呼吸力学
- 格式:docx
- 大小:12.83 KB
- 文档页数:1
呼吸力学的各个参数△p
呼吸力学是指通过测量压力和流速来表达肺功能的一门学科。
以下是与呼吸力学的参数△p相关的内容:
在物理学中,阻力=压力梯度/流速。
将这一公式运用到呼吸系统中,吸气阻力Rrs=气道开口和肺泡之间的压差/吸气流速Vi。
因此, Pres=Rrs×Vi。
顺应性是压力变化引起的容积变化。
在呼吸过程中,呼吸系统的静态弹性(Ers)为静态(无气流速)条件下从吸气到呼吸末的肺泡压力变化(驱动压,△p)和潮气量(Vt)比值。
因此,Pel=Ers×Vt。
静态顺应性Crs是静态弹性(E)的倒数,Pel=Vt/Crs。
呼吸力学的参数△p是衡量呼吸系统功能的重要指标,它对于评估肺部疾病的严重程度和治疗效果具有重要意义。
在临床实践中,医生可以根据患者的具体情况,结合多种参数进行综合评估,以制定最佳的治疗方案。
呼吸力学的运动方程解读呼吸力学的运动方程主要描述了呼吸过程中气道压力、气流速率、肺容量和肺顺应性之间的关系。
恒定流速(方波或称矩形波),设置吸气末暂停的容控的压力时间曲线能够让我们理解这些力学概念。
这对于优化机械通气参数、改善患者肺功能以及防止通气相关的损伤至关重要。
一、呼吸力学的基础概念呼吸是通过产生压力差来驱动气流的过程。
在自然呼吸时,膈肌和肋间肌的收缩和松弛导致胸腔容积的变化,从而引发肺内外压力的变化,进而产生气流。
在机械通气过程中,呼吸机通过外部压力推动气体进入肺部,形成呼吸周期。
呼吸力学的运动方程反映了在吸气和呼气期间,气道压力、气流、潮气量以及与气道阻力和肺顺应性的关系。
基本的呼吸力学方程如下:Paw = (R×V) +(VT/C)+ PEEP该方程虽然是包含了几个呼吸力学量,但主要是用P-t图中进行解释说明。
图中各点解释:A点:这是呼吸周期的起始点。
此时,气道压力为基础的PEEP值,气道中没有气流,肺内没有气体积累。
PEEP的作用是防止肺泡完全塌陷,从而保持一定的肺容积。
B点:在吸气的开始,随着气体进入肺部,气道内的压力逐渐上升,气流开始增加。
这一阶段称为“流动相”或“流量相”。
此时,气道压力主要由气流通过气道阻力(R)引起的压力梯度决定。
C点:这是气道内压力的最高点,称为峰值压力(Peak Pressure)。
在机械通气时,这个点代表气体最大流速时气道内的压力峰值。
峰值压力由气道阻力(R)和肺顺应性共同决定。
D点:设定吸气暂停后,气流减慢直至停止,气道压力开始下降,进入“平台相”。
平台压力(Plateau Pressure)是反映肺顺应性的一个重要指标,不受气道阻力的影响。
E点:平台压力的结束点,气流完全停止,气道内的压力处于相对平稳状态,此时可以准确反映肺顺应性。
压力的计算可以通过容积/肺顺应性来估算,即VT/C。
F点:呼气相结束,气道压力回到PEEP水平,准备下一次呼吸周期的开始。
床旁呼吸力学监测及其在机械通气中的应用首都医科大学附属北京朝阳医院詹庆元第一节呼吸力学发展简史呼吸力学(respiratory mechanics 或lung mechanics)是以物理力学的观点和方法对呼吸运动进行研究的一门学科。
呼吸力学发展大致经过了以下阶段:一.早期阶段(19世纪~20世纪初)1817,James Carson,发现动物肺具有弹性,被认为是现代呼吸力学的开始。
1853,Frans Cornelius Donders,用水银压力计测定肺弹性所产生的压力约为7mmHg。
1847,Ludwig,用充水球囊测定胸内压。
1844,John Hutchison,用肺量计(spirometer)测定肺活量和肺容积上述研究并没有将压力和容积联系起来对呼吸运动现象进行描述。
之后50年内无重大进展。
二.基础阶段(20世纪初~20世纪50年代)1915~1925,Fritz Rohrer,首先将复杂的呼吸运动简单化地以物理学的压力-容积的关系进行描述,开创了呼吸力学研究的新纪元。
但未引起重视。
1941,Arthur Otis等,再次发现了压力-容积的关系,并于战后公开发表。
上述两项研究为呼吸力学提供了最基本的科学理论和研究方法。
1925,Alfried Fleisch,PTG(pneumotachorgraph)。
