高等数学大一上学期期中考试题
- 格式:doc
- 大小:150.00 KB
- 文档页数:5
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
大学高数期中考试试卷一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在x=0处:A. 连续B. 可导C. 不连续D. 可积2. 若函数f(x)在闭区间[a,b]上连续,则:A. 必存在最大值B. 必存在最小值C. 必存在零点D. 以上都不对3. 微分方程\(\frac{dy}{dx} + y = e^x\)的解是:A. \(y = e^x - xe^x\)B. \(y = e^x + ce^{-x}\)C. \(y = e^x - ce^x\)D. \(y = e^x\)4. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 无法确定5. 函数\(\sin(x)\)的原函数是:A. \(x\)B. \(\cos(x)\)C. \(-\cos(x)\)D. \(\sin(x)\)6. 若f(x)在区间(a,b)内可导,则f(x)在该区间内:A. 必定单调递增B. 必定单调递减C. 必定连续D. 以上都不对7. 曲线y=\(\sqrt{x}\)与直线x=4所围成的面积是:A. \(\frac{16}{3}\)B. \(\frac{32}{3}\)C. \(\frac{64}{3}\)D. \(\frac{128}{3}\)8. 函数\(\ln(x)\)的泰勒展开式是:A. \(x - 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots\)B. \(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\)C. \(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots\)D. \(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} -\cdots\)9. 若\(\int_{0}^{1} f(x)dx = 2\),则\(\int_{0}^{1} x f(x)dx\)的值是:A. 0B. 1C. 2D. 无法确定10. 函数\(\frac{1}{1+x^2}\)的不定积分是:A. \(\ln(1+x^2)\)B. \(\arctan(x)\)C. \(\ln|x|\)D. \(\ln|x+1|\)二、填空题(每空1分,共10分)1. 若\(\frac{dy}{dx} = 3x^2\),则\(dy\) = __________。
课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――一、填空题(每小题2分,共20分)1.数列 ,41,0,31,0,21,0,1,0的一般项=n x . 答:nn)1(1-+.2. 极限0sin 3lim tan 5x xx→= .答:35. 3. 极限=-→xx x 10)1(lim .答:1e. 4. 设函数1()cos f x x=,则[(1)]f '= . 答:0.5. 函数()ln ||f x x =的导数()f x '= .答:1x . 注:答为1||x 不给分 6. 已知x y sin =,则(20)y = . 答:sin x . 7. 已知21()1df x dx x =+, 则()f x = . 答: arctan x C +. 注:答为arctan x 扣1分8.当∞→n 时,如果nk1sin 与n1为等价无穷小,则k = . 答:2.9. 若函数31,1(), 1.x x f x a x -+<⎧=⎨≥⎩,在),(+∞-∞上连续,则a = .答:2-.10. 设函数)(x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,根据拉格朗日定理,则在开区间()b a ,内至少存在一点ξ,使得)(ξf '= .答:()()f b f a b a--.二、单项选择题(每小题3分,共18分)1. 若极限0lim =∞→n n x ,而数列}{n y 有界,则数列}{n n y x ( A ).(A) 收敛于0; (B) 收敛于1; (C) 发散; (D) 收敛性不能确定. 2. 0=x 是函数1()12xf x =-的( C )间断点. (A) 可去; (B) 跳跃; (C) 无穷; (D) 振荡. 3.设函数()(1)(2)(2011)f x x x x x =+++ ,则=')0(f ( C ). (A) !n ; (B) 2010!; (C) 2011!; (D) 2012!. 4.若函数)(x f 、()g x 都可导,设[()]y f g x =,则d d yx=( B ). (A) {[()]}()f g x g x ''⋅; (B) [()]()f g x g x ''⋅; (C) [()]()f g x g x '⋅; (D) [()]f g x '.5.若函数)(x f 与)(x g 对于开区间),(b a 内的每一点都有)()(x g x f '=',则在开区间),(b a 内必有( D )(其中C 为任意常数).(A) )()(x g x f =; (B) C x g x f =+)()(; (C) 1)()(=+x g x f ; (D) C x g x f +=)()(. 