2019-2020年七年级数学上册 第二章《2.5 有理数的大小比较》教学案+课后小练习(无答案)
- 格式:doc
- 大小:38.50 KB
- 文档页数:3
七年级上册教案
教师:
班级:
2013.9
第一节认识负数预设课时:3 实际完成课时:
第二节有理数的分类预设课时:3 实际完成课时:
第三节数轴预设课时:3 实际完成课时:
下列图形中不是数轴的是()
下面正确的是()
第四节相反数预设课时:3 实际完成课时:
第五节绝对值预设课时:3 实际完成课时:
第六节有理数大小的比较预设课时:3 实际完成课时:
第七节有理数的加法1
预设课时:3 实际完成课时:
3)如果小丽第一秒向西走5米,第二秒原地不动,两秒后这个人从起点向东运动了
第七节有理数的加法2 预设课时:3 实际完成课时:
第八节有理数的减法预设课时:3 实际完成课时:
第九节有理数的加减混合运算预设课时:3 实际完成课时:
第十节有理数的乘法预设课时:3 实际完成课时:
第十一节有理数的除法预设课时:3 实际完成课时:
第十二节有理数的乘方预设课时:3 实际完成课时:
第十三节科学记数法、近似数和有效数字预设课时:3 实际完成课时:
千米,用科学记数法表示(保留
C
由四舍五入取得的近似数,它精确到(
C D、十亿位
第十四节有理数的混合运算预设课时:3 实际完成课时:。
第二章有理数及其运算【知识与技能】掌握本章主要知识,会求一个数的相反数和绝对值、倒数,会比较有理数的大小,能灵活运用计算法则和运算律进行有理数的运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想、分类讨论思想、转化思想,加深对本章知识的理解【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用有理数的相关知识解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解感,加深理解1.相反数、绝对值、倒数相反数:如果一两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,数a的相反数为-a.绝对值:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值为|a|.绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.用字母表示是倒数:乘积为1的两个数互为倒数,数a的倒数为1a(a≠0).2.科学记数法一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.3.有理数的混合运算法则有理数的混合运算,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.4.有理数的运算律加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a·b=b·a乘法的结合律:(ab)c=a(bc)乘法的分配律:a(b+c)=ab+ac三、典例精析,复习新知例1在给出的数轴上,标出以下各数及它们的相反数:-1,2,0,52,-4.观察以上各数在数轴上的位置,解答下列问题:(1)写出以上各数和它们的相反数的绝对值.(2)比较表示在原点左边的各数的大小,并说明这些数的大小与其绝对值的关系. (3)若|x|=2,则x= .(4)若整数x满足1<|x|≤4,求x的值.解:(1)|-4|=4,|4|=4;|-52|=52,|52|=52;|-2|=2,|2|=2;|-1|=1,|1|=1;|0|=0.(2)-4<-52<-2<-1.负数的绝对值越大,其值越小.(3)由于|-2|=2,|2|=2,所以当|x|=2时,x=±2. (4)-4,-3,-2,2,3,4.×1011×109元×1010×109元【分析】科学记数法的表示形式为a×10n,表示时关键要正确确定a的值以及n的值,其中1≤a<10,n为整数的位数减1,故选C.例3计算(1)(-3-13)÷(-127)×2(2)-10+8÷(-2)2-(-4)×(-3)【分析】有理数混合运算要注意运算的顺序,确定先算什么,后算什么. 例4简算【分析】运用加法、乘法的运算律进行简算.例5小红爸爸上星期五买进某公司股票1000股,每股26元,下表为本周内每日股票的涨跌情况:(单位:元)(1)星期四收盘时,每股是多少元?(2)本周内每股最高是多少元?(3)如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?(不考虑手续费和交易税)解:(1)26+[(+4)+(+4.5)+(-1)+(-2.5)]=26+5=31(元)(2)26+(+4)+(+4.5)=34.5(元)(3)(+4)+(+4.5)+(-1)+(-2.5)+(-6)=-1每股亏1元,所以共亏损1000元.四、复习训练,巩固提高1.把下列各数填到相应的大括号内:-4,整数集合……正分数集合…非负整数集合…2.-13的相反数是,绝对值是,倒数是 .3.若|m|=4,|n|=3.且m+n<0,则m-n= .4.已知(x-3)2+|y+5|=0,则xy-y2= .5.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 .6.据某市统计局公布的第六次人口普查数据,该市常住人口760.57万人,其中760.57万人用科学记数法表示为()×105人×106人×107人×107人7.计算(1)-32-(-8)×(-1)5÷(-1)4;(2)[312-(79-1112+16)×36]÷58.现抽查10袋精盐,每代精盐的标准重量是100克,超过部分记为正,不足部分记为负,统计如下表:9.小明在玩“二十四点”游戏时抽到的四个数字是-9,6,2,3,你能写出三种不同的版式凑成24或-24吗?【教学说明】加强本章知识的应用,加深知识的理解,前几题由学生自主完成,第9题可由学生交流合作得出结论.【答案】1.整数集合{-4,+5,0,-1…}负有理数集合-9.(-9+2+3)×6=-246×2+3-(-9)=246×(-9)÷2+3=-24五、师生互动,课堂小结本节课你能完整地回顾本章所学的知识吗?你有哪些收获?还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,让学生自主交流与反思,对于学生的困惑和疑问,教师应及时指导.1.布置作业:从教材“复习题2”中选取.2.完成练习册中本章复习课的练习.本节课通过复习归纳本章内容,加深对本章知识的理解.通过例题与复习题训练,使学生解决问题的能力得到进一步的提高.检测内容:第二章 有理数及其运算得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.如果向北走6步记作+6,那么向南走8步记作( B ) A .+8步 B .-8步 C .+14步 D .-2步2.在2,-3,0,-1这四个数中,最小的数是( B ) A .2 B .-3 C .0 D .-13.下列说法中,正确的是( A )A .相反数等于它本身的数只有零B .倒数等于它本身的数只有1C .绝对值等于它本身的数只有零D .平方等于它本身的数只有14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是 (C)A .131 000B .0.131×104C .1.31×105D .13.1×1045.下列运算错误的是( D )A .-8-2×6=-20B .(-1)2 020+(-1)2 019=0 C .-(-3)2=-9 D .2÷43×34=26.若数轴上点A 表示的数是-3,则与点A 相距4个单位长度的点表示的数是( D ) A .±4 B .±1 C .-1或7 D .-7或17.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间是6月15日23时时,悉尼、纽约时间分别是( A )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时城市 悉尼 纽约 时差/时 +2 -13,第7题表),第9题图) ,第10题图)8.已知有理数a ,b ,c 均不为0,且abc >0,a >c ,ab <0,则下列结论正确的是( C )A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >09.有理数a ,b 在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a -b >0;③a +b >0;④1a +1b>0;⑤-a >-b.其中正确的个数有( C )A .1个B .2个C .3个D .4个10.一个自然数的3次方可以分裂成若干个连续数的和,例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是(C)A .37B .39C .41D .43二、填空题(每小题3分,共24分) 11.计算5+(-3)的结果为__2__.12.大于-4小于5的所有整数的和等于__4__.13.一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是__-4__.14.某日中午,气温由早晨的零下2 ℃上升了9 ℃,傍晚又下降了4 ℃,则这天傍晚的气温是__3__℃___.15.已知|x|=4,|y|=0.5,且xy <0,则xy的值为__-8__.16.对于任意有理数a ,b ,规定“*”是一种新的运算符号,且a*b =a 2+ab -a ,例如:2*3=22+2×3-2=8,根据上面的规定,则[(-3)*2]*(-5)的值为0.17.如图,在一条可以折叠的数轴上,A ,B 两点表示的数分别是-9,4,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且A ,B 两点相距1,则C 点表示的数是-2.18.(2018·泰安)观察“田”字中各数之间的关系如下,则c 的值为270.1 2 2 33 64 75 12 8 137 22 16 239 40 32 4111 74 64 7515 c a b三、解答题(共66分)19.(8分)计算:(能简算的要简算)(1)9+5×(-3)-(-2)2÷4;解:原式=-7 (2)75719+|(-81521)+67719|-73521;解:原式=16(3)-22+8÷(-2)3-2×(18-12);解:原式=-414 (4)(-134)×15+212÷5+15×(-114).解:原式=-11020.(8分)将下列各数在数轴上表示出来,并用“<”连接: -(-1.5),0,-|-23|,-22,|-212|.解:-22<-|-23|<0<-(-1.5)<|-212|,数轴图略21.(9分)某铁矿码头将运进铁矿石记为正,运出铁矿石记为负,某天的记录如下:(单位:t )+100,-80,+300,+160,-200,-180,+80,-160.(1)当天铁矿石库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t 的大卡车运送铁矿石,每次运费100元,问这一天共需运费多少元?解:(1)(+100)+(-80)+300+160+(-200)+(-180)+80+(-160)=20(t ).故当天铁矿石是增加了,增加了20 t(2)(|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20=63(次),故这天共需运费63×100=6 300(元)22.