大量的低熔点共晶又能充分填充晶间薄层,因而此时的热裂纹倾向也不大;只有当含镁量在2%~3%时,最容易出现热裂纹。
铝合金及其焊接性作者:单位:天津大学材料成型及控制工程通讯地址:天津大学材料学院【摘要】铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。
铝合金在车辆部件中的应用情况、发展趋向及其在组焊中存在很多问题。
对铝合金及其异种金属焊接接头进行了焊接性试验研究结果表明,其焊接接头有满意的力学性能、抗裂性及抗应力腐蚀性能,适合用于制造轻轨车辆,航空航天领域的广泛应用。
【关键字】铝合金焊接性气孔热裂纹等强性【正文】虽然已经应用铝及其合金焊成许多重要产品,但实际上并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”【1】等1.铝合金焊接中的气孔氢是铝及其合金熔焊时产生气孔的主要原因,已为实践所证明。
弧柱气氛中的水分、焊接材料以及母材所吸附的水分都是焊缝气孔中氢的重要来源。
其中,焊丝及母材表面氧化膜的吸附水份,对焊缝气孔的产生,常常占有突出的地位。
1.1弧柱气氛中水分的影响弧柱空间总是或多或少存在一定数量的水分,尤其在潮湿季节或湿度大的地区进行焊接时,由弧柱气氛中水分分解而来的氢,溶入过热的熔融金属中,可成为焊缝气孔的主要原因。
这时所形成的气孔,具有白亮内壁的特征。
1.2 氧化膜中水分对气孔的影响在正常的焊接条件下,焊丝或工件的氧化膜中所吸附的水分将是生成焊缝气孔的主要原因。
而氧化膜不致密、吸水性强的铝合金,主要是Al-Mg合金,要比氧化膜致密的纯铝具有更大的气孔倾向。
因为Al-Mg合金的氧化膜中含有不致密的MgO,焊接时,在熔透不足的情况下,母材坡口端部未除净的氧化膜中所吸附的水分,常常是产生焊缝气孔的主要原因。
1. 3 减少焊缝气孔的途径避免熔池吸氢是消除或减少焊接气孔的有效方法【2】。
为防止焊缝气孔,可从两方面着手:第一,限制氢溶入熔融金属,或者是减少氢的来源,或者减少氢同熔融金属作用的时间;第二,尽量促使气孔自熔池逸出。
铝及铝合金焊材选用与匹配铝及铝合金焊材的选用与匹配在焊接工艺中起着至关重要的作用。
本文将从焊接材料的特性、焊接材料的选择以及焊材匹配的原则等方面进行论述。
一、焊接材料的特性铝及铝合金焊接材料的特性是了解其性能和应用的前提。
铝及铝合金具有良好的导热性、导电性和耐腐蚀性,且密度低。
铝合金的强度、塑性和硬度等性能根据不同的合金成分和热处理状态而有所差异。
焊接材料的选择应根据实际应用需求进行。
二、焊接材料的选择1. 硬焊料硬焊料是一种高强度的焊接材料,主要用于焊接铝合金结构件。
硬焊料具有良好的耐高温性能,可提供良好的焊缝强度和密封性。
常见的硬焊料有银焊条、铜-锌合金焊条等。
2. 软焊料软焊料是一种低温焊接材料,适用于焊接薄壁铝合金和铝合金与其他金属的连接。
软焊料熔点低,可减少对焊接基材的热影响。
常见的软焊料有铝-硅合金焊丝、铝-锡合金焊丝等。
3. 焊丝铝及铝合金焊接中常用的焊丝有纯铝焊丝和铝合金焊丝。
纯铝焊丝适用于焊接铝及铝合金与其他金属的连接,具有良好的塑性和焊接性能。
铝合金焊丝适用于焊接同种或相近的铝合金件,可提供较高的焊接强度。
4. 焊条焊条主要用于手工弧焊和氩弧焊。
铝及铝合金的焊条主要包括纯铝焊条和铝合金焊条。
纯铝焊条适用于焊接纯铝或铝合金与其他金属的连接。
铝合金焊条适用于焊接同种或相近的铝合金件,焊缝强度较高。
三、焊材匹配的原则焊材的选择应根据所需焊接材料的种类、合金成分和要求的焊接性能来确定。
一般来说,焊接不同种类的铝合金时,应选用相应的焊接材料;焊接相近合金时,应选用合金成分相近的焊接材料。
