物理化学期末必备知识
- 格式:doc
- 大小:255.76 KB
- 文档页数:12
物理化学复习知识点归纳物理化学作为化学的一个主要分支,关注物质的物理性质、化学反应、能量转化等方面的研究。
下面将对物理化学的基本知识点进行归纳和复习。
1.原子结构和化学键:-定义:原子是化学物质中最小的粒子,由质子(正电荷)、中子(中性)和电子(负电荷)组成。
-原子核:由质子和中子组成,质子数决定了元素的原子序数,中子数可以影响同位素的形成。
-电子壳层结构:分为K、L、M等壳层,每个壳层能容纳的电子数量有限,遵循2n^2的规律(n为壳层编号)。
-原子键:包括离子键、共价键和金属键。
离子键由离子间的电荷作用力形成,共价键由相互共享电子形成,金属键由金属原子之间的电子云相互作用形成。
2.分子的构象和反应动力学:-构象:指分子在空间中的排列方式,由键角和键长决定。
分子的构象决定了其物理和化学性质。
-电离平衡:涉及酸碱反应的平衡,Kw表示了水的离子化程度和酸碱强度。
-化学动力学:研究化学反应的速率和机理。
反应速率受温度、浓度、反应物的结构和催化剂等因素影响。
3.热力学和热化学:-热力学:研究物质能量转化和热平衡的学科。
包括物质的内能、焓、熵、自由能等概念。
-熵:表示体系的无序度,体系越有序,熵值越小。
熵的增加是自然趋势,反映了热力学第二定律。
-热化学:研究化学反应中能量变化的学科。
包括焓变、标准焓变、热容、热效应等概念。
-反应热力学:研究反应的方向和热效应。
根据吉布斯自由能的变化可以判断反应是否自发进行。
4.量子化学:-波动粒子二象性:根据波粒二象性原理,微观粒子既可以表现出粒子性质,也可以表现出波动性质。
-波函数和波动函数:描述微观粒子在空间中的波动性质和定域性质。
波函数的平方可以给出粒子出现在一些空间区域的概率。
-氢原子的定态:薛定谔方程描述了电子在氢原子中的定态和能级。
以上是物理化学的一些基本知识点的归纳和复习。
在复习过程中,建议结合教材和课堂笔记,注重理解和记忆重点概念和公式,同时通过做习题和实践操作巩固知识。
物理化学1第一章 1热力学是研究能量相互转换过程中所遵循的规律的科学.是12定律的基础。
一是研究化学变化和相变的热效应问题。
二是解决变化方向和限度问题及化学平衡相平衡的有关问题 2局限性:对微观无法解答,只反应微观粒子平均行为有统计意义,只研究体系变化可能性限度问题。
4状态函数:是体系状态的单值函数与体系形成和将来变化无关,变化仅取决于始终态,微小变化是全微分 准静态准静态压缩环境做功最少,环境对体系做最小功 可逆:状态1-2,体系环境都完全复原。
特点:体系无限接近平衡态,体系环境完全复原,体系在可逆中做最大功环境最小功 11盖斯定律:一个化学反应,不论一步还是几步热效应同 12生成热:元素单质化合成单一化合物的反应热(后面-前面) 第二章 热力学第一定律:能量守恒.不供给能量而可连续不断对外做的第一类永动机是不可能造成的.自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种,能量保持不变 1自发过程共同特征:不可逆性 1第二定律:1克劳修斯不可能把热量由低温物到高温无无其他变化2开尔文:不可能单一热源取出热全转为功无其他变化(第二类永动机不可造成) 2卡诺循环结论:可逆热机效率只与两热源温度有关 卡诺定理:在同一组热源之间工作的所有热机可你热机效率最大 3熵增原理:状态函数.在绝热过程中体系的熵值永不减少△S >=0(条件:绝热、孤立、自发) △S=Qr/T(熵变定义)基本公式 过程可逆热效应才能带(混合过程不可逆不行) 4亥姆霍兹函数:F=U-TS d F(T,V,W ’)<=0是定温定容和非体积功为0的条件下自发过程的判据 5吉不斯函数:G=H-TS d G(T,P,W ’)<=0:定温定压,体系G 减小等于可逆过程非体积功,不可逆则大于非体积功 dG=-SdT+Vdp 5化学势定义:是偏摩尔吉布斯函数,由高类相到低类,压力增,化学势增. 物理意义:决定物质传递方向和限度的强度因素 判据 TP 一定才有偏摩尔量 6拉乌尔:定温下,稀溶液中溶剂A 饱和蒸汽压pA 与溶剂在溶液中摩尔分数xA 正比 PA=PA*Xa 7亨利定律:定温稀溶液挥发性溶质的平衡分压pB 与该溶质在溶液中的浓度成正比pb=kbxb 8稀溶液依数性:蒸汽压下降,沸点升高,凝固点降低,渗透现象.本质是蒸气压下降(沸点高凝低渗透现象)生理盐水与血液等渗 眼药水与眼球组织等 第六章 4反应机理:反应物变为产物所经历的途径,又称反应历程 5基元反应:由反应物分子(或离子.原子.自由基等)直接作用生成新产物的反应 A+B=C 是简单反应基元反应双分子反应二级反应 是双分子反应一定是二级反应 10一级反应:反应速率与反应物浓度的一次方成正比的反应 特征:速率常数k 的数值与所用的浓度单位无关k 的量纲为【时间】-1 属于一级反应的有:放射性元素的蜕变。
物化期末公式总结一、热力学方面的公式1. 热力学第一定律:ΔU = Q + W这个公式表示了能量的守恒,其中,ΔU是系统内能的变化,Q是系统吸收或释放的热量,W是系统对外界做功。
2. 热力学第二定律:ΔS≥0这个公式表示了熵的增加趋势,系统在无限接近绝对零度时,熵趋于最小。
3. 热力学第三定律:绝对零度熵为0这个公式表示了在绝对零度下,熵为0。
4. 焓的变化:ΔH = ΔU + PΔV这个公式表示了焓的变化,其中,ΔH是焓的变化,ΔU是系统内能的变化,P是压强,ΔV 是体积的变化。
5. 熵的变化:ΔS = Q/T这个公式表示了熵的变化,其中,ΔS是熵的变化,Q是系统吸收或释放的热量,T是温度。