(9分)仔细分析右图,请你参考图中老师的讲解,用运算律简便运算:(1)997172×(-36); (2)(-115132)×(-4). 解:(1)原式=(100-172)×(-36)=100×(-36)-172×(-36)=-3 600+12=-3 59912(2)原式=(-115-132)×(-4)=(-115)×(-4)-132×(-4)=460+18=4601823.(10分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正,减产记为负):星期 一 二 三 四 五 六 日增减产值/个 +10 -12 -4 +8 -1 +6 0(1)根据记录的数据可知小明妈妈本周实际生产玩具147个;(2)该厂实行每日计件工资制,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.解:(2)147×5+(10+8+6)×3-(12+4+1)×3=756(元),故小明妈妈这一周的工资总额是756元(3)因为实行每周计件工资制时小明妈妈这一周的工资总额为147×5+7×3=756(元),所以在此方式下小明妈妈这一周的工资与按日计件的工资一样多24.(10分)观察下列各式的计算结果:①1-122=1-14=34=12×32 ;②1-132=1-19=89=23×43; ③1-142=1-116=1516=34×54;④ 1-152=1-125=2425=45×65; …(1)用你发现的规律填写下列式子的结果:①1-162=56×76;②1-1102=910×1110; (2)用你发现的规律计算:(1-122)×(1-132)×(1-142)×…×(1-12 0182)×(1-12 0192). 解:(2)原式=(12×32)×(23×43)×(34×54)×…×(2 0172 018×2 0192 018)×(2 0182 019×2 0202 019) = 12×32×23×43×…×2 0172 018×2 0192 018×2 0182 019×2 0202 019= 12×2 0202 019=1 0102 01925.(12分)【阅读理解】已知A ,B ,C 为数轴上的三点,若点C 在A ,B 两点之间,且它到点A 的距离是它到点B 的距离的3倍,那么我们就称点C 是{A ,B}的“奇点”.例如,如图①,点A 表示的数为-3,点B 表示的数为1,表示0的点C 到点A 的距离是3,到点B 的距离是1,那么点C 是{ A ,B }的“奇点”;又如,表示-2的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是{A ,B }的“奇点”,但点D 是{B ,A}的“奇点”.【知识运用】(1)如图②,点M ,N 在数轴上的位置如图所示,则数__3__所表示的点是{M ,N }的“奇点”;数__-1__所表示的点是{N ,M }的“奇点”;(2)如图③,A ,B 为数轴上的两点,点A 所表示的数为-50,点B 所表示的数为30.现有一动点P 从点B 出发向左运动,则点P 运动到数轴上的什么位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”?解:(2)点A 到点B 的距离为30-(-50)=80,当点P 为{A ,B }的“奇点”时,则点P 到点B 的距离为80÷(3+1)=20,所以此时点P 表示的数为30-20=10;当点P 为{B ,A }的“奇点”时,则点P 到点A 的距离为80÷(3+1)=20,所以此时点P 表示的数为-50+20=-30;当点A 为{B ,P }的“奇点”时,则点P 到点A 的距离为80÷3=803,此时点P 表示的数为-50-803=-2303; 当点A 为{P ,B }的“奇点”时,则点P 到点A 的距离为80×3=240,此时点P 表示的数为-50-240=-290.故点P 运动到数轴上表示数10或-30或-2303或-290的点所在的位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”3.3 解一元一次方程(二)——去括号与去分母第1课时去括号【知识与技能】1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简洁明了,省时省力.2.掌握去括号解方程的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.【教学重点】在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想.【教学难点】弄清列方程解应用题的思想方法;用去括号解一元一次方程.一、情境导入,初步认识问题1我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编得又快又对.学生思考,根据自己对一元一次方程的理解程度自由编题.问题2解方程5(x-2)=8解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘.问题3某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000kW·h (千瓦·时),全年用电15万kW·h,这个工厂去年上半年每月平均用电是多少?(教材第93页问题1)【教学说明】给学生充分的交流空间,在学习过程中体会“取长补短”的含义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力.二、思考探究,获取新知【教学说明】上面栏目一中的问题3为教材中的问题,教师先提出上面的问题,让学生产生疑问,然后提出下面几个问题,对其进行分析和探究,以归纳出最后的结论.设问1:设上半年每月平均用电xkW·h,则下半年每月平均用电____kW·h;上半年共用电_____kW·h,下半年共用电______kW·h.【教学说明】教师引导学生寻找相等关系,列出方程.根据全年用电15万kW·h,列方程,得6x+6(x-2000)=150000.设问2:怎样使这个方程向x=a的形式转化呢?6x+6(x-2000)=150000↓去括号6x+6x-12000=150000↓移项6x+6x=150000+12000↓合并同类项12x=162000↓系数化为1x=13500设问3:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解答)【归纳结论】方程中有带括号的式子时,根据乘法分配律和去括号法则化简.(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号.)去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号.三、典例精析,掌握新知例1教材第94页例1.【教学说明】这道例题为教材中的例题,教师先讲解第(1)小题,教师在讲解过程中注意与学生互动,让学生说出每个步骤中应怎样计算.第(2)题可让学生上台板演,教师注意指导学生写的步骤是否完整.例2教材第94~95页例2.【分析】若设船在静水中的平均速度为x千米/时,则顺流的速度为___千米/时;逆流的速度为___千米/时.顺流的路程=___,逆流的路程___.相等关系为____________.思考:1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?2.怎样求甲乙两个码头之间的距离?【教学说明】这道题解答时通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引导,降低问题的难度,从而将难点锁定在找相等关系上,避免难点太多,造成无从下手,重点、难点不突出的情况.通过对问题1的交流讨论,使学生认识到将船在静水中的平均速度设为未知数x是最简洁、最优的情况,向学生渗透最优化思想.问题2是对例2的延伸和拓展,将问题设置在例2之后,利于学生形成正确的思维过程.教学时,教师先让学生自主完成空白部分,完成后组内交流.教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.学生独立列方程并解方程,然后教师找部分学生板演并讲解思路,在这个过程中,教师应重点关注学生能否正确解方程.学生解答完方程后,教师采用追问的形式引导学生思考问题1、问题2.学生通过小组交流、讨论、质疑、分析设船在静水中的平均速度为x的理由.教师找学生口述思考2,关注学生能否用两种方法求距离.四、运用新知,深化理解1.教材第95页练习.2.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x).3.某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?4.一艘轮船往返于A、B两地之间,由A到B是顺水航行,由B到A是逆水航行.已知船在静水中的速度是每小时20km,由A到B用了6小时,由B到A所用的时间是由A到B 所用时间的1.5倍,求水流速度.【教学说明】以上几题一方面让学生掌握去括号解一元一次方程的方法,另一方面可锻炼学生解决问题的能力,其中1~3题都可让学生独立思考后上台板演.教师注意提醒学生应严格按教材步骤进行.(等学生熟练掌握之后可放松要求)在做第3题时提示学生可结合小学所学的“鸡兔同笼”问题进行思考.第4题与例2有些类似,可让学生比照后独立思考并解答.【答案】1.(1)x=2.(2)x=17 11.(3)x=6.(4)x=0.2.解:去中括号,得3x-6(x-1)+4(x+2)=3(18-x). 去小括号,得3x-6x+6+4x+8=54-3x.移项,得3x-6x+4x+3x=54-6-8.合并同类项,得4x=40.系数化为1,得x=10.3.解:设可坐4人的小船租了x条,则可坐6人的小船租了(8-x)条.根据题意,可列得方程:4x+6(8-x)=40.去括号,得4x+48-6x=40.移项,得4x-6x=40-48.合并同类项,得-2x=-8.系数化为1,得x=4.8-4=4(条)答:可坐4人的小船租了4条,可坐6人的小船也租了4条.4.解:设水的流速为xkm/h,可列出方程:(20+x)×6=(20-x)×6×1.5.去括号,得120+6x=180-9x.移项,得9x+6x=180-120.合并同类项,得15x=60.系数化为1,得x=4.答:水流速度为4km/h.五、师生互动,课堂小结通过以下问题引导学生回顾、小结:(1)通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获?(2)去括号解一元一次方程要注意什么?1.布置作业::从教材习题3.3中选取.2.完成练习册中本课时的练习.本课时教学可先让学生通过尝试和合作,归纳出去括号解方程的方法,鼓励学生探寻一题多解,然后比较找到最好方式,巩固去括号的认识.教学中突出应用意识,利用实际问题引出本节要学的知识点,用不同的问题为学生指明思考方向,时时提醒学生互相探讨寻找实际问题中等量关系的体会.。
初中数学《有理数大小的比较》教案详解一、教学目标1.知识目标通过本节课的学习,使学生了解以下知识:(1)了解绝对值的概念和表示方法。
(2)掌握有理数的大小比较方法。
(3)掌握有理数大小比较的基本规律,提高分析思维能力和解决问题的能力。
2.能力目标通过本节课的学习,使学生掌握以下能力:(1)通过比较绝对值的大小来比较有理数的大小。
(2)够运用所学知识解决实际问题。