在焊接过程中,还需注意焊材与基材的相容性。
相容性不良的焊接材料可能导致焊缝强度不高,甚至出现焊接缺陷。
因此,焊接材料的选用应与基材的成分和特性相匹配。
另外,焊材的性能稳定性和可靠性也是选择的考虑因素之一。
优质的焊接材料应具有可靠的焊接性能和稳定的力学性能,确保焊接接头的质量和使用寿命。
结论在铝及铝合金焊接过程中,焊接材料的选用与匹配是确保焊接质量和性能的重要因素。
铝及铝合金钎焊剖析铝及铝合金钎焊是一种广泛应用于航空航天、汽车制造和船舶建造等行业的焊接技术。
钎焊是利用填充金属与基材的溶解或扩散来连接工件的焊接方法。
铝及铝合金钎焊具有高效、环保、高强度等优点,但也存在一些局限性。
本文将对铝及铝合金钎焊进行剖析。
首先,铝及铝合金的钎焊特点如下:1.低熔点:铝及铝合金的熔点相对较低,便于钎焊操作。
2.良好的可塑性:铝及铝合金具有良好的可塑性,可以在较低的温度下完成连接操作。
3.容易氧化:铝及铝合金容易在高温下与空气中的氧气反应,形成表面氧化层,影响钎焊质量。
4.较高的导热性:钎焊铝及铝合金时,需要迅速传递热量以保持焊缝在适宜的温度范围内。
其次,铝及铝合金钎焊的工艺参数如下:1.温度控制:铝及铝合金的钎焊温度一般在450℃-600℃之间,过高会造成材料烧损,过低则无法形成有效连接。
2.填充金属选择:选择合适的填充金属是保证钎焊质量的关键。
常用的填充金属有铝硅合金、铝锰合金、铝铜合金等。
3.表面处理:由于铝及铝合金易于氧化,钎焊之前需要进行表面处理,除去氧化层,以提高钎焊质量。
4.焊接速度:钎焊过程中,焊接速度需要控制在合适的范围内,过快会导致填充金属未充分润湿基材,过慢则容易造成材料烧损。
钎焊铝及铝合金的优点有:1.钎焊过程中不需要融化基材,减少了变形和应力的发生,可以应用于薄板焊接。
2.钎焊接头强度高,焊缝内部无夹杂物。
3.钎焊后焊缝的装饰性更好,美观度高。
4.钎焊后表面平整,无需进行后续磨削和抛光。
铝及铝合金钎焊的局限性有:1.铝及铝合金的导热性好,热量传导迅速,钎焊时需要较快的焊接速度和热输入控制,这对焊工的技术要求较高。
2.铝及铝合金易氧化,钎焊时需要采取措施防止氧化层生成,否则会影响焊接质量。
3.部分铝合金在钎焊时容易产生热裂纹,需要注意合金的选择和焊接参数的控制。
综上所述,铝及铝合金钎焊是一种广泛应用于航空航天、汽车制造和船舶建造等行业的焊接技术,具有高效、环保、高强度等优点。
铝及铝合金的焊接导言:铝及铝合金是目前工业中广泛应用的材料,其具有轻质、导热性好、耐腐蚀等优点,被广泛用于航空、汽车、建筑等领域。
然而,铝及铝合金的焊接过程相对较为复杂,需要注意焊接技术、焊接参数以及焊接材料的选择等方面的问题。
本文将从这些方面对铝及铝合金的焊接进行探讨。
一、焊接技术1. 熔化极氩弧焊(GTAW)熔化极氩弧焊是铝及铝合金焊接中常用的技术之一。
其特点是焊接过程中产生的热量较小,对基材影响小,焊缝质量较高。
在熔化极氩弧焊中,焊工需要注意控制电弧长度、氩气流量和焊接速度等参数,以确保焊接质量。
2. 金属惰性气体保护焊(MIG)金属惰性气体保护焊是另一种常用的铝及铝合金焊接技术。
在该技术中,焊丝通过喷射的惰性气体(如氩气)进行保护,防止氧气和水蒸气等对焊接过程的干扰。
金属惰性气体保护焊适用于大批量生产,焊接速度快,效率高。
二、焊接参数1. 电弧电流电弧电流是影响焊接质量的重要参数之一。
对于铝及铝合金的焊接,一般需要较大的电弧电流,以确保焊接区域能够达到足够高的温度,从而保证焊缝的质量。
2. 电弧电压电弧电压也是影响焊接质量的重要参数。
过高或过低的电弧电压都会影响焊缝的质量。
过高的电弧电压容易导致熔融过深,过低的电弧电压则容易导致焊缝质量不合格。