二、化学反应方程的计算1. 物质的量与摩尔质量:物质的量n = m/M其中,n是物质的量,m是物质的质量,M是摩尔质量。
2. 化学反应的平衡常数:Kc = ([C]^c[D]^d) / ([A]^a[B]^b)其中,[C]、[D]、[A]、[B]分别表示化学反应中的物质浓度,a、b、c、d分别表示化学反应中物质的摩尔系数。
3. 反应速率与物质浓度的关系:v = k[A]^a[B]^b其中,v表示反应速率,k表示速率常数,[A]、[B]分别表示反应物质的浓度。
三、电化学方面的公式1. Faraday定律:m = nFz其中,m是电化学反应的产物质量,n是电子数,F是法拉第定数,z是电化学反应的化学当量。
2. 电池方程:Ecell = Ecathode - Eanode这个公式表示了电池的电动势,Ecell是电池的电动势,Ecathode是阴极半反应的标准电势,Eanode是阳极半反应的标准电势。
3. 纳仑方程:Ecell = E°cell - (RT/nF)lnQ这个公式表示了电池的电动势,E°cell是标准电动势,R是理想气体常量,T是温度,n 是电子数,F是法拉第定数,Q是反应物质浓度的比值。
物化期末知识点总结大全一、物理知识点总结一、机械运动1. 位移、速度、加速度的关系机械运动的基本量是位移、速度、加速度。
位移指物体从一个位置到另一个位置之间的直线距离。
速度是指物体在单位时间内移动的距离,是位移对时间的比值。
加速度是速度对时间的变化率,表示物体单位时间内速度的增量。
2. 牛顿三定律牛顿三定律是描述物体运动状态的普遍定律,包括惰性定律、运动定律和作用-反作用定律。
3. 动能和势能物体的运动状态可以转化为动能和势能。
动能是物体由于运动而具有的能量,与物体的速度和质量有关。
势能是物体由于位置而具有的能量,与物体的位置和形状有关。
4. 动量和冲量动量是物体运动状态的表示,是物体质量和速度的乘积。
冲量是受力作用时间的乘积,是动量的变化量。
5. 受力分析受力分析是描述物体运动规律的方法,通过受力分析可以得到物体的运动状态、加速度和速度等信息。
6. 转动运动转动运动是物体围绕轴线进行的旋转运动,与物体的转动惯量、角速度和角加速度有关。
7. 简谐运动简谐运动是物体周期性运动的一种形式,与物体的振幅、周期和频率有关。
二、电磁学知识点总结1. 电荷、电场和电势电荷是物质固有的物理特性,根据电荷之间的相互作用可以定义电场和电势。
电场是电荷在周围产生的力场,描述了电荷之间的相互作用。
电势是描述电荷位置的物理量,与电势能和电势差有关。
2. 电路和电流电路是由电源、导线和电阻等元件组成的电路网络,描述了电荷在电路中的流动情况。
电流是电荷在单位时间内通过导线的数量,是描述电路中电荷流动的物理量。
3. 电场和电势的关系电场和电势之间存在一定的关系,电场强度的定义与电势的梯度有关,描述了电场在空间中的分布情况。
4. 电磁感应和电磁波电磁感应是描述导体中感生感应电动势的物理过程,与导体的运动状态和磁场的变化有关。
电磁波是由电场和磁场相互作用而产生的电磁波动,与电磁场的振荡有关。
5. 电磁场的能量和动量电磁场具有能量和动量,能量密度和动量密度是描述电磁场物理性质的重要参数。
物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
物化期末知识点总结物理化学是一门重要的自然科学学科,涉及到物质的结构、性质、变化规律以及物质与能量之间的相互转化关系。
在大学化学专业的课程中,物化是一个重要的学科,学生需要系统学习和掌握其中的理论知识和实验技能。
针对即将到来的物化期末考试,总结以下物化知识点,以帮助学生复习和备考。
一、物理化学基础知识1. 物质的结构物质的结构是物理化学的基础,它包括原子、分子和晶体结构。
在期末考试中,学生需要了解原子的结构、电子排布、元素周期表等基本概念,并能够应用到相关计算和问题解决中。
2. 热力学热力学是物理化学的重要分支,它研究物质热学性质、能量转化和宏观物质的运动规律。
学生需要掌握热力学基本概念,如热力学系统、热力学态函数、热力学过程等,同时理解热力学定律和热力学循环等内容。
3. 动力学动力学是研究化学反应速率、影响因素和反应机理的学科,学生需要掌握化学动力学的基本理论知识,包括化学反应速率方程、活化能、反应机理等内容。
4. 理论化学和计算化学理论化学和计算化学是物化中的新兴领域,它研究分子和物质的数学模拟和计算方法。
在期末考试中,学生需要了解理论化学模型、分子力学方法、分子轨道理论等内容。
二、物理化学实验技能除了理论知识外,物理化学课程也包括实验课程,学生需要掌握基本的实验操作技能和实验数据处理方法。
以下是物化实验技能的主要内容:1. 基本实验操作学生需要掌握化学实验室的基本操作技能,包括称量、配制溶液、分液、过滤、蒸馏等常用技术。
2. 实验数据处理学生需要了解常用的实验数据处理方法,包括数据采集、数据处理、实验结果分析和统计等技术。
3. 实验安全在进行物理化学实验时,学生需要了解实验室安全知识,包括化学品的安全使用、废液处理、急救知识等内容,以确保实验过程和实验人员的安全。
以上是物理化学期末考试的主要知识点总结,学生在复习备考时可结合课程教材和学习笔记进行系统复习,同时针对重点难点进行重点突破。
希望同学们能够充分准备,取得优异的成绩。
物理化学复习知识点第⼀章热⼒学第⼀定律1.基本概念 1.1体系和环境系统(System )-被划定的研究对象称为系统。
环境(surroundings )-与系统密切相关、有相互作⽤或影响所能及的部分称为环境。