(3)具备分析问题和解决问题的能力,提高学习自觉性和解决问题的能力。
3.情感目标通过本节课的学习,使学生形成以下情感认识:(1)培养学生热爱数学,认识数学在现实生活中的应用价值。
(2)培养学生团队协作意识,提高学生的沟通和交流能力。
(3)培养学生勇于尝试、敢于探究的好习惯。
二、教学重点和难点教学重点:有理数大小比较的方法、有理数大小比较的基本规律。
教学难点:学生区分有理数大小比较方法中的规律。
三、教学内容及方法1.教学内容(1)绝对值的概念和表示方法。
(2)有理数的大小比较方法。
(3)有理数大小比较的基本规律。
2.教学方法(1)探究引导法:在教师介绍绝对值的概念和表示方法后,引导学生发现绝对值与数轴上点的距离的关系。
(2)讲授法:教师讲解有理数大小比较方法和规律,并通过实例演示让学生感知。
(3)合作学习法:组织学生进行小组讨论,共同解决习题。
(4)巩固训练法:通过大量练习和实战演练,提高学生运用所学知识解决实际问题的能力。
四、教学步骤1.导入环节通过简单的例子让学生对绝对值有一定的了解,引出本节课的话题。
2.理论阐述(1)绝对值的概念和表示方法。
(2)有理数的大小比较方法。
(3)有理数大小比较的基本规律。
3.讲解演示通过多组实例让学生了解有理数的大小比较方法和规律,提高分析思维能力和解决问题的能力。
4.实践演练通过大量练习和实战演练,提高学生运用所学知识解决实际问题的能力。
5.总结点拨通过总结本课所学内容,对学生的表现进行点拨,对学生不足之处进行指导。
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
1.4 有理数的大小-冀教版七年级数学上册教案一、教学目标1.能够知道什么是有理数。
2.能够掌握有理数的比较大小规律。
3.能够完成与有理数大小比较相关的练习题。
二、教学重难点1.有理数的大小比较。
2.分类讨论和比较的方法。
三、教学方法1.利用白板、标识笔、PPT等教学辅助工具,结合实例和讲解,向学生解释有理数的大小和比较方法。
2.利用小组讨论、课堂表演、课堂练习等教学方式,提高学生参与度和学习效率。
四、教学内容和进度安排1. 什么是有理数?•对于有理数的定义,老师可以在黑板上写出来,具体内容如下:有理数指能表示成两个整数之比的数,例如:2、-3/5、1.23等等。
•讲解完有理数的基本概念后,老师可以让学生自己举一些例子,检验是否符合有理数的定义。
2. 有理数的大小比较•有理数大小比较规律:同号相比,异号相比。
•同号数比大小:绝对值大的数更大。
例如:当a、b都为正数或都为负数时,若|a|>|b|,则a>b;若|a|<|b|,则a<b。
•异号数比大小:负数绝对值大的数更小。
例如:当a为正数,b为负数时,若|a|>|b|,则a>b;若|a|<|b|,则a<b。
•让学生灵活应用该规律完成大小比较。
3. 案例分析•让学生根据情景智能分类讨论和比较大小,例如:【例】在-4/5和-9/10中,哪个数更大?分析:这道题需要我们用到有理数大小比较中异号数比较的规律,即负数绝对值大的数更小。
因为|-4/5|<|-9/10|,所以-4/5比-9/10大。
4. 练习题•老师可以让学生在课堂上或者课后完成相关练习题,以巩固所学知识,例如:【练习1】比较大小:-3/4,-5/6,-1/2,-3/8【练习2】比较大小:7/8,-5/6,6/7,-8/9五、教学反思•在教学过程中,要注意抓住学生的注意力,保持课堂秩序,给予学生必要的鼓励和肯定。
•老师可以适当调整教学方法和内容,根据班级整体水平和个体差异等因素进行针对性处理,以提高教学效果和学习质量。
2019-2020学年七年级数学上册 第二章第一讲数轴 相反数 绝对值学案北师大版知识梳理1.概念2.数轴在数轴上表示的两个数,右边的数总比左边的数大.比较法则:正数都大于零,负数都小于零,正数大于负数.两个负数,绝对值大的的反而小3.相反数只有符号不同的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等. 0的相反数是0.4.绝对值我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值①一个正数的绝对值是它本身;② 0的绝对值是0;③一个负数的绝对值是它的相反数.基础训练一、填空1数轴的三要素是 ,_ 和 2、4的相反数是 ,-6的相反数是 ,0的相反数是 。
3、在数轴上,A 、B 两点在原点的两侧,但到原点的距离相等,,如果点A 表示73,那么点B 表示4、在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,25,-4观察以上各数在数轴上的位置,回答:距原点一个单位长度的数是_______________距原点2个单位长度的数是____________和__________距原点25个单位长度.________和________距原点4个单位长度距原点最近的是__________.像1,2,25,4,0分别是±1,±2,±25,±4,0的绝对值.在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.【几何定义】如:+2的绝对值是2,记作|+2|=2-2的绝对值是2,记作|-2|=2 因此,绝对值是2的数有_____个,它们是_____,绝对值是101的数有_____个,它们是_____,那么0的绝对值记作| |=_____,-100的绝对值是_____,记作| |=_____.思考:一个数的绝对值能是负数吗?5、一个数a 与原点的距离叫做该数的_______.6、-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______,+|-(21)|=_______,+(-21)=_______. 7、_______的倒数是它本身,_______的绝对值是它本身.8、a +b =0,则a 与b _______.9、.若|x |=51,则x 的相反数是_______. 10、若|m -1|=m -1,则m _______1.若|m -1|>m -1,则m _______1.若|x |=|-4|,则x =_______.若|-x |=|21 |,则x =_______. 二、选择:1、在已知的数轴上,表示-2.75的点是 ( )A 、E 点B 、F 点C 、G 点D 、H 点2、以下四个数,分别是数轴上A.B.C.D 四个点可表示的数,其中数写错的是 ( )3、下列各语句中,错误的是 ( )A.、数轴上,原点位置的确定是任意的;B.、数轴上,正方向可以是从原点向右,也可以是从原点向左;C.、数轴上,单位长度1的长度的确定, 可根据需要任意选取;D.、数轴上,与原点的距离等于36.8的点有两个.4、数轴上,对原点性质表述正确的是( )A 、表示0的点B 、开始的一个点C 、数轴上中间的一个点D 、它是数轴上的一个端点5、下列说法错误的是( )A 、5是-5的相反数B 、-5是5的相反数C 、-5和5是互为相反数D 、-5是相反数6、|x |=2,则这个数是( )A.2B.2和-2C.-2D.以上都错7、|21a |=-21a ,则a 一定是( ) A.负数 B.正数 C.非正数 D.非负数 8、一个数在数轴上对应点到原点的距离为m ,则这个数为( ) A.-m B.m C.±m D.2m9、如果一个数的绝对值等于这个数的相反数,那么这个数是( )A.正数B.负数C.正数、零D.负数、零10、下列说法中,正确的是( )A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数D.-a 的绝对值等于a三、判断题1.若两个数的绝对值相等,则这两个数也相等. ( )2.若两个数相等,则这两个数的绝对值也相等. ( )3.若x <y <0,则|x |<|y |. ( )四、解答1、在数轴上表示出-2,1,-0.2,0,0.5 。
2019-2020学年七年级数学上册《有理数》导学案(教师版) 华东师大版预习课(时段:晚自习 时间:20分钟) 1、旧知链接:(1)刚刚学习过的正数和负数。
(2)总结已经学习过哪些数。
2、新知预习: 1 .用15分钟的时间阅读教材18~20页的内容,进行知识梳理,熟记基础知识,自主高效预习。
2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题。
3. 将预习中部能解决的问题用红笔标出来,便于讨论时共同探究,合作交流。
探究课(时段:正课 时间:50分钟) 【学习目标】:1、 熟练掌握有理数的意义,并能够按照不同的方式将有理数分类,提高归纳能力。
2、通过独立学,合作探究,感受解决与有理数有关的问题的规律和方法。
3、积极投入,培养严密的数学思维习惯,感悟数学知识与现实生活的密切联系。
【学习重点】:按照不同的方式将有理数分类【学习难点】:熟练按照不同的方式将有理数分类 学情检测: 1、既不是正数,也不是负数的数是 ,_____、_____、______统称为整数,_____和____统称为分数,______和______统称有理数。
2、下列各数哪些是正整数?哪些是非正数?哪些是负整数?哪些是负分数? +5,-7,21,-61,+5.2,89,-43,-58,-1.5,-100,0。
探究案:探究点一:有理数的有关概念问题1:正整数、_______、_______统称整数,正分数和负分数统称_______。
问题2:_______和 ______统称有理数。
问题3:把一些数放在一起,就组成一个数的_______,简称数集。
所有的有理数组成的数集叫做_______。
类似地,所有的整数组成的数集叫做_______,所有的正数组成的数集叫做_______,所有的负数组成的数集叫做_______,所有的_______组成的数集叫做自然数集。
问题4:下列说法错误的是( )A 、零是非负数B 、零是整数C 、零是自然数D 、零的倒数是零 问题5:数-125不是( )A 、有理数B 、整数C 、负有理数D 、自然数 探究点二:有理数的分类例 1、把下列各数填在相应的括号里: -7,53,2003,0,-31,+8.4,-5%,-0.0103,-0.12 学法指导:在进行有理数分类时,要严格按照分类标准,做到不重不漏。