3. 焊接速度焊接速度是焊接过程中需要控制的另一个重要参数。
过快的焊接速度会导致焊缝质量不佳,焊接强度降低;过慢的焊接速度则容易导致熔融过深,产生热影响区过大。
三、焊接材料选择1. 焊丝对于铝及铝合金的焊接,一般选择铝合金焊丝作为填充材料。
铝合金焊丝具有良好的流动性和机械性能,可以保证焊缝的质量。
在选择焊丝时,需要根据焊接材料和焊接要求进行合理的选择。
2. 气体保护剂在焊接过程中,需要使用惰性气体对焊接区域进行保护,以防止氧气和水蒸气的干扰。
常用的气体保护剂有纯氩气、氩气和氦气的混合气体等。
选择合适的气体保护剂可以提高焊接质量。
结语:铝及铝合金的焊接是一项复杂而重要的工艺,需要掌握合适的焊接技术、合理的焊接参数以及选择适当的焊接材料。
铝及铝合金的材料及焊接性一、铝及铝合金的分类、成分和性能(1)铝及铝合金的分类。
铝是银白色的轻金属,纯铝的熔点660℃,密度2.7g∕Cm3。
工业用铝合金的熔点约566℃。
铝具有热容量和熔化潜热高、耐腐蚀性好,以及在低温下保持良好的力学性能等特点。
铝及铝合金可分为工业纯铝、变形铝合金(分非热处理强化铝合金、热处理强化铝合金两类)和铸造铝合金。
变形铝合金是指经不同的压力加工方法(经过轧制、挤压等工序)制成的板、带、棒、管、型、条等半成品材料,铸造铝合金以合金铸锭供应。
铝合金分类及性能特点见表1-1。
按GB/T3190—1996和GB/T1674—1996的规定,纯铝和铝合金牌号命名的基本原则是:直接采用国际四位数字体系牌号;未命名为国际四位数字体系牌号的纯铝及其合金采用四位字符牌号。
四位字符牌号的第一位、第三位、第四位为阿拉伯数字,第二位为英文大写字母(如“A”)。
纯铝编号系统的第一位为力”,如IXXX或IAxx,最后两位数字表示铝的纯度。
2xxx为AI-CU系;3xxx为Al-Mn系;4xxx为Al-Si系;5xxx为Al-Mg系;6xxx为AI-Mg-Si系;7xxx为Al・Zn系;8xxx为AI-其他元素系;9xxx为AI.备用系。
我国变形铝合金的牌号表示法与国际上的通用方法基本一致。
①工业纯铝。
工业纯铝含铝99%以上,熔点660℃,熔化时没有任何颜色变化。
表面易形成致密的氧化膜,具有良好的耐蚀性。
纯铝的导热性约为低碳钢的5倍,线胀系数约为低碳钢的2倍。
纯铝强度很低,不适合做结构材料。
退火的铝板抗拉强度为60~100MPa,伸长率为35%~40%°②非热处理强化铝合金。
非热处理强化铝合金通过加工硬化、固溶强化提高力学性能,特点是强度中等、塑性及耐蚀性好,又称防锈铝,原代号LFXXoALMn合金和AI-Mg合金属于防锈铝合金,不能热处理强化,但强度比纯铝高,并具有优异的抗腐蚀性和良好的焊接性,是目前焊接结构中应用广泛的铝合金。
铝合金的焊接性分析一、铝合金具有特殊的物理化学性能铝合金的外观呈银白色,密度小、电阻率低,热膨胀系数和导热系数大。
由于铝为面心立方结构,无同素异构转变,无“延一脆”转变,因而具有优异低温韧性,在低温下能保持良好的力学性能。
此外,铝及铝合金还具有优异的耐蚀性能和较高的比强度,对热和光都具有良好的反射率,磨削时无火花和无磁性。
纯铝的熔点为660"C,而铝合金随着其含的合金元素的不同,它的熔点在482C~ 660'C之间变化。
铝及铝合金从常温加热到熔化状态时,没有颜色的变化,这就使判断是否接近熔点变的十分困难。
铝及铝合金可以铸造、轧制、冲压、拔丝、施压、拉形和滚扎等各种方法制成形状各异的制品。
铝及铝合金容易机械加工,且加工速度快,这也是大量使用铝零件的重要因素之一。
铝的机械性能、电化学性能、化学或油漆涂饰的变化范围也较宽。
铝及铝合金的机械性能随纯度而变化,纯度越高,强度越低,塑性越高。