6.下列函数中,在区间]1,1[-上满足罗尔定理条件的是( A ).课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――(A) 21x -; (B) xe ; (C) x ln ; (D)211x -.三、求下列极限(每小题6分,共24分)1. xx x 11lim-+→. 解:0011limlim(11)x x x xxx x →→+-=++ (2分) 011lim211x x →==++. (6分)2. 1lim 1xx x x →∞+⎛⎫ ⎪-⎝⎭解:211212lim lim 111x x x xx x x x x --→∞→∞⎡⎤+⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦(4分)2e = (6分)3. xxx ln cot ln lim 0+→ 解:原式=x x x xx x x x cos sin lim 1)sin 1(cot 1lim 020++→→-=-⋅ (3分)1cos 1lim sin lim 00-=⋅-=++→→xx x x x .(6分)4. 222111lim 12n nn n n →∞⎛⎫+++⎪+++⎝⎭解:设22212111nn nnx n ++++++=,(1分)则,≤n xn y nnn ==+++1111222; (2分) ≥n xn z nnn n nn nn nn =+=+=++++++/1111112222,(3分) 因为1lim lim ==∞→∞→n n n n z y ,(4分)由夹逼定理112111lim 222=⎪⎪⎭⎫⎝⎛++++++∞→n n n n n . (6分)课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――四. 求导数或微分(每小题6分,共18分)1.已知)1sin(ln x y -=,求y d 解:cos(1)(1)sin(1)x dy dx x -=-- (4分)cot(1)x dx =--. (6分)2.求由参数方程2arctan ,ln(1)x t y t =⎧⎨=+⎩所确定的函数()y y x =的导数dydx .解:2[ln(1)][arctan ]dy t dx x '+='(2分) 2221/211t t t t==++ .(6分)3. 设函数)(x y y =由方程y x y e 1+=确定, 求)(x y y =在0x =处的切线方程. 解:当0, 1.x y ==(1分)方程yx y e 1+=两边对x 求导,有xy x x y y y d d e e d d +=,(3分) 得d e d 1eyy y x x =-(4分) 所以,x dy e dx==. (5分)因此,所求的切线方程为1y e x =+. (6分)五.(8分)已知函数2arcsin(),0,()2b,0ax x f x x x x >⎧=⎨++≤⎩在0x =点可导, 求常数ba 、的值.解:要使)(x f 在0x =处可导,必须)(x f 在0x =处连续,(1分)而0(0)lim arcsin()0x f ax ++→==;(0)f b =.(2分) 由(0)(0)f f +=,有0b =. (3分) 又 000()(0)arcsin()(0)lim lim lim 0x x x f x f a x a xf a x x x++++→→→-'====-,(4分) 200()(0)2(0)lim lim 20x x f x f x xf x x---→→-+'===-.(5分)由)(x f 在0x =处可导,有(0)(0)f f -+''=(6分), 得2a =.(7分) 故当0,2a b ==时,函数)(x f 在0x =处可导. (8分)六.证明题(12分)若函数)(x f 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0f =,(1)1f =.证明: (1) 存在(0,1)ξ∈,使得()1f ξξ=-;(2) 存在两个不同的点,(0,1)a b ∈,使得()()1f a f b ''=. 证明:(1) 令()()1g x f x x =+-, (1分) 则()g x 在[0,1]上连续, (2分)又(0)10g =-<,(1)10g =>(3分),由零点定理知,存在(0,1)ξ∈,使得()()10g f ξξξ=+-=(5分), 即()1f ξξ=-.(6分)(2) 分别在[0,]ξ和[,1]ξ上应用拉格朗日中值定理 (7分),课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――存在(0,)a ξ∈,(,1)b ξ∈使得()(0)1()f f f a ξξξξ--'==, (9分)(1)()1(1)()111f f f b ξξξξξξ---'===---, (11分)因此()()1f a f b ''=. (12分)附加题(10分,不计入总成绩,只作为参考) 如果)(x f 和()g x 满足下列三个条件:(1)在闭区间[]b a ,上连续;(2)在开区间()b a ,内可导;(3)对任意(),x a b ∈,均有()0g x '≠.则存在一点(),a b ξ∈,使得()()()()()()f a f fg g b g ξξξξ'-='-.