苏科版初中数学七年级上册第二章教学案 苏科版初中数学七年级上册第二章第1节2.1《正数与负数》教学设计及课堂练习设计一、自主先学1. 指出下列各数中的正数、负数:+7,-9,31,-4.5,998,109-,0.正数:________________________;负数:________________________. 2. 如果-50元表示支出50元,那么+40元表示___________.3. _______________________统称为整数;_________________统称为分数.二、合作助学4. 把下列各数填入相应的集合内:99.9-,6,13-,0,101-,413+, 1.25-,0.01,+67,10%-,513,2009,18-. 整数集合{ …} ; 分数集合{ …}; 正数集合{ …} ; 负数集合{ …}. 5.“甲比乙大3-岁”表示的意义是 .6. 某地下午5点的气温为2℃,由于冷空气影响,第1小时后气温下降了3℃,第2小时又下降了4℃,你知道下午6点和7点的气温吗?7. 用正数或负数表示下列问题中的数:(1) 从同一港口出发,甲船向东航行142 km ,乙船向西航行142 km ;(2) 从同一车站出发,A 车向北行驶50 km ,B 车向南行驶40 km ;(3) 拖拉机加油50L ,用去油30L .8. 有位同学说“一个数如果不是正数,必定就是负数.”你认为这句话对吗?为什么?三、拓展导学9. 学校对七年级男生进行立定跳远测试, 跳1.7 m 及以上为达标,超过1.7 m 的厘米数用正数表示,不足1.7 m 的厘米数用负数表示. 问:该组有百分之几的男生达标?四、检测促学10. 如果上升10 m 记为+10 m ,那么—7 m 表示________________. 11. 把下列各数填入相应的集合内:.2132.051204325.75-+--+,,,,,, 正数集合{ …};负数集合{ …}. 12. 下列各数:—3.14, +0.5, +3,54-, 0, —6,其中非负整数....有________. 13. 将1,21-, 31,41-,51,61-,…按一定规律排列如下: 第1行: 1 第2行: 21- 31第3行: 41- 51 61-第4行: 71 81- 91 101-第5行:111 121- 131 141- 151按此规律排下去,第10行自左向右第7个数是________.五、反思悟学14. 一件保暖内衣的原价300元,根据销售的实际情况,商店一般可以将价格浮动±20%进行销售.(1) 请你说明±20%的含义;(2) 最低多少元出售.苏科版初中数学七年级上册第二章第2节2.2《有理数与无理数》教学设计及课堂练习设计一、自主先学1. 所有的整数都可以化成分母为1的分数,如5 =_____,—3 =______.一些小数也可以化成分数,如0.6 =_______,—1.5 =________,•3.0=________. 2. 能够写成分数形式_________ ( )的数叫做有理数. 3. _______________________无理数.请举一个无理数:__________.二、合作助学4. 有理数如何分类:,还有其它分法吗?5. 如图,将两个边长为1的小正方形,沿图中虚线剪开,重新拼成一个大正方形,它的面积为2. 如果设大正方形的边长为a ,那么a 2 = ______,a 是有理数吗?(第5题)三、拓展导学6. 有一个面积为5π的圆的半径为x ,x 是有理数吗?说说你的理由.(第6题)四、检测促学7. 下列各数π,51,0 ,—1中,无理数是 ( )A. πB.51C. 0D. —1 8. 下列说法错误的是 ( ) A. 负整数和负分数统称负有理数11111111a aaa ⎪⎪⎩⎪⎪⎨⎧分数 ⎩⎨⎧正分数 负分数______⎪⎩⎪⎨⎧正整数 负整数 ______ 有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数 9. 下列说法正确的个数 ( )① 无理数一定是无限小数;③无限小数一定是无理数;④722是无理数;② π是无理数;⑤ 0是无理数.A. 1个B. 2个C. 3个D. 4个 10. 写一个大于1小于2的无理数是________.11. 已知正数m 满足m 2 =15,则m 的整数部分是_________. 12. 把下列各数填入对应的括号中:4.2-,3,2.012,310-,411,••51.0,0,8π,)15.3(--, 5.313 3133 3133 33…. 正数集合:{} ; 整数集合:{} ; 无理数集合:{} ; 负分数集合:{} .五、反思悟学13. 写出5个数,同时满足以下三个条件:(1) 其中3个数属于非正数集合;(2) 其中3个数属于非负数集合;(3) 5个数属于整数集合.苏科版初中数学七年级上册第二章第3节2.3《数轴1》教学设计及课堂练习设计一、自主先学1. 规定了____________、_____________和_____________的直线叫做数轴.2. 把图中直线上的点所表示的数写在相应的方框里.3. 数轴上在原点左边,距离原点3个单位长度的点表示的数是_________.二、合作助学4. 分别写出数轴上A 、B 、C 表示的数:5. 在数轴上画出表示下列各数的点:2135.15335.1---,,,,.三、拓展导学6. 面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点?四、检测促学 (第6题)7. 如图,下面对于分别用数轴上的点A 、B 、C 、D 表示的数,说法正确的是 ( )A. 点D 表示—2.5B. 点C 表示—1.25C. 点B 表示1.5D. 点A 表示1.25 8. 下列说法正确的是 ( )A. 只有有理数可以用数轴上的点表示B. 数轴上的任意一点都可以表示一个有理数或无理数C. 在数轴上表示—1的点与表示2的点的距离为1D. π是无理数在数轴上无法表示A B C D a aaa9. 在数轴上,A 点和B 点所表示的数分别为2-和1,若要使A 点表示的数是B 点表示的数的3倍,则应将A 点 ( ) A. 向左移动5个单位 B. 向右移动5个单位 C. 向右移动4个单位D. 向左移动1个单位或向右移动5个单位10. 数轴是规定了原点、___________和___________的一条直线. 11. 已知到原点的距离是3个单位长度的点表示的数为____________. 12. 观察数轴,小于π的非负整数有____________________. 13. 画出数轴,并在数轴上表示下列各数: .5.204211215.35,,,,,,--+五、反思悟学14.如图所示,点A 表示的数是—1,以 A 点为圆心,21个单位长度为半径的圆交数轴于B 、C 两点,那么B 、C 两点表示的数分别是_________________.苏科版初中数学七年级上册第二章第3节2.3《数轴2》教学设计及课堂练习设计一、自主先学1. 把0℃、1℃、—3℃、—2℃按从低到高的顺序排列是_________________.2. 在数轴上画出表示0、1、—3、—2的点,并用“<”连这些数.( 第14题 )3. 数轴上的点的位置与它们所表示的数的大小有什么关系?(1)_____________________________________________________________. (2)_____________________________________________________________.二、合作助学4. 比较—3.5和—0.5的大小.5.在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:三、拓展导学6. 如图所示,在数轴上有三个点A 、B 、C ,请回答下列问题.(1) 将B 点向左移动3个单位长度后,三个点中_______表示的数最小,是_________. (2) 将A 点向右移动4个单位长度后,三个点中_______表示的数最小,是_________. (3) 将C 点向左移动6个单位长度后,点B 与点C 中_______表示的数大,大_________.四、检测促学7. 下列各数中,最小的数是 ( ) A. 1 B.21C. 0D. —1 8. 下列说法错误的是 ( )A. 最小的正整数是1,最大的负整数是—1B. 在数轴上表示两个数,左边的数总比右边的数小C. 在数轴上表示211-的点在原点的左侧,距原点211个单位长度D. 在数轴上,原点两边的数都比0大 9. 比较大小(填写“>”或“<”).5.1532021---,,,,,A BC(1) —2.1_______1; (2) —3.2_______—4.3; (3) 21-_______ 31-; (4) 41- _______0. 10. 如图,数轴上的一部分被墨水污染,被污染的部分内含有的整数为________________.11. 某人从A 地向东走10 m ,然后折回向西走了3 m ,又折回向东走了6 m ,问此人最后在A 地哪个方向?距离A 地多少米?五、反思悟学12. 数轴上点A 、B 的位置如图所示,若点A 、B 关于点A 的对称点C ,则点C 表示的数为_____________. A B苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数1》教学设计及课堂练习设计一、自主先学1. 小明家在学校正西方3 km 处,小丽家在学校正东方2 km 处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?( 第12题 )2.3-1.2( 第10题 )2. 在数轴上,表示-3的点与原点的距离是______,表示2的点与原点的距离是______,表示0的点与原点的距离是______.3. 数轴上表示一个数的点与原点的_________叫做这个数的绝对值. 通常,我们将数a 的绝对值记为________.4. 你能说出数轴上的点A 、B 、C 、D 、E 所表示的数的绝对值吗?二、合作助学5. 求4、5.3-的绝对值.6. 已知一个数的绝对值是25,求这个数.三、拓展导学7. 已知| a | = 2,| b | = 2,| c | = 3,且有理数a ,b ,c 在数轴上的位置如图所示,求a ,b ,c 的值.四、检测促学8. 4-的绝对值是 ( ) A. 4 B.41 C. 4- D. 41- 9. 如果一个有理数的绝对值是8,那么这个数一定是 ( )A. 8-B. 8- 或8C. 8D. 以上都不对 10. 绝对值小于2的整数有 ( )( 第7题 )A. 1个B. 2个C. 3个D. 4个 11. 下列说法中错误的是 ( )A. 一个正数的绝对值一定是正数B. 任何数的绝对值都是正数C. 一个负数的绝对值一定是正数D. 任何数的绝对值都不是负数 12. 直接写出结果:(1) | 3 |= _______; (2) |7.2|-= _______; (3) |43+|= _______; (4) |831-|= _______;(5) |2014|-= _______;(6) | 0 |= _______.13. 计算:(1) |4|+-=________;(2) |2|--=________;(3) |5||6|-++=________;(4) |2.0||5.4|+⨯-=________;(5) |3||12|-÷+=________.14. 已知两个数x 、y ,同时满足:3-=x ,| x |= | y |,则y 的值为____________.五、反思悟学15. 若0|3||2|=-+-x x ,则x =_______,y =_______.苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数2》教学设计及课堂练习设计一、自主先学1. 如图,观察数轴上点A 、点B 的位置及它们到原点的距离,你有什么发现?(第1题)2. 观察下列各组数,你有什么发现? 5与—5,2.5与—2.5,3232-与,π与—π.3. 符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的____________.AB4. —5的相反数________,2.5的相反数________,0的相反数________.二、合作助学5. 求3、5.4-、74的相反数.6. 化简:)2(+-,)7.2(+-,)3(--,)43(--.7. 数轴上表示互为相反数的两个数的点之间的距离是8,求这两个数.三、拓展导学8. 请在数轴上画出表示3,—2,—0.5及它们相反数的点,用分别用A ,B ,C ,D ,E ,F来表示.(1) 把6个数用“<”连接起来;(2) 点C 与原点的距离是多少?点A 与点C 之间的距离是多少?四、检测促学9. 21-的绝对值是 ( ) A. 2 B. 21 C. 2- D. 21-10. 下列说法正确的是 ( )A. 5-是相反数B. 