随着温度的升高,其抗拉强度降低;温度降低,则抗拉强度就增高,延伸率随之增加。
铝及铝合金察露在空气中时,会很快形成种黏着力强且耐热的氧化铝薄膜。
在焊接前,必须仔细清除这层氧化膜,才能在熔焊时,基体和填充金属熔合良好。
在钎焊时,钎料有很好的流动性。
氧化膜可用溶剂去除,也可在惰性气氛下,由焊接电弧的作用去除,或者用机械的或化学的方法去除。
熔焊时,就需要高的热量输入。
对大型截面焊接时,需要进行预热。
二、铝及铝合金的焊接工艺方法(一)铝合金的焊接方法铝合金的焊接方法很多,各种方法有其不同的应用场合。
除了传统的熔焊、电阻焊、气焊方法外,其他-些焊接方法(如等离子弧焊、电子束焊、真空扩散焊等)也可以容易地将铝合金焊接在一起。
铝合金的气焊氧一乙炔气焊的热效率低,焊接热输入不集中,焊接铝及铝合金时需采用熔剂,焊后又需清除残渣,接头质量及性能也不高。
因为气焊设备简单,无需电源,操作方便灵活,常用于焊接对质量要求不高的铝合金构件,如厚度较薄的薄板及小零件,以及补焊铝合金构件和铝铸件。
第一节铝及铝合金材料分类,性能及焊接性被焊接的金属或合金统称为基体金属,或称为母材。
作为基体金属,铝及铝合金的分类、牌号及状态代号与钢及其他金属显著不同。
特别是铝及铝合金的状态代号非常复杂,又非常重要。
它们表示了铝及铝合金焊前变形强化的不同程度或不同热处理强化的不同程度。
不了解这些状态代号的具体规定就无法了解母材焊前的工艺经历、力学性能、组织特征及焊接特性。
一、分类铝及铝合金分为两大类。
一大类为变形铝及铝合金,它一般表现为迨金工业半成品,即板、棒、管、丝、带等,或具有一定形状及尺寸的锻件和挤压型材。
另一大类为铸造铝合金,它一般表现为铸造的零件或其毛坯。
如图2-1-1变形铝及铝合金又可分为两类,一类为热处理不可强化的铝及铝合金(或称为非热处理强化铝及铝合金)。
它们只可变形强化,由于热处理强化效应很弱,故不能热处理强化。
此类铝及铝合金有工业纯铝,A1-Mn系防锈铝金金、A1-Mg系防锈铝合金。
另一类为热处理强化铝合金。
它们既可变形强化,也可以热处理强化,此类铝合金有A1-Cu、A1-Mg-Si、A1-Zn、A1-Li等系列铝合金。
2-1-1 铝及铝合金的分类按我国标准GB/T 16474--1996《变形铝及铝合金牌号表示法》,变形铝及铝合金采用四位字符体系牌号,牌号的第一位数字表示铝及铝合金的组别,如表2-1所示;第三及第四位数字表示同一组中不同的铝合金或表示纯铝的纯度。
按我国标准GB/T 16475--1966《变形铝及铝合金状态代号》,铝及铝合金有下列五种状态:F—自由加工状态。
合金力学性能无规定。
0—退火状态。
合金充分软化,1延性高,强度水平最低。
H—加工硬化状态。
有不同硬化程度,用H代号后的数字表示。
W—固溶热处理状态。
合金经固溶处理,然后自然时效。
T—热处理状态(不同于F、O、H状态)。
合金固溶时效后有不同强化程度,用T代号后的数字表示。
加工硬化状态代号H后面的第一位数字的含义:H1—单纯加工硬化状态,未经附加热处理。
铝及铝合金的焊接特点(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。
阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。
铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。
焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。
在焊接过程加强保护,防止其氧化。
钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。