1.2状态函数*状态函数——由系统的状态确定的系统的各种热⼒学性质称为系统的状态函数。
*它具有以下特点:(1)状态函数是状态的单⼀函数。
(2)系统的状态发⽣变化,状态函数的变化值取决于系统始、终态。
与所经历的途径⽆关。
(3)状态函数的微⼩变化,在数学上是全微分。
(4)不同状态函数的集合(和、差、积、商)也是状态函数。
1.3体积功功(work )--系统与环境之间传递的除热以外的其它能量都称为功,⽤符号W 表⽰。
体积功就是体积膨胀或缩⼩所做的功。
系统对环境作功,W <0 环境对体系作功,W >0 1.4可逆过程(下)1.5各种热⼒学函数(U, H, Q,W)U 和H 是状态函数,Q 和W 不是状态函数。
1.6标准摩尔⽣成焓概念在标准压⼒下,反应温度时,由最稳定的单质合成标准状态下⼀摩尔物质的焓变,称为该物质的标准摩尔⽣成焓,⽤下述符号表⽰:(物质,相态,温度)2 体系和环境 2.1 体系(系统)*敞开系统(open system )系统与环境之间既有物质交换,⼜有能量交换。
*封闭系统(closed system )系统与环境之间⽆物质交换,但有能量交换。
*孤⽴系统(isolated system )系统与环境之间既⽆物质交换,⼜⽆能量交换。
热⼒学上有时把系统和环境加在⼀起的总体看成是孤⽴系统。
2.2状态函数体系的⼀些性质,其数值仅取决于体系所处的状态,⽽与体系的历史⽆关;它的变化值仅取决于体系的始态和终态,⽽与变化的途径⽆关。
具有这种特性的物理量称为状态函数。
对于循环过程:所有状态函数的改变值均为零 2.3可逆过程体系经过某⼀过程从状态(1)变到状态(2)之后,如果能使体系和环境都恢复到原来的状态⽽未留下任何永久性的变化,则该过程称为热⼒学可逆过程。
物理化学期末复习知识点第二章热力学第一定律一、热力学基本概念1.状态函数状态函数,是指状态所持有的、描述系统状态的宏观物理量,也称为状态性质或状态变量。
系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的改变为定值;系统恢复原来状态,状态函数亦恢复到原值。
2.热力学平衡态在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变化,则称系统处于热力学平衡态。
热力学平衡须同时满足平衡(△T=0)、力平衡(△p=0)、相平衡(△μ=0)和化学平衡(△G=0)4个条件。
二、热力学第一定律的数学表达式1.△U=Q+W或dU=ΔQ+δW=δQ-p amb dV+δW`规定系统吸热为正,放热为负。
系统得功为正,对环境做功为负。
式中p amb为环境的压力,W`为非体积功。
上式适用于封闭系统的一切过程。
2.体积功的定义和计算系统体积的变化而引起的系统和环境交换的功称为体积功。
其定义式为:δW=-p amb dV(1)气体向真空膨胀时体积功所的计算W=0(2)恒外压过程体积功W=p amb(V1-V2)=-p amb△V对于理想气体恒压变温过程W=-p△V=-nR△T(3)可逆过程体积功W r=-⎰21pVVdV(4)理想气体恒温可逆过程体积功W r=⎰21pVVdV=nRTln(V1/V2)=nRTln(p2/p1)(5)可逆相变体积功W=-pdV三、恒热容、恒压热,焓1.焓的定义式H def U + p V2.焓变(1)△H=△U+△(pV)式中△(pV)为p V乘积的增量,只有在恒压下△(pV)=p(V2-V1)在数值上等于体积功。
(2)△H=⎰21,T T m p dT nC此式适用于理想气体单纯p VT 变化的一切过程,或真实气体的恒压变温过程,或纯的液、固态物质压力变化不大的变温过程。
3. 内能变 (1)△U=Qv式中Qv 为恒热容。
此式适用于封闭系统,W`=0、dV=0的过程。
初中物理化学知识点归纳总结大全说明:本文是一份初中物理和化学知识点的归纳总结,旨在帮助初中生复习和巩固这两门科学学科的基础知识。
下面将按照物理和化学两个学科分别进行总结。
一、物理知识点归纳总结1. 运动学1.1 速度和加速度的定义和计算方法1.2 运动图象和运动规律的关系1.3 动力学中的牛顿三定律1.4 力的合成与分解1.5 简单机械原理的应用2. 声学2.1 声音的产生、传播和接受2.2 音的特征参数及其计算2.3 声音的干扰和共振现象2.4 声的传播速度和频率的关系3. 光学3.1 光的反射和折射定律3.2 光的色散和光的成像原理3.3 镜子和透镜的应用3.4 光的波动性和粒子性的实验现象3.5 光的干涉和衍射现象4. 电学4.1 电荷和电流的基本概念4.2 电阻、电压和电功率的关系4.3 并联与串联电路的特性4.4 电磁感应和电磁场的基本原理4.5 电能的转化和传输二、化学知识点归纳总结1. 物质的组成和性质1.1 原子和分子的概念1.2 元素和化合物的区别1.3 改变物质性质的方式2. 反应和平衡2.1 化学反应的基本概念2.2 反应物和生成物的关系2.3 化学方程式的平衡及其影响因素2.4 确定反应类型的指标3. 物质的变化3.1 燃烧与氧化反应3.2 酸碱反应和中和反应3.3 晶体的溶解和结晶4. 常见物质的性质和应用4.1 金属和非金属的性质比较4.2 酸、碱和盐的性质和应用4.3 硫、氧和氢气在化学反应中的应用总结:本文对初中物理和化学的主要知识点进行了归纳总结,常见的物理和化学概念以及相关原理在其中都有涉及。
希望本文能够帮助到初中生们更好地理解和掌握这两门科学学科,为今后的学习打下坚实的基础。