4- 与41-互为相反数 C. 4-是4的相反数 D. 0没有相反数 11. 化简:(1) [])5(+--= ______;(2) [])2.3(--+= ______;(3) [])2(-+-= ______;(4) |7|--= _______; (5) |7|+-= _______; (6) |7|-+= _______. 12. 若4=-m ,则m = _______.13. 3-的相反数是________,2.5与________互为相反数. 14. 若0|2||3|=++-b a ,则a +b = _______.五、反思悟学15. 已知32-=a ,312-=b ,213=c .(1) 在数轴上标出a ,||b ,a -,c -的位置;(2) 用“<”把a ,||b ,a -,c -连接起来.苏科版初中数学七年级上册第二章第4节2.4《绝对值与相反数3》教学设计及课堂练习设计一、自主先学1. |2.3|=_________,|47|=_________,|6|=_________,|0|=_________.2. |5-|=_________,—5的相反数是_________, |5.3-|=_________,—3.5的相反数是_________, |47-|=_________,47-的相反数是_________. 3. 正数的绝对值是_______________;负数的绝对值是_______________; 0的绝对值是__________.二、合作助学4. 求下列各数的绝对值: +6,π,—3,—2.7,0.5. 求数a 的绝对值:6. 两个正数,绝对值大的那个数一定大吗?两个负数呢?三、拓展导学7. 写出绝对值大于2而小于6的整数,并用“<”连接各数.8. 如果| a |=1,| b |=5,且a > b ,求a ,b 的值.四、检测促学9. 下列各数中,最小的数是 ( )A. —2B. 0C. 31- D. 510. 比较—3.1,—2的大小,下列判断正确的是 ( ) A.121.3<-<- B.11.32<-<- C.1.321-<-< D.231-<-< 11. 比较大小(填写“>”或“<”).(1) 53-_______|21-|; (2) |51-| _______0; (3) |56-| _______ |34-|; (4) 79- _______56-.12. 倒数等于本身的数___________,相反数等于本身的数___________,绝对值等于本身的数___________.13. 绝对值小于3.14的整数有___________________.14. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是 ( )A.a +b =0B. b < aC. ab > 0D. | b |<| a |五、反思悟学15. 如果| a |=4,| b |=3,则比较a 与b 的大小会有哪些结果,请你都写出来.苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法1》 教学设计及课堂练习设计一、自主先学1.某校七年级举行了一次足球联赛,一班第一场赢了2个球,第二场输了3个球,该班两场比赛的净胜球为多少个?2.计算:()()(1)43-++ ()()(2)25-+- ()(3)22+- ()(4)04+- ()()(5)38-++二、合作助学3.在课本上填写表中的净胜球数和相应的算式.4.完成课本上的数学实验,再仿照书上的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.()()33+++= ()()35++-= ()()44++-= ()50-+=5.有理数加法法则:(1)同号两数相加,取 的符号,并把绝对值 .(2)异号两数相加,绝对值相等时,和为 ;绝对值不等时,取绝对值 的加数的符( 第14题 )号,并用较大的绝对值减去较小的绝对值.(3)一个数与相加,仍得这个数.6.填表:7.计算:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)三、拓展导学8. 一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)9.如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接).四、检测促学10.一个正数与一个负数的和是()A.正数B.负数C.零D.以上三种情况都有可能11.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.大小由两个加数符号决定D.大小由两个加数的符号及绝对值而决定12.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )13.计算:(1)(+2)+(—3)(2)(—2)+(—3)(3)(—13)+25(4)(—23)+0 (5)4.5+(—4.5)(6)1132⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭五、反思悟学14.有理数a、b之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a+b0,(2)a+(-b) 0,(3)(-a) +b0,(4)(-a) +(-b) 0.(第14题)苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法2》教学设计及课堂练习设计一、自主先学1.某电梯原停在第10层,在某一时段中的运行情况如下(记上升为正,下降为负,单位:层):-8,+2,+5,-4,-2,+4.(1)问此时电梯停在第几层?(列出算式)(2)这个算式如何计算才能简便呢?小学学过的加法运算律在有理数范围内还成立吗?2.计算:(1)()()81021-+++-(2)()()()231324-+++-++-二、合作助学3.有理数加法运算律:(1)加法交换律:2个数相加,交换加数的位置,和.即a b+=.(2)加法结合律:3个数相加,先把前2个数相加,或者先把后2个数相加,和.即()a b c a++=+().4. 计算:(1)()()()235817-+++-(2)()()()2.83.6 1.5 3.6-+-+-+(3)1255 6767⎛⎫⎛⎫⎛⎫+-+-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三、拓展导学5.10名学生称体重,以50千克为基准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:2.5,-7.5,-3,5.5,-12,-6,4.5,8,2,-2,问这10人的总重量是多少?四、检测促学6.计算:(1)()()11814-++-(2)()()()82413+-+-++-(3)()()()4343-+-+-+(4)()()0.350.60.25 5.4+-++-(5)32124343⎛⎫⎛⎫⎛⎫-+-+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)()1112236⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭7.某种袋装奶粉标明净含量为400g,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?8.小虫从某点O出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10. 试问:小虫最后能否回到出发点O?五、反思悟学9.计算:(1)()()()()()1234562001200220032004+-++-++-+++-++-()()()()()()123456782001200220032004+-+-+++-+-++++-+-+苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法3》 教学设计及课堂练习设计一、自主先学1. 如果某天的最高气温是5℃,最低气温是-3℃,那么这天的日温差是多少?(列算式计算)2.计算:(1)69- (2)()()47+-- (3)()()58---(4)()49-- (5)()05-- (6)05-二、合作助学3.有理数减法法则:减去一个数,等于加上这个数的 .4.填空:(1)()()()454---=-+( ) (2)()()636--=-+( ) (3)()18--( )16=- (4)( )()1517--= 5.计算:(1)()022-- (2)()8.5 1.5-- (3)()416+- (4)1124⎛⎫-- ⎪⎝⎭6.阅读34页例4,了解日温差概念.三、拓展导学7.求出数轴上两点之间的距离:(1)表示数10的点与表示数4的点; (2)表示数2的点与表示数-4的点; (3)表示数-1的点与表示数-6的点. 8.已知|x |=3,|y |=4,求x -y 的值.四、检测促学9.填空:(1)()()75-+-= ; (2)208-+= ; (3)75-+= ; (4)()05+-= . 10.直接写出计算结果:(1)()66--= ; (2)66-= ; (3)()66--= ; (4)()()66---= . 11. 计算:(1)1521- (2)()1.90.6-- (3)3142⎛⎫-- ⎪⎝⎭ (4)1243⎛⎫-- ⎪⎝⎭(5)()()745--+- (6)()2112331267--++-12.已知| a |=3,| b |=4,且a <b ,求a -b 的值.五、反思悟学13.下列说法中正确的是( )A .两数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定小于被减数D .零减去任何数,差都是负数14.若不为0的两个数的差是正数,则一定是( ) A .被减数与减数均为正数,且被减数大于减数 B .被减数与减数均为负数,且减数的绝对值大C .被减数为正数,减数为负数D .以上3种均可满足条件苏科版初中数学七年级上册第二章第5节2.5《有理数的加法与减法4》 教学设计及课堂练习设计一、自主先学1. 计算:(1)()()()()1234---++-- (2)()()()1234--+--+二、合作助学2.在把有理数加减混合运算统一为加法的算式中,负数前面的加号可以省略不写. 例如7+4+(-5)可以写成7+4-5,它表示7、4与(-5)的和. 计算:(-4)+9-(-7)-13解:原式=-4+9+(+7)+(-13) 减法转化为加法=-4+9+7-13 省略加号的和 =-4-13+9+7 加法交换律 = 同号两数相加 = 异号两数相加3.把下列各式写成省略括号的和的形式,并用两种读法读出该式. (1)()()()10465+++--- (2)()()()()8479--++--+4.计算:(1)258+- (2)354--+ (3)2643241346-+-+- (4)()()14122517--+--三、拓展导学5.巡道员沿东西方向的铁路进行巡视维护.他从住地出发,先向东行走了7km ,休息之后继续向东行走了3km ;然后折返向西行走了11.5km.此时他在住地的什么方向?与住地的距离是多少?四、检测促学6. 计算:(1)()()745--+- (2)2112331267--++- (3)5.4 2.3 1.5 4.2-+-(4)15312424--+- (5)123213355⎛⎫---+---- ⎪⎝⎭7.