气焊时,采用去除氧化膜的焊剂。
在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。
铝的热导率则是奥氏体不锈钢的十几倍。
在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。
铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。
铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。
生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。
在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。
在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。
根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。
高温铝强度很低,支撑熔池困难,容易焊穿。
作者简介:朱则刚(1956-),男,大学本科学历,东风汽车公司工程师,主要从事焊接技术工作。
摘要关键词::铝及铝合金材料密度低、强度高、热电导率高、耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。
根据铝及铝合金的性能特点,本文阐述了铝及铝合金焊接的工艺特点和铝及铝合金的焊接方法;以及铝及铝合金常见焊接材料的应用;同时指出了铝及铝合金的焊接工艺和焊接后的处理。
铝合金;焊接方法;性能特点;加工工艺铝及铝合金的性能特点及其焊接加工东风汽车公司朱则刚Aluminum and Aluminum Alloy Performance Characteristics and the Welding Process铝合金焊接技术作为铝合金在工业领域中扩大应用的关键技术之一,必然会得到进一步的发展。
其中应用普遍的脉冲MIG,TIG焊会随着微处理器(MCU)和数字信号处理芯片(DSP)为核心的全数字化焊机的不断进步而使更多以前只停留在铝合金焊接理论上的技术变为现实。
激光焊、激光-电弧复合焊、双光束激光焊是近年发展起来的焊接铝合金的新工艺,新兴的搅拌摩擦焊一出现就显示了其焊铝的巨大优势,不久以后很可能会代替MIG焊,承担大部分铝合金焊接工作量。
虽然用焊接来连接铝及铝合金产品,仅仅只有50 ̄60年的历史,但是在这短短的几十年时间里,已经发展了完善的铝及铝合金焊接工艺技术。
焊接技术的发展使可焊接铝及铝合金材料范围扩大了。
现在不仅掌握了热处理强化的高强度硬铝合金焊接时的各种难题,且适用于铝及铝合金的焊接方法增多了。
现在除了传统的熔焊、电阻焊、钎焊之外,脉冲氩(氦)弧焊、方波交流钨极氩弧焊、等离子弧焊、真空电子束焊、真空机气保护钎1铝及铝合金的性能特点焊以及扩散焊等都可以很容易地将铝及铝合金焊接在一起。
在大多数情况下使用焊接其它材料所用的普通设备和工艺,就可以进行铝及铝合金焊接,有时也需要特殊的设备和工艺。
铝及铝合金的焊接性分析铝及其合金化学活泼性很强,表面易形成氧化膜,且多具有难熔性质(如Al2O3的熔点约为2050℃,MgO的熔点约为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。
由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属的夹杂物。
同时,氧化膜(特别是有MgO存在的不很致密的氧化膜)可以吸收较多的水分而常常成为形成焊缝气孔的重要原因之一。