物理化学知识点物理化学知识点概述1. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统之间也处于热平衡状态。
- 第一定律:能量守恒,系统内能量的变化等于热量与功的和。
- 第二定律:熵增原理,自然过程中熵总是倾向于增加。
- 第三定律:当温度趋近于绝对零度时,所有纯净物质的熵趋近于一个常数。
2. 状态方程- 理想气体状态方程:PV = nRT,其中P是压强,V是体积,n是摩尔数,R是理想气体常数,T是温度。
- 范德瓦尔斯方程:(P + a(n/V)^2)(V - nb) = nRT,修正了理想气体状态方程在高压和低温下的不足。
3. 相平衡与相图- 相律:描述不同相态之间平衡关系的数学表达。
- 相图:例如,水的相图展示了水在不同温度和压强下的固态、液态和气态的平衡关系。
4. 化学平衡- 反应速率:化学反应进行的速度,受温度、浓度、催化剂等因素影响。
- 化学平衡常数:在一定温度下,反应物和生成物浓度之比达到平衡时的常数值。
5. 电化学- 电解质:在溶液中能够产生带电粒子(离子)的物质。
- 电池:将化学能转换为电能的装置。
- 电化学系列:金属的还原性或氧化性排序。
6. 表面与胶体化学- 表面张力:液体表面分子间的相互吸引力。
- 胶体:粒子大小在1到1000纳米之间的混合物,具有特殊的表面性质。
7. 量子化学- 量子力学基础:描述微观粒子如原子、分子的行为。
- 分子轨道理论:通过分子轨道来描述分子的结构和性质。
- 电子能级:原子和分子中电子的能量状态。
8. 光谱学- 吸收光谱:分子吸收特定波长的光能,导致电子能级跃迁。
- 发射线谱:原子或分子在电子能级跃迁时发出特定波长的光。
- 核磁共振(NMR):利用核磁共振现象来研究分子结构。
9. 统计热力学- 微观状态与宏观状态:通过系统可能的微观状态数来解释宏观热力学性质。
- 玻尔兹曼分布:描述在给定温度下,粒子在不同能量状态上的分布。
物化生考试常见知识点总结在物化生考试中,有一些常见的知识点是我们需要重点掌握的。
本文将对这些知识点进行总结,以便大家在考试中能够更好地应对。
一、物理知识点总结1. 力学:包括运动学和静力学两个方面,其中运动学涉及物体的运动、速度、位移等内容,静力学则包括力的合成、分解以及平衡条件等知识点。
2. 电磁学:主要包括电路和电磁感应两大内容,电路方面需熟悉电流、电阻、电势差等基本概念,电磁感应部分则涉及法拉第电磁感应定律、电磁感应现象等知识点。
3. 光学:主要包括光的传播、反射、折射、干涉和衍射等内容,对光的波动性和粒子性有一定的了解。
4. 热学:包括热力学和热传导两个方面,热力学涉及温度、热量、热容等基本概念,热传导则关注热能在物体中的传递方式。
二、化学知识点总结1. 元素与化合物:需要熟悉元素周期表中的元素及其基本属性,了解元素的周期性规律和化合物的成分及化学式。
2. 反应与平衡:了解化学反应的基本类型,掌握化学方程式的撰写和平衡反应方程式的解法。
3. 酸碱与盐:掌握酸碱溶液的性质和常见的化学反应,包括中和反应和盐的生成等内容。
4. 氧化还原反应:了解氧化还原反应的基本概念和规律,熟悉常见的氧化还原反应类型,如金属与酸反应等。
5. 键与化学键:熟悉原子间的化学键的形成和类型,明白离子键、共价键和金属键的特点及区别。
6. 配位化学:了解过渡金属离子和配体之间的配位作用,掌握配合物的结构和性质。
三、生物知识点总结1. 细胞生物学:掌握细胞的基本结构和功能,了解细胞膜的结构与功能、细胞器的组成与作用,以及细胞分裂和细胞周期等内容。
2. 遗传与分子生物学:熟悉基因与染色体、DNA的结构与功能,了解基因突变和基因表达的调控机制,以及遗传变异和突变等知识点。
3. 生物分类学:熟悉生物的分类等级和分类依据,了解不同分类单位的特征和区别,掌握常见生物类群的特点。
4. 生态学:了解生态系统的组成和结构,掌握生态位、食物链和食物网的构建,以及生态系统的物质和能量流动等内容。
物化期末知识点总结一、物质与能量1. 物质的分类:纯物质和混合物,纯物质又分为单质和化合物。
2. 物质的性质:物质的物理性质和化学性质。
物理性质包括颜色、味道、密度等,化学性质包括燃烧性、稳定性等。
3. 物质的变化:物质的物理变化和化学变化。
物理变化包括相变和形态变化,化学变化指物质的化学反应。
4. 能量的分类:能源和能量转化,能源包括化学能、热能、光能等。
能量转化的方式包括热能转化、化学能转化、机械能转化等。
二、原子结构与元素周期表1. 原子的组成:原子由质子、中子和电子组成,质子和中子存在于原子核中,电子绕核运动。
2. 在原子核中,质子和中子的质量分别为1和1.008,而电子的质量很小可以忽略。
3. 原子的电荷平衡:原子中质子和电子的数目相等,因此原子没有净电荷。
4. 元素周期表:元素周期表按照一定的规律排列,周期表的主体是元素的原子核中质子的数目,以及元素的电子排布规律。
三、电子排布和化学键1. 电子排布规律:电子在原子中的排布遵循泡利不相容原理、能量最低原理和阻塞原理。
2. 电子层级:一个原子中的电子分布在不同的能级上,电子层级从内到外依次是K层、L 层、M层等。
3. 电子云模型:电子在原子中的运动可以形成一个电子云模型,其中最外层的电子称为价电子。
4. 化学键:化学键是原子之间的相互作用力,包括离子键、共价键和金属键。
离子键是由正负离子之间的相互引力产生的,共价键是由共享电子对形成的。
四、物质的量和化学方程式1. 物质的量:物质的量是用摩尔(mol)来表示的,1摩尔物质的质量等于该物质相对分子质量(相对原子质量)的数值(g)。