“国庆黄金周”的某天下午,出租车司机小张的客运路线是在南北走向的建军路大街上,如果规定向南为正、向北为负,他这天下午行车里程(单位:千米)如下: +3、+10、-5、+6、-4、-3、+12、-8、-6、+7、-21. (1) 求收工时小张距离下午出车时的出发点多远?(2)若汽车耗油量为0.2L/km ,这天下午小张共耗油多少升?五、反思悟学8.如果2a =,4b =,且a b a b +=+.求()a b -的值.9. -55起每次加1,得到一串数:-54,-53,-52,-51,…… (1)这串数的第100个数是多少? (2)求这100个数的和.苏科版初中数学七年级上册第二章第6节2.6《有理数的乘法与除法1》 教学设计及课堂练习设计一、自主先学1.将商店盈利记为“+”,亏损记为“-”,若一个商店平均每天亏损20元,则该商店一周的利润是 元.2.计算:(1)()()87-⨯- (2)()125⨯- (3)()()361-⨯- (4)()2516-⨯二、合作助学3.仿照课本水位上升与下降问题,完成填表:4.有理数的乘法:(1)两数相乘,同号 ,异号 ,并把绝对值 ;任何数与0相乘都得 . (2)有理数的乘法步骤是:先确定积的 ,再计算积的 . 5.填空:(1)96⨯= ;(2)()96-⨯= ;(3)()34⨯-= ; (4)()()34-⨯-= ;(5)()2.71 3.90-⨯⨯= ;(6)435523⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .6.如果0=m n ,那么( ) A .m 、n 都为0 B .m 、n 不都为0C .m 、n 中至少有一个为0D .m 、n 中至多有一个为0三、拓展导学7.七年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:请你算出这次考试的平均成绩.四、检测促学8.计算:(1) 6×(-9); (2)(-6)×(-9); (3) (-6)×9; (4) (-6)×1;(5) (-6)×(-1); (6) 6×(-1); (7) (-6)×0; (8) 0×(-6);(9) (-6)×0.25; (10) (-0.5)×(-8); (11)2934⎛⎫⨯- ⎪⎝⎭; (12)1134⎛⎫-⨯ ⎪⎝⎭.9.一种金属棒,当温度是20℃时,长为5cm ,温度每升高或降低1℃,它的长度就要随之伸长或缩短0.0005cm ,求温度为10℃金属棒的长度.五、反思悟学10.若0ab >,0a b +>,则a 、b 两数( )A .同为正数B .同为负数C .异号D .异号且正数绝对值较大11.计算:111111112342014⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭苏科版初中数学七年级上册第二章第6节2.6《有理数的乘法与除法2》 教学设计及课堂练习设计一、自主先学1.填空:(1)23-⨯ 32⨯- (依据: )(2)()()725⨯-⨯-⎡⎤⎣⎦ ()()725⨯-⨯-⎡⎤⎣⎦ (依据: )(3)()12623⎛⎫+⨯- ⎪⎝⎭()()126623⨯-+⨯- (依据: )2.利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,下列表示正确的是( )A .981009999⎛⎫-+⨯ ⎪⎝⎭B .981009999⎛⎫--⨯ ⎪⎝⎭C .981009999⎛⎫-⨯ ⎪⎝⎭D .11019999⎛⎫--⨯ ⎪⎝⎭二、合作助学3.计算:(1)(-6)×(-7)= , (-7)×(-6)= .2×(-9)= , (-9)×2 = .(2)[2×(-3)]×(-4)= , 2×[(-3)×(-4)] = . (3)(-2)×[-3+5] = , (-2)×(-3)+(-2)×5 = . 4.计算:(1)188⨯; (2)()144⎛⎫-⨯- ⎪⎝⎭; (3)7887⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.5.有理数乘法运算律(用字母表示)交换律: ;结合律: ; 分配律: ;如果两数的乘积为1,那么这两个数互为 .6.计算:()157362612⎛⎫+-⨯- ⎪⎝⎭三、拓展导学7.计算:(1)()2222227195777⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()()10.89.250.7510.8-⨯---⨯ (3)()1519816⨯-四、检测促学8.计算:(1)133⨯ (2)3773⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ (3)()12020⎛⎫-⨯- ⎪⎝⎭ (4)11111⎛⎫⨯- ⎪⎝⎭9.计算:(1)()()825⨯-⨯- (2)()()5102-⨯⨯- (3)()11360234⎛⎫--+⨯- ⎪⎝⎭(4)()()355515⨯--⨯+-⨯ (5)()16991717⨯-五、反思悟学10.已知2x +与()23y -互为相反数,且a 、b 互为倒数,试求y x ab +的值.苏科版初中数学七年级上册第二单元第6节《2.6有理数的乘法与除法(3)》 教学设计及课堂练习设计一、自主先学1.计算:(1) (-2) ×(-4)= ; 8÷(-4)= ; 8×(-41)= . (2)(-2)×4= ; (-8)÷4= ; (-8)×41= . 2.某地某周每天上午8时的气温记录如下:这周每天上午8时的平均气温可表示为:()()()()()()[]71203233÷-+-++-+-+-+- 即(-14)7÷,它的值是多少?你会计算吗?二、合作助学3.有理数的除法法则:除以一个 的数,等于乘以这个数的 . 两数相除, , ,并把 相除. 0除以任何一个 的数,都得 .4.计算:(1)36÷(-9) (2)(-48)÷(-6)(3)(-32)÷4×(-8) (4)17×(-6)÷(-5)(5)1223⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(6)()()94811649-÷⨯÷-三、拓展导学5.一天,小张和小李利用温度差测量山的高度,小张在山顶测得的温度是-1℃,小李在山脚下测得的温度是2℃,已知该地区高度每上升100m ,气温下降约0.6℃,请你帮他们算算,这座山的高度大约是多少?四、检测促学6.填空:(1)-3的倒数是 ;(2)12-的倒数是 ;(3)1325的倒数是 ;(4)1312-的倒数是 ; (5)0.1的倒数是 ;(6)-0.15的倒数是 . 7.计算:(1)()15÷- (2)102⎛⎫÷- ⎪⎝⎭ (3)()9113-÷(4)()()639-÷- (5)4334⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ (6)30.258⎛⎫÷- ⎪⎝⎭8.计算:(1)()()1234⨯-÷- (2)()1622⎛⎫-÷⨯- ⎪⎝⎭(3)()1555⎛⎫-÷-⨯ ⎪⎝⎭ (4)()()121033⎛⎫-÷-⨯- ⎪⎝⎭五、反思悟学9.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯ (1)猜想并写出:()11n n += .(2)计算:111112233420132014++++⨯⨯⨯⨯.苏科版初中数学七年级上册第二章第7节2.7《有理数的乘方1》 教学设计及课堂练习设计一、自主先学1. 22读作什么?它表示什么?32呢?如果2×2×2×2可以写成什么形式?个n 2222⨯⨯⨯⨯ 呢?2. 如果将上题中2换成任意数a ,则个n a a a a ⨯⨯⨯⨯可表示成什么形式?读作什么?3. 填一填:(1)()62-读作 ,表示 ,其中指数为 ,底数为 ;(2)62-读作 ,表示 ,其中指数为 ,底数为 ;(3)73= ; 37= ; 521⎪⎭⎫ ⎝⎛= ;353⎪⎭⎫ ⎝⎛= ;(4)()43-= ;()34-= ;432⎪⎭⎫ ⎝⎛-= ;532⎪⎭⎫⎝⎛-= ;二、合作助学4. 通过上面的数学活动,我们学习了一种新的运算----乘方。
第课 2.5 有理数的加法教学案(2)教学目的1.使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;2.培养学生观察、比较、归纳及运算能力。
教学分析1.重点:有理数加法运算律。
2.难点:灵活运用运算律使运算简便.教学过程一、复习1.叙述有理数的加法法则.2.“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.3.计算下列各题,并说明是根据哪一条运算法则?(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63)4.计算下列各题:(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);(6)(-22)+[(-27)+(+27)].二、新授通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示上面一段话:a+b=b+a.运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示上面一段话:(a+b)+c=a+(b+c).这里a,b,c表示任意三个有理数.根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.例1计算16+(-25)+24+(-32).引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.解:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=[16+24]+[(-25)+(-32)] (加法结合律)=40+(-57) (同号相加法则)=-17. (异号相加法则)本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.例310袋小麦称重记录如图所示,以每袋90千克为准,超过的千克数记作正数,不足的千克数记作负数.总计是超过多少千克或不足多少千克? 10袋小麦的总重量是多少?教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便.解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)=0+0+25=25.90×10+25=925.答:总计是超过25千克,总重量是925千克.三、练习1.计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3)(-7)+(-6.5)+(-3)+6.5.2.计算:(要求注理由)四、小结1、。