1943,Louis Statham,发明strain-gauge manometer。
1949,Buytendijk,以食道-气囊导管间接测定胸内压。
上述三项技术为呼吸力学研究提供了硬件基础。
1958,Moran Campbell,以食道压替代跨肺压重新评价压力-容积曲线的价值,提出了著名的Campbell 图(Campbell diagram)。
使呼吸力学的理论进一步完善:将吸气肌和呼气肌做功分开,将克服弹性阻力和粘滞阻力做功分开,加深了对动态肺充气的认识。
三.发展和应用阶段(20世纪50年代~至今)随着微处理技术和高灵敏传感器的应用,呼吸力学从实验室走向临床,呼吸力学监测仪商品化。
呼吸力学监测的常用指标呼吸力学监测是一种评估呼吸系统机械性质的方法,常用于机械通气支持的患者。
通过呼吸机监测呼吸系统的机械性质,可以帮助医护人员调整通气参数,改善患者的通气支持效果,降低机械通气相关的并发症。
本文将介绍呼吸力学监测的常用指标。
1. 呼吸频率(RR)呼吸频率是指单位时间内呼吸的次数,以每分钟为单位(次/分)。
呼吸频率与通气量(VT)的乘积等于分钟通气量(MV),即MV = RR × VT。
呼吸频率的监测可帮助医护人员了解患者的呼吸频率是否正常,是否需要进一步调整通气参数。
在康复期或者较轻的呼吸系统疾病患者中,正常的呼吸频率为12-20次/分。
而在重症患者中,呼吸频率可能显著升高,应根据患者的情况来设置合适的通气参数。
2. 潮气量(VT)潮气量是指一次正常呼吸中吸气或呼气的空气量。
在机械通气时,VT通常设置在6-8毫升/千克体重之间。
监测潮气量可帮助医护人员判断患者是否在呼吸系统疾病或机械通气过程中存在通气量不足或过度通气等问题。
潮气量设置不当可能会导致肺泡过度膨胀或萎陷,从而影响有效通气。
3. 呼气末正压(PEEP)呼气末正压是指在呼气过程中肺内的正压。
PEEP的设置有助于防止肺泡塌陷,改善氧合和通气效果。
对于呼吸系统疾病或其他原因导致肺泡塌陷的患者,适当设置PEEP可以改善肺功能并降低机械通气相关的并发症。
PEEP的监测可以确定患者是否在机械通气过程中存在通气不足或过度通气等问题。
一般来说,PEEP的设置应该在2-10cm H2O之间,具体设置应根据患者的情况而定。
4. 呼吸系统顺应性(Crs)呼吸系统顺应性是指单位压力下肺容积的变化。
Crs可以帮助医护人员了解患者的肺部机械性质,包括肺弹性、肺组织阻力、肺气体阻力及胸腔压等因素。
Crs的计算公式为:Crs = VT/(Pplat-PEEP)。
Crs的监测可帮助医护人员判断患者是否存在肺部机械性质异常问题。
如果Crs下降,则说明肺部有肿胀或水肿等问题,此时应检查是否需要进行肺部病变处理并及时调整通气参数。
肺通气的阻力有弹性阻力与非弹性阻力,前者是平静呼吸时的主要阻力,约占总阻力的2/3,非弹性阻力包括黏性阻力和惯性阻力,约占1/3,其中又以气道阻力为主。
黏性阻力是指气体流经呼吸道时气体分子间和气体分子与气道壁之间的摩擦阻力,或呼吸时组织相对位移所发生的摩擦力,前者称为气道阻力(Raw),是非弹性阻力的主要成分,占80-90%。
发生肺组织病变或发生胸廓异常,其黏性阻力也明显增加,但与气道阻力相比,其对通气功能影响,仍相对较轻。
生理情况下,气道阻力大约50%位于鼻与口腔,25%位于声门,15%位于气管、支气管,第十级之前的大气道约占总阻力的85%
呼吸系统的主要特性之一是弹性,顺应性(C)是弹性阻力(E)的倒数,即E=1/C,主要涉及到肺顺应性C L,胸廓顺应性Ccw,胸肺总顺应性Crs。
肺弹性阻力是吸气的阻力,呼气的动力,主要来源于肺泡表面张力与肺弹性纤维的弹性回缩力,前者约占2/3,后者约占1/3。
胸廓的弹性阻力:胸廓也具有弹性,胸廓处于自然位置的肺容量,相当于肺总量的67%左右,此时胸廓毫无变形,不变现出弹性回缩力或扩张力。
当肺容量小于67%时,胸廓的弹力向外,是吸气的动力,呼气的阻力;当肺容量大于67%时,胸廓的弹力向内,是吸气的阻力,呼气的动力。
所以胸廓的弹性作用随胸廓的位置而变化,与肺明显不同。
弹性阻力与黏性阻力和惯性阻力不同,对于吸气与呼气表现为相反的作用,一种是动力,另一种是阻力。