2. 摩尔质量和摩尔体积:摩尔质量指的是1摩尔物质的质量,摩尔体积指的是1摩尔气体在标准状况下的体积。
3. 化学方程式:化学方程式是用化学符号表示化学反应过程的方程式,由反应物、生成物和反应条件组成。
五、化学反应的速率和平衡1. 反应速率:反应速率是指化学反应中反应物浓度变化的快慢程度。
物理化学重要知识点总结及其考点说明
一、化学热力学
1、化学热力学的定义:化学热力学是研究化学反应中物质的热量及能量变化的学科。
2、热力学三定律:第一定律:能量守恒定律;第二定律:热力学第二定律确定有序
能可以被有度能转化;第三定律:热力学第三定律始终指出热力学反应的可能性和温度有关。
3、焓的概念:焓是衡量物质的热力学状态的量,它是物质的热力学特性连续变化的
测量,是物质拥有的热量能量,也可以视为物质拥有的有序能。
4、热力学平衡:热力学平衡是指在不变的温度、压力和其他条件下,恒定的化学反
应发生,直至反应物和生成物的物质形式和化学结构保持不变,热量吸积也变得稳定,这
种状态称为热力学平衡。
二、物理化学
1、物理化学的概念:物理化学是一门融合了物理学和化学的学科,通过应用物理方法,来研究化学性质的变化和分子间的作用及反应,其研究具有多学科的性质。
2、气体的特性:气体的物理性质有很多,如压强、体积、温度、熵、焓等。
质量和
体积的关系为:在一定温度下,气体的质量和体积都成正比。
3、溶质的溶解度:溶解度是衡量溶质溶解在溶剂中的性质,它是指在一定温度、压
力下,溶质在溶剂中的最高溶解量。
溶质的溶解度与温度,压强及溶剂特性有关。
4、化学均衡:化学均衡是指在特定温度和压强下,混合物中物质的各种浓度比例,
产物与原料之间的反应紊乱程度,变化状态的一种稳定平衡状态。
物理化学期末总结物理化学学期总结绪论1.物理化学的概念:物理化学是从研究化学现象和物理现象之间的相互联系入手,从而探求化学变化中具有普遍性的基本规律的一门科学。
在实验方法上主要采用物理学中的方法。
2.物理化学的研究内容(1) 化学变化的方向和限度问题。
(2) 化学反应的速率和机理问题。
(3) 物质的性质与其结构之间的关系问题。
第一章气体1.理想气体概念:任何压力机任何温度下都严格服从理想气体状态方程的气体叫做理想气体。
2.分子热运动理论:物质由大量分子构成,分子不停的做无规则的高速运动,热运动有使分子相互分散的倾向,分子间存在相互作用力:引力和斥力。
3.理想气体混合物:(1)自然界的气体多数为混合气体。
(2)假设混合气体中,各气体组分均为理想气体。
(3)混合气体服从理想气体状态方程。
4. 道尔顿分压定律:在气体混合物中,混合气体的总压力等于各气体在相同温度和相同体积下单独存在时的分压力之和。
5.阿马格分体积定律 :在气体混合物中,混合气体的总体积等于各气体在相同温度和相同压力下单独存在时的体积之和。
6. 真实气体对于理想气体的偏差的概念:由于真实气体仅在压力很低、温度较高条件下才近似符合理想气体状态方程。
而真实气体的压力、温度偏离理想气体条件时,就出现对理想气体状态方程的明显偏差。
7. 偏差的原因真实气体不符合理想气体的微观模型。
(a 真实气体分子占有一定体积;b 分子间存在相互引力)。
8.液体的饱和蒸汽压概念:是指在一定条件下,能与液体平衡共存的它的蒸汽的压力,通常也叫做蒸汽压。
同一种液体,其蒸汽压决定决定于液体所处的状态,主要取决于液体的温度,温度升高,则蒸汽压增大。
∑=B Bp p p RT n V BB ∑=第二章热力学第一定律1.热力学的研究对象:(1)热力学是研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;主要基础是热力学第一定律和热力学第二定律。
(2)热力学第一定律研究各种物理变化和化学变化过程中所发生的能量效应;(3)热力学第二定律研究化学变化的方向和限度。
大学物理化学知识点归纳一、物理化学的基本概念物理化学是研究物质的性质和变化规律的学科,它融合了物理学和化学的理论与方法,对于理解和探索物质世界具有重要意义。
二、物理化学的热力学1. 热力学基本概念:热力学研究物质在不同温度、压力和组成条件下的能量转化和热效应。
2. 热力学第一定律:能量守恒定律,描述了物质的内能和热交换之间的关系。
3. 热力学第二定律:能量的不可逆性原理,描述了自然界中能量转化的方向和过程的规律。
4. 熵的概念:熵是衡量系统混乱程度的物理量,与物质的排列和有序程度相关。
5. 自由能与平衡:自由能是描述系统稳定性和反应方向的指标,平衡状态下自由能取最小值。
三、物理化学的动力学1. 动力学基本概念:动力学研究物质内部结构与变化之间的关系,以及反应速率和反应机理等问题。
2. 反应速率与速率常数:反应速率描述了反应速度的快慢,速率常数与反应机理密切相关。
3. 反应平衡与化学平衡常数:反应平衡是指在一定条件下反应物与生成物浓度保持不变的状态,化学平衡常数决定了反应的平衡位置。
4. 反应机理与活化能:反应机理描述了反应的详细步骤和中间产物,活化能是指反应过程中所需的最小能量。
四、物理化学的量子化学1. 量子化学基本概念:量子化学研究微观粒子(如电子)在原子和分子尺度下的性质和行为。
2. 波粒二象性:微观粒子既具有波动性又具有粒子性,具体表现为波粒二象性。
3. 波函数与薛定谔方程:波函数是描述微观粒子状态的数学函数,薛定谔方程描述了波函数的演化和微观粒子的运动规律。
4. 量子力学的应用:量子力学提供了解释原子和分子结构、光谱学和化学键性质等的理论基础。
五、物理化学的电化学1. 电化学基本概念:电化学研究物质在电解质溶液中的电荷转移和电极反应等现象。