浙江版2019-2020学年度七年级数学上册第2章有理数的运算2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0. 2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义. 3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算. 【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 . 【考点】有理数的除法,简单方程.【分析】根据有理数的除法,可得答案. 【解答】 [(-7.5)-□]÷(-221)=0,得 (-7.5) -□=0, 解得□=-7.5, 故答案为:-7.5.【点评】本题考查了有理数的除法,零除以任何非零的数都得零. 例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20 【考点】有理数的除法.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解. 【解答】(-15)÷(-5)×51 =(﹣15)×(﹣51)×51 =15×51×51 =53. 故答案为:53.【点评】本题考查了有理数的除法,有理数的乘法,是基础题,要注意按照从左到右的顺序依次进行计算,不能随意简化. 【夯实基础】1、711-的倒数与7的相反数的商为( )A .-8个B .8C .81-2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6 C .(-0.375)÷(-53、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为中“□”的所在的位置,填入下列运算符号,计算出来的值最小的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则acacb b aa ++可能为 . 6、有理数a 、b 在数轴上是位置如图所示,则ba ab- 0. 7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________ 8、计算:(1)-7÷(-1121)×76×(-612)÷11;(2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n , 若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. 第6题图(1)试计算a 2= , a 3= ; (2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( ) A .-24×(-81+61-41)=24×81-24×61+24×41B .(-81+61-41)×(-48)=81×48-61×48+41×48 C .-24÷(-81+61-41)=24÷81-24÷61+24÷41D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,ba<0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大 12、已知a 是负整数,则a ,-a ,a1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(ba+3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab+的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求m c d bam b a 63299-++ 的值.18、计算:(1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-).解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21;解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36 =2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷? 然后请你解答下列问题: 计算:(361-)÷(61-125+94-41+).20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等? (2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等? (3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“≠”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-,求(a +b +c )÷abc 的值.【中考链接】22.(2018•株洲)如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H 23、(2019•山东省聊城市•3分)计算:(2131--)÷54= . 24、(2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).第22题图参考答案1、D2、C3、D4、C5、3或1或-16、<7、-5,-3 10、C 11、D 12、B 13、D 14、6 15、-3 22、D 23、32- 24、b <-a <a <-b 8、计算:(1)-7÷(-1121)×76×(-612)÷11;(2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).解:(1)原式=-7×1311×76×613×111=-1; (2)原式=15×3652536⨯=3; (3)原式=1217-÷)636164(-+ =1217-÷31=-441; (4)原式=3×38+15×(56-) =8-18=-10.9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n , 若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)试计算a 2= 53 , a 3= 25; (2)求a 2019的值.解:由题意得:a 1=-32,a 2不难发现-32,53,25,这三个数反复出现. ∵2019÷3=673,其余数为0, 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a+b )+∴a =11,∵11.2的相反数为-11.2,之间的整数有-11~11共23个, ∴b =23, ∴(a -b )÷(a +b=(1117、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求m c d bam b a 63299-++ 的值.解:∵a 、b 互为相反数,且a 、b 均不为0,∴a +b =0,∵c 、d 互为倒数, ∴cd =1,03=+m , ∴2m+3=0,即2m=-3. mcd ba63-+=cd m bam b a )2(332)(9⨯-++ =0-3-3×(-3)×1 =-3+9=6. 18、计算:(1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-) 解:(1)原式=202020194332211÷⋅⋅⋅÷÷÷÷=202020192020342321=⨯⋅⋅⋅⨯⨯⨯⨯. (2)原式=(-2161+-43125+)⨯(-12) =(-21)⨯(-12)61+⨯(-12)-43⨯(-12)125+⨯(-12) =6-2+9-5=8.19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-).解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21;解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36 =2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷? 然后请你解答下列问题:计算:(361-)÷(61-125+94-41+).解:解法一是错误的.在正确的解法中,解法三比较简捷. 原式的倒数为(61-125+94-41+)÷(361-) =(61-125+94-41+)×(-36) =6-15+16-9=-2. 故原式=21-. 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等? (2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等? (3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“≠”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”). (1)相等,其结果均为7. (2)不相等. (-72)÷(-24-8)=49;(-72)÷(-24)+(-72)÷(-8)=12. 49≠12. (3)=;≠;不成立. 21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-,求(a +b +c )÷abc 的值. 解:a =201820182018201920192019+⨯⨯-=12019201820182019-=⨯⨯-,b =201920192019202020202020+⨯⨯-=12020201920192020-=⨯⨯-,c =202020202020202120212021+⨯⨯-=12021202020202021-=⨯⨯-.∴ (a +b +c )÷abc =(-1-1-1)÷(-1)⨯(-1)⨯(-1) =-3÷(-1)=3.。
七年级数学2.2《有理数和无理数》导学案教学目标:1理解有理数和无理数的概念和意义;2能够区分有理数和无理数,以及应用。
【同步知识讲解】知识点一:有理数:能够写成分数形式m n(m 、n 是整数,且n≠0)的数 要点诠释:有理数“0”的作用:作用举例 表示数的性质0是自然数、是有理数 表示没有3个苹果用+3表示,没有苹果用0表示 表示某种状态0℃表示冰点 表示正数与负数的界点0非正非负,是一个中性数 无理数:无限不循环小数要点诠释:1.有理数分类:(1 )按定义分类: (2)按性质分类:⎪⎩⎪⎨⎧负有理数正有理数0有理数2.有理数主要包括:整数、分数、有限小数以及循环小数等3.有理数按性质分不可认为分为正数、负数和零;其中,有理数按定义分中要注意小学学的小数在初中阶段也属于分数;4.无理数:关键词:无限和不循环初一一般只要求掌握两类:第一类如0.1010010001…等;第二类是含π的数。
特别注意:0.1010010001为有理数、0.1010010001…为无理数,因为前面是有限小数。