此外,铝及其合金的线胀系数大(约为钢的2倍),导热性又强(比钢约大一倍多),焊接时容易产生翘曲变形。
一.焊缝气孔(一)铝及铝合金熔焊时形成气孔的特点铝及其合金熔焊时最常见的缺陷是焊缝气孔,尤其是纯铝和防锈铝的焊接。
氢是铝及其合金熔焊时产生气孔的主要原因,氢的来源,主要是弧柱气氛中的水分、焊接材料以及母材所吸附的水分。
其中,焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的产生,常占有突出地位。
1.弧柱气氛中水分的影响弧柱空间总是或多或少存在一定量的水分,尤其是在潮湿季节或湿度大的地区进行焊接时。
由弧柱气氛中水分分解而来的氢,熔入过热的熔融金属中,可成为焊缝气孔的主要原因。
此时所形成的气孔,具有白亮内壁的特征。
弧柱气氛中的氢之所以能使焊缝形成气孔,与它在铝及其合金中的溶解度变化特性有关。
在平衡条件下,氢在铝中的溶解度在凝固点时可从 1.69突降到0.036ml/100g,相差约20倍(在钢中只相差不到2倍),其次,由于铝的导热性很强,在同样的工艺条件下,铝熔合区的冷却速度可为高强钢的4-7倍,不利于气泡的逸出,而残留在焊缝金属中形成气孔。
实际的冷却条件下并非平衡状态,伴随着凝固过程的发展,在已结晶的枝晶前沿形成许多微小气泡,枝晶晶体的交互生长致使气泡的成长受到限制,并且不利于浮出,因而可沿结晶的层状线形成均布形式小气孔。
不同的合金系统,对弧柱气氛中水分的敏感性是不同的,纯铝对气氛中水分最为敏感。
Al-Mg合金含Mg量增加,氢的溶解度和引起气孔的临界分压PH2均随之增大,因而对吸收气氛中的水不太敏感,相比起来,仅对焊接气氛中的水分而言,同样焊接条件下,纯铝焊缝产生气孔的倾向要大些。
铝及铝合金的焊接性。
⑴强的氧化能力铝在空气中极易与氧结合生成致密结实的Al2O3膜薄,厚度约0.1μm。
Al2O3的熔点高达2050℃,远远超过铝及铝合金的熔点(约660℃),而且体积质量大,约为铝的1.4倍。
焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易形成夹渣。
氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。
因此,焊前必须严格清理焊件表面的氧化物,并加强焊接区域的保护。
⑵较大的热导率和比热容铝及铝合金的热导率和比热容约比钢大1倍,焊接过程中大量的热量被迅速传导到基体金属内部。
因此,焊接铝及铝合金比钢要消耗更多的热量,焊前常需采取预热等工艺措施。
⑶热裂纹倾向大线膨胀系数约为钢的2倍,凝固时的体积收缩率达6.5%左右,因此焊接某些铝合金时,往往由于过大的内应力而产生热裂纹。
生产中常用调整焊丝成分的方法来防止产生热裂纹,如使用焊丝HS311。
⑷容易形成气孔形成气孔的气体是氢。
氢在液态铝中的溶解度为0.7mL/100g,而在660℃凝固温度时,氢的溶解度突降至0.04ml/100g,使原来溶解于液态铝中的氢大量析出,形成气泡。
同时,铝和铝合金的密度小,气泡在熔池中的上升速度较慢,加上铝的导热性强,熔池冷凝快,因此,上升的气泡往往来不及逸出,留在焊缝内成为气孔。
弧柱气
氛中的水分、焊接材料及母材表面氧化膜吸附的水分都是氢的主要来源,因此焊前必须严格做好焊件的表面清理工作。
⑸接头不等强度铝及铝合金的热影响区由于受热而发生软化、强度降低使接头与母材无法达到等强度。
纯铝及非热处理强化铝合金接头的强度约为母材的75%~100%;热处理强化铝合金的接头强度较小,只有母材的40%~505。
⑹焊穿铝及铝合金从固态转变为液态时,无明显的颜色变化,所以不易判断母材温度,施焊时常会因温度过高无法察觉而导至焊穿。