2. 电解与电解质:电解是指将化学物质转化为离子的过程,电解质是能够在溶液中导电的化合物。
3. 电流与电解质溶液:电流是指电荷流动的物理现象,电解质溶液中的电流与离子在电场中的迁移相关。
物化必备知识点总结下面就来总结一下物化必备知识点,主要包括物理化学的基本概念、物质的结构与性质、化学反应和化学平衡、物态变化、溶液和溶解度、化学动力学和电化学等方面。
一、物理化学的基本概念1. 物理化学的基本概念物理化学是研究物质结构、性质、变化规律及能量变化的科学。
它是物理和化学的交叉学科,涉及热力学、动力学、统计力学等理论。
2. 物理化学的基本单位物理化学的基本单位有摄氏度(C)、千克(kg)、焦耳(J)、摩尔(mol)、千帕(kPa)等。
3. 物理化学的基本量物理化学的基本量有温度、质量、焓,摩尔等。
温度是物质分子热运动的强弱度量,质量是物质的固有属性,焓是系统吸放热量的性质,摩尔是物质的量单位。
二、物质的结构与性质1. 物质结构物质的结构指的是物质内部原子或分子的排列方式和相互作用方式。
包括晶体、分子、离子和原子共价结构等。
2. 物质的性质物质的性质包括物理性质和化学性质。
物理性质是物质固有的性质,如密度、颜色、相态等;化学性质是物质在化学反应中的性质,如反应活性、化学稳定性等。
三、化学反应和化学平衡1. 化学反应化学反应是指物质发生化学变化的过程。
化学反应包括氧化还原反应、酸碱中和反应、置换反应、加和反应等。
2. 化学平衡化学平衡是指化学反应的速率达到一定的平衡状态。
化学平衡的特征包括不可逆性、浓度不变、速率相等等。
四、物态变化1. 固液气三态物质在一定的温度和压力下可以存在三种不同的状态,即固态、液态和气态。
液体向气体的转化称为汽化,气体向液体的转化称为凝结,固体向液体的转化称为熔化。
2. 混合和分离混合是指将两种或两种以上的相互接触的物质整合在一起,分离是指将一个混合物的成分分开。
常见的分离方法有过滤、蒸馏、结晶、离心、萃取等。
五、溶液和溶解度1. 溶液溶液是指溶质和溶剂混合在一起形成的物质。
溶质是指被溶解的物质,溶剂是指溶解溶质的物质。
2. 溶解度溶解度是指在一定温度和压力下,溶质在溶剂中的溶解量。
《物理化学》复习资料物理化学》课程期末复习资料《XXX〉课程讲稿章节⽬录:绪论第⼀章热⼒学第⼀定律第⼀节热⼒学概论第⼆节热⼒学基本概念第三节热⼒学第⼀定律第四节体积功与可逆过程第五节热、热容与焓第六节热⼒学第⼀定律应⽤第七节热化学第⼋节化学反应热效应计算第⼆章热⼒学第⼆定律第⼀节卡诺循环与卡诺定律第⼆节热⼒学第⼆定律的表述第三节熵函数第四节熵变的计算第五节熵函数的物理意义第六节热⼒学第三定律第七节吉布斯能和亥姆霍兹能第⼋节热⼒学函数间关系第九节吉布斯能和亥姆霍兹能计算第三章多组分系统热⼒学第⼀节多组分系统组成表⽰法第⼆节偏摩尔量第三节化学势第四节液相多组分体系两个经验定律第五节⽓体化学势第六节液体混合物和稀溶液组分化学势第七节稀溶液的依数性第⼋节分配定律第四章化学平衡第⼀节化学反应等温⽅程第⼆节化学反应平衡常数第三节平衡常数计算和化学转化率第四节反应标准吉布斯⾃由能和化合物标准⽣成吉布斯⾃由能第五节温度对平衡常数的影响第六节其他因素对平衡常数的影响第七节反应耦合第五章相平衡第⼀节相率第⼆节单组份系统第三节双组份系统(1)第四节双组份系统(2)第五节双组份系统(3)第六章电化学第⼀节电化学基本概念第⼆节电解质溶液电导测定与应⽤第三节电解质溶液活度与活度系数第四节可逆电池第五节电极电势和电池电动势第六节可逆电池热⼒学第七节电池种类第⼋节电池电动势测量与应⽤第九节电极极化和过点位第七章化学动⼒学第⼀节反应速率的表⽰与测量第⼆节反应速率⽅程第三节简单级数反应的速率⽅程第四节反应速率的确定第五节温度对反应速率的影响第六节典型的复杂反应第七节溶液中的反应第⼋节催化反应动⼒学第九节光化学反应动⼒学第⼋章表⾯物理化学第⼀节表⾯积与表⾯吉布斯能第⼆节弯曲表⾯的性质第三节铺展与湿润第四节溶液的表⾯吸附第五节不溶性表⾯膜第六节表⾯活性剂第七节固体表⾯对⽓体的吸附第九章胶体分散系统第⼀节溶胶的分类和基本特征第⼆节溶胶的制备和净化第三节动⼒学性质第四节光学性质第五节电学性质第六节胶体的稳定性第七节乳状液、泡沫和⽓溶胶第⼗章⼤分⼦溶液第⼀节⼤分⼦溶解结构和平均摩尔质量第⼆节⼤分⼦的溶解特征及在溶液中的形态第三节⼤分⼦溶液的渗透压第四节⼤分⼦溶液的光散射第五节⼤分⼦溶液的流变性第六节⼤分⼦溶液的超离⼼沉降第七节⼤分⼦电解质溶液第⼋节凝胶⼀、客观部分:(单项选择、多项选择、不定项选择、判断)(⼀)、选择部分1. 下列哪些属于热⼒学的研究范畴(B,C )A.体系变化的速率B.体系变化的⽅向判断C.体系与环境间的能量交换D.体系分⼦的微观结构★考核知识点:热⼒学研究范畴参见绪论热⼒学研究的是体系的状态、变化⽅向与限度(通过体系与环境间的能量交换能判断),不考虑体系变化速率和分⼦微观结构。
物理化学期末知识点总结物理化学是化学科学的基础和核心,它研究物质的结构、性质和变化规律,是化学、物理和数学等多学科的交叉领域,也是当代科学技术的重要组成部分。
在物理化学学习中,需要掌握一系列的基本概念、理论模型和实验方法。
下面,我们就来总结一下物理化学学习中的一些重要知识点。
一、热力学热力学是物理化学的基础,它的研究对象是物质的热力学性质和热力学过程。
在热力学中,我们需要掌握各种状态函数和过程函数,以及热力学基本定律、热力学循环和热力学平衡等概念。
另外,热力学还包括温度、热容和热传导等基本原理和实验方法。
二、动力学动力学是研究物质在化学反应过程中的运动和变化规律的一门学科。