例1:把下列各数填在相应的大括号里:1,﹣4/5,8.9,﹣7,5/6,﹣3.2,+1 008,﹣0.06,289.正整数集合:{ };非负有理数非正有理数负整数集合:{ };正分数集合:{ };负分数集合:{ }.【分析】利用正整数,负整数,正分数,以及负分数的定义判断即可得到结果.例2.下列说法中,正确的是()A.0 是最小的整数 B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数【分析】根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是﹣1.正确理解有理数的定义.变式训练:1.下列说法中,正确的是 ( )A.有理数就是正数和负数的统称 B.零不是自然数,但是正数C.一个有理数不是整数就是分数 D.正分数、零、负分数统称分数2.下列说法中,正确的是()A.0 是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有数D.一个有理数的平方总是正数3..下列说法正确的是()A.0.1 是无理数B. 4/11是无限小数,是无理数C.π/3是分数D.0.13579…(小数部分由连续的奇数组成)是无理数知识点1:有理数和无理数1.实数π是( )A.整数 B.分数 C.有理数D.无理数2.在数0,1/3,,﹣(﹣1/4),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为( )A.3 B.4 C.5 D.63.下列语句正确的是( )A.0是最小的数B.最大的负数是﹣1C.比0大的数是正数 D.最小的自然数是14.下列各数中无理数的个数是( ),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个5.下列说法中,正确的是( )A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A.1 B.2 C.3 D.47.最小的正整数是__________,最大的负整数是__________,最小的非负整数是__________.8.有理数中.是整数而不是正数的数是__________;是整数而不是负数的数是__________.9.若一个正方形的面积为5,则其边长可能是__________数.10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有__________,整数有__________,负分数有__________.11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=__________.12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1)1,﹣2,4,﹣8,16,﹣32.__________,__________,__________…(2)4,3,2,1,0,﹣1,﹣2.__________,__________,__________…(3)1,2,﹣3,4,5,﹣6,7,8,﹣9,__________,__________,__________…13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.14.把下列各数填在相应的大括号内:3/5,0,,314,﹣2/3,,4/9,﹣0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={﹣2,﹣3,﹣8,6,7},B={﹣3,﹣5,1,2,6},C={﹣1,﹣3,﹣8,2,5},请把这些数填在图中相应的位置.16.“十•一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2单位:万人(1)9月30日外出旅游人数记为a,用a的代数式表示10月2日外出旅游的人数;(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?17.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量﹣3 4 ﹣1 2 ﹣5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.18.试验与探究:我们知道分数1/3写为小数即0.,反之,无限循环小数0.写成分数即1/3.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0. =x,由0. =0.7777…,可知,10x﹣x=7.77…﹣0.777…=7,即10x﹣x=7,解方程得,于是得0. =1/3.请仿照上述例题完成下列各题:(1)请你把无限循环小数0.写成分数,即0. =__________.(2)你能化无限循环小数0.为分数吗?请仿照上述例子求解之.课后作业:1.最小的正有理数是()A.0 B.1 C.﹣1 D.不存在2.下列说法正确的是()A.一个数前面加上“﹣”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则﹣a不一定是负数D.零既不是正数也不是负数3.在0,2.1,﹣4,﹣3.2这四个数中,是负分数的是()A.0 B.2.1 C.﹣4 D.﹣3.24.在下列各数:﹣,+1,6.7,﹣(﹣3),0,,﹣5,25% 中,属于整数的有()A.2个B.3个C.4个D.5个5.下列说法正确的是( )A.正数和负数统称为有理数B.有理数是指整数、分数、正有理数、负有理数和0五类C.一个有理数不是整数,就是分数D.整数包括正整数和负整数6. 下列说法正确的个数是( )①0是整数;②-223是负分数;③3.2不是正数; ④自然数一定是非负数;⑤负数一定是负有理数.A .1B .2C .3D .47. 有下列各数:-74,1.010 010 001,833,0,-π,-2.262 662 666 2 …(每相邻两个2之间6的个数逐次加 1),0.12··,其中有理数的个数是( )A .5B .4C .3D .68.在下列各数中,非负数有( )-3,0,+5,-312,-80%,+13,2 021. A .1个 B .2个C .3个D .4个9. 在有理数-45,1,0,8.9,-6中,正数有 ,整数有 , 非正数有 .10.如果把长江的水位比警戒水位高0.2 m 记作+0.2 m ,那么比警戒水位低0.15 m 记作 m.11.比较大小:-45 -56(填“>”或“<”). 12.在227,0,-0.101 001 000 1…(每相邻两个1之间0的个数逐次加1),π四个数中,有理数有 个.参考答案1.D .2.D .3.D .4.C . 5.C 6.C 7.A 8.D9、1,8.9 1,0,-6 -45,0,-6 10. -0.15 11.> 12.2。
2019-2020学年七年级数学上册《第二章 小结与思考》学案 (新版)苏科版学习目标:1、回顾有理数及无理数的基本概念,能熟练运用基本概念解决问题2、能熟练地进行有理数的混合运算。
学习重点:1、熟练运用基本概念及分类研讨法、数形结合法等方法解决问题2、有理数的运算顺序和运算律的运用。
学习难点:灵活运用运算律及符号的确定。
课前导学基本练习1、把下列各数填入适当的集合内:19,2.5,-2,31,-32,-4.3,0,0.•1,1‰ 正整数集合{ …}负分数集合 { …}非负数集合{ …}负有理数集合{ …}2、-131的相反数是_____,倒数是_____,绝对值是_____。
3、绝对值不小于2且小于5的整数有 .相反数等于它的绝对值的数是 。
4、如果9203000000=9.203×10n ,那么n=______________。
5、如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a+b= 。
6、119-的相反数的倒数是 .如果216a =,那么 a= 。
课堂活动一、基本知识1、有理数的概念及分类2、无理数的概念3、倒数、绝对值及相反数的意义4、有理数的大小比较方法5、有理数的运算二、例题解析例1、判断下列说法是否正确,若错误请说明理由(1)0是最小的正整数 ( )(2)一个数的相反数一定是负数( )(3)符号不同的两个数互为相反数 ( )(4)有理数包括整数、分数、正数、负数和零这5类 ( )(5)任何一个有理数的绝对值都是正数 ( )(6)积为1的两个数互为倒数 ( )(7)在数轴上离原点越远的点表示的数越大 ( )(8)相反数等于本身的数有3个,他们是±1和0 ( )(9)无理数是无限小数 ( )(10)绝对值等于它本身的数是正数 ( )例2、把下列各数填在相应的大括号里。
+8,+43,0.275,-|-2|,0,-1.04,722,-31,-(-10)2,-(-8),23% 正整数集合{ …} 整数集合{ …}非负整数集合{ …} 正分数集合{ …}非正数集合{…}例3、(1)把下列各数在数轴上表示出来,并且用“>”号把它们连结起来:-3,-(-4),0,|-2.5|,-121 (2)已知a>0,b<0,c<0,且|b|>|c|,化简|c-a|+|c-b|+|b-a|= 。
精选2019-2020年数学七年级上册第2章有理数的运算2.7 近似数浙教版复习
特训第四十六篇
➢第1题【单选题】
用科学记数法表示我国9.60×10^6平方公里国土面积,下面说法正确的是( )
A、精确到百分位,有两个有效数字
B、精确到万位,有两个有效数字
C、精确到百分位,有三个有效数字
D、精确到万位,有三个有效数字
【答案】:
【解析】:
➢第2题【单选题】
近似数0.3400的有效数字个数和精确度分别是( ).
A、两个有效数字,精确到万分位
B、四个有效数字,精确到万分位
C、两个有效数字,精确到十万分位
D、四个有效数字,精确到千分位
【答案】:
【解析】:
➢第3题【单选题】
下面的数据中,是精确数字的是( )
A、中国人口约为1223890000人
B、俄罗斯的国土面积为17070000km^2
C、小明有5枝钢笔
D、去年全年约有92天是晴天
【答案】:
【解析】:
➢第4题【单选题】
由四舍五入法取近似数:23.96精确到十分位是( )
A、24.0
B、24
C、24.00
D、23.9
【答案】:
【解析】:
➢第5题【单选题】
对于由四舍五入法得到的近似数有误,下列说法正确的是( )。
2019-2020年七年级数学上册第二章《2.5 有理数的大小比较》教学案+课后小练习(无答案)(新版)苏科版
==
②比较绝对值的大小:
因为
所以
③得出结论:
归纳
联系到2.2节的结论,我们可以得到有理数大小比较的一般法则:
(1) 负数小于0,0小于正数,负数小于正数;
(2) 两个正数,应用已有的方法比较;
(3) 两个负数,绝对值大的反而小.
例1 比较下列各对数的大小:
(1)-1与-0.01;
(2)与0
(3)-0.3与
(4)与
解 (1)这是两个负数比较大小,
因为|-1|=1, |-0.01|=0.01,
,101101,9191-=--=⎪⎭⎫ ⎝⎛--
且 1>0.01, 所以 -1< -0.01 .
(2) 化简 -|-2|=-2,
因为负数小于0, 所以-|-2| < 0 .
(3) 这是两个负数比较大小,
因为|-0.3|=0.3,
且 0.3 < , 所以
(4) 分别化简两数,得
因为正数大于负数,所以 10191-->⎪⎭⎫ ⎝⎛--
练习
1. 用“<”号或“>”填 空:
(1)因为 ,所以 ;
(2)因为 |-10| |-100| ;所以 -10 -100 .
2. 判断下列各式是否正确:
(1) (2)
(3) > (4) <
3. 比较下列各对数的大小;
(1) 与
(2) 与-0.618
4. 回答下列问题:
(1) 大于-4的负整数有几个?
(2) 小于4的正整数有几个?
(3) 大于-4且小于4的整数有几个?
习题 2.5
1. 比较下列每对数的大小:
(1) 与 ; (2)-9.1与-9.099;
(3)-8与 |-8| ; (4)-|-3.2|与-(+3.2).
2. 将有理数0,-
3.14,,2.7,-4,0.14按从小到大的顺序排列,用“<”号连接起来.
3. 写出绝对值小于5的所有整数,并在数轴上表示出来.
4. 回答下列问题:
(1) 有没有最小的正数?有没有最大的负数?为什么?
(2) 有没有绝对值最小的有理数?把它写出来.
-----如有帮助请下载使用,万分感谢。