在动力学中,我们需要掌握反应速率、反应机理、化学平衡、催化反应和电化学等概念。
另外,动力学还包括实验方法、化学动力学模型和实际应用等方面。
三、量子化学量子化学是物理化学的重要分支,它研究原子和分子的量子力学性质和分子结构等问题。
在量子化学中,我们需要掌握分子轨道理论、分子光谱学、分子动力学和分子设计等方面的知识。
除此之外,量子化学还包括实验和计算方法、分子的光学特性和分子的功能等方面。
四、表面化学表面化学是物理化学中又一重要分支,它主要研究物质的表面性质和表面反应过程。
在表面化学中,我们需要掌握表面张力、表面能、吸附现象、催化作用和电化学表面现象等基本概念。
此外,表面化学还包括表面分析、表面材料的应用和表面纳米结构等方面。
五、分析化学分析化学是物理化学的又一重要分支,它主要研究物质的成分和结构等问题。
在分析化学中,我们需要掌握物质分析的基本原理和方法,包括质谱、红外光谱、核磁共振、荧光光谱和色谱等技术。
此外,分析化学还包括各种化学分析方法和仪器故障分析等。
通过对以上五个方面的概述,我们不难看出,物理化学是一门理论极为完善的学科。
同时,物理化学也是一门有着广泛应用的学科。
在现代工业、制造、医学和环保等领域中,物理化学的理论和实践都有着重要的作用,特别是在材料科学、能源研究和生命科学等方面,对物理化学的需求更是日益增加。
物理化学重点超强总结引言物理化学是研究物质和能量转换关系、物质结构及性质的一门学科。
本文旨在对物理化学的重点知识进行超强总结,以帮助读者加深对该学科的理解。
热力学热力学研究能量转化及其关系,是物理化学的核心内容之一。
•热力学第一定律:能量守恒定律,描述了能量的转换和转移。
•热力学第二定律:熵增原理,描述了能量转换的方向性,熵增是不可逆过程的特征。
热力学平衡热力学平衡是热力学研究的核心概念之一。
•热平衡:物体之间不存在热量的传递和温度梯度。
•力学平衡:物体之间没有力的传递和受力的差异。
•相平衡:物体之间没有物质的传递和组分差异。
化学动力学化学动力学研究化学反应中速率的变化规律。
•反应速率:描述单位时间内物质浓度的变化。
•影响反应速率的因素:浓度、温度、压力、催化剂等。
相变相变是物质由一种相态转变为另一种相态的过程。
•凝固:液态物质转变为固态物质。
•熔化:固态物质转变为液态物质。
•蒸发:液态物质转变为气态物质。
•凝华:气态物质转变为固态物质。
电化学电化学研究电能与化学能之间的相互转化关系。
•电解池:分成阴阳两极,实现物质的氧化还原反应。
•电化学反应:包括电解和电池反应。
•电解质:在溶液中能导电的物质。
微观结构微观结构是物理化学的重要研究内容之一,包括原子、分子的结构和性质。
•原子:物质的基本单位。
•分子:由两个或多个原子通过化学键结合而成。
•量子力学:描述微观粒子运动和相互作用的理论基础。
综合应用物理化学的理论和方法在许多领域都有广泛的应用。
•材料科学:可以通过控制物质结构和性质来实现物质的设计和合成。
•环境研究:可以通过研究物质的环境行为来解决环境问题。
•药物化学:可以通过研究药物与生物体的相互作用来设计新的药物。
结论物理化学是研究物质和能量转换关系的重要学科,热力学、化学动力学、电化学等是物理化学的核心内容。
通过对物理化学的学习和理解,可以更好地理解自然界中事物的本质和变化规律,并将其应用于实际问题的解决。
第一章 气体的pVT 关系主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1)组成摩尔分数 y B (或x B ) =∑AAB /n n体积分数/y B m ,B B *=V ϕ∑*AVy Am ,A式中∑AAn 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2)摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BBp p上式适用于任意气体。
对于理想气体VRT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。
6. 维里方程......)///1(3m 2m m m ++++=V D V C V B RT pV及......)1(3'2''m ++++=p D p C p B RT pV上式中的B ,C ,D,…..及B‟,C‟,D‟….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。
7. 压缩因子的定义)/()/(m RT pV nRT pV Z ==Z 的量纲为一。
压缩因子图可用于查找在任意条件下实际气体的压缩因子。
但计算结果常产生较大的误差,只适用于近似计算。
第二章热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式WQ U +=∆ 或'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ‟为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式 3. 焓变 (1))(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2)2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0)V W ==p Q H =∆ (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p pC Q T H T ==∂∂δ/d (/)V V VC Q T U T ==∂∂ (2)摩尔定压热容和摩尔定容热容,m m /(/)p p pC C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
,m//p p p c C m CM==pVU H +=2,m 1d V U nC T∆=⎰(4),m ,mp VC C R -= 此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++ 式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T∆=∆+∆⎰或vap m vap ,m (/)p p H T C ∂∆∂=∆式中vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功 (1)定义式Vp W d am b -=∂或Vp W d am b ∑-=(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。
(3) )(21a m b V V p W --= 适用于恒外压过程。
(4))/ln()/ln(d 121221p p nRT V V nRT V p W V V =-=-=⎰ 适用于理想气体恒温可逆过程。
(5),m 21()V W U nC T T =∆=- 适用于,m V C 为常数的理想气体绝热过程。
9. 理想气体可逆绝热过程方程,m 2121(/)(/)1V C R T T V V = ,m2121(/)(/)1p C R T T p p -=1)/)(/(1212=r V V p p上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。
10. 反应进度B B /νξn ∆=上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=∆,B,0n 为反应前B 的物质的量。
B ν为B 的反应计量系数,其量纲为一。
ξ的量纲为mol 。
11. 标准摩尔反应焓θθθr m B f m B c m (B,)(B,)H H H νβνβ∆=∆=-∆∑∑式中θfm (B,)H β∆及θc m (B,)H β∆分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。
上式适用于ξ=1 mol ,在标准状态下的反应。
12.θm r H ∆与温度的关系21θθr m 2r m 1r ,m ()()d T p T H T H T C T ∆=∆+∆⎰式中r ,m ,m B (B)p p C C ν∆=∑,适用于恒压反应。
13. 节流膨胀系数的定义式 J T (/)H T p μ-=∂∂ T J -μ又称为焦耳-汤姆逊系数。
第三章热力学第二定主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据am b sys iso S S S ∆+∆=∆{0, 0, >=不可逆可逆式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变 7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V SnC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2)T 2112ln(/)ln(/)S nR V V nR p p ∆==d δ/S Q T=am b ys am b am b am b //S T Q T Q s -==∆此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
(3),m 21ln(/)p S nC T T ∆=此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。
8. 相变过程的熵变此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。
9. 热力学第三定律 或0)0K ,(m =*完美晶体S上式中符号*代表纯物质。
上述两式只适用于完美晶体。
10. 标准摩反应熵)B (Bm B m r ∑=∆θθνS S2r m 2r m 1r ,m 1()()(/)d p S T S T C T Tθθ∆=∆+∆⎰上式中r ,m p C ∆=B,m B(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔反应熵的计算。
11. 亥姆霍兹函数的定义 12.r d δ'T A W = 此式只适用n 一定的恒温恒容可逆过程。
13. 亥姆霍兹函数判据V T A ,∆⎩⎨⎧=<平衡自发,0,0只有在恒温恒容,且不做非体积功的条件下,才可用A ∆作为过程的判据。
14. 吉布斯函数的定义 15. ,r d δ'T PG W =此式适用恒温恒压的可逆过程。
16. 吉布斯函数判据⎩⎨⎧=<平衡自发,,00只有在恒温恒压,且不做非体积功的条件下,才可用G ∆作为过程的判据。
17. 热力学基本方程式d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p=-=+=--=-+热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。