证明:令()[()()][()()]F x f a f x g x g b =--.(2分)因为()F x 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0F a F b ==,(3分)由罗尔定理, 存在一点(),a b ξ∈,使得()0F ξ'=. (5分)由于()[()()]()[()()]()F x f a f x g x g x g b f x '''=-⋅--⋅, (6分)所以()[()()]()[()()]()0F f a f g g g b f ξξξξξ'''=-⋅--⋅=,(8分)整理,得()()()()()()f a f fg g b g ξξξξ'-='-.(10分)大一上学期高数期末考试卷一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
大一高等数学a期中试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是不定积分∫x^2 dx的解()。
A. x^3B. x^3 + CC. 3x^2 + CD. 3x^2答案:C4. 以下哪个选项是定积分∫(0 to 1) x dx的值()。
A. 0C. 1D. 2答案:B5. 函数y=e^x的原函数是()。
A. e^xB. e^x + CC. ln(x)D. ln(x) + C答案:B6. 以下哪个选项是微分方程dy/dx + y = 0的通解()。
A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)答案:A7. 以下哪个选项是函数y=x^3的二阶导数()。
A. 3x^2B. 6xC. 18xD. 6答案:B8. 以下哪个选项是函数y=ln(x)的一阶导数()。
B. xC. ln(x)D. e^x答案:A9. 以下哪个选项是函数y=x^2 - 4x + 4的最小值()。
A. 0B. 1C. 4D. -4答案:A10. 以下哪个选项是函数y=x^3 - 3x的拐点()。
A. x = 0B. x = 1C. x = -1D. x = 2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3的一阶导数是____。
答案:3x^22. 函数f(x)=x^2+2x+1的极值点是____。
答案:x = -13. 函数f(x)=sin(x)的不定积分是____。
答案:-cos(x) + C4. 函数y=e^x的二阶导数是____。
答案:e^x5. 函数y=ln(x)的二阶导数是____。
答案:1/x^2三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x+8在x=2处的切线方程。
2012-2013高等数学期中测试题一、填空题(3分⨯10=30分)1、已知2sin tx e y t ⎧=⎨=⎩,则2x dy==2、3lim ()2x x x a e x →+∞+=+,则a = 3、函数2cos ,2y x x x π=+ 0≤≤的最小值为 4、函数211x y e -=-的水平渐近线为5、设()0f x '存在,则()000(5)2lim h f x h f x h h →+--=6、曲线34y x x =-在区间 上是向上凸的7、设sin xx 是()f x 的一个原函数,则()xf x dx '⎰=8、过点(2,0)且与曲线1y x =相切的直线方程为9、函数33y x =-的拐点为 10、函数()()22110cos ,0x e x f x xa x x x ⎧- , <⎪=⎨⎪+ ≥⎩在0x =处连续,则a =二、计算下列极限(6分⨯2=12分)1、011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦ 2、()212sin 0lim cos x x x →三、求下列导数(7分⨯2=14分)1、()y y x =由方程sin cos()0y x x y --=所确定,求()0y ''2、设sin x y x =,求d yd x四、求下列积分(6分⨯4=24分)1、2cos 9sin x dx x +⎰2、⎰ 3、23x x edx ⎰ 4、24525x dx x x -++⎰ 五、证明题(6分⨯2=12分)1、设函数()f x 在[],a b 上连续,在(),a b 上可导,证明在(),a b 内存在一点ξ,使得:()()()()bf b af a f f b a ξξξ-'=+-2、利用函数单调性证明不等式:当02x π<<时,sin tan 2x x x +> 六、计算题(8分)已知函数()sin 30,0x x f x xa x ⎧ , ≠⎪=⎨⎪ =⎩在点0x =处可导,求a 及()0f '。
山东大学2014-2015学年第一学期期中考试《高等数学(Ⅰ)》试卷姓名:________一、选择题(每题2分,共16分) 1、 下列极限存在的是…………………………………………………………( )(A) (B) (C ) (D )2…( a )(A )1/2, 1 (B ) 1,1(C)-1/2, 1 (D) —1,13、则下列正确的是…………………………( )(A ) f (x )〉0, (B ) g(x )<0, (C ) f (x )>g (x ) (D )存在a 的一个空心邻域,使f (x )g (x )〈0。
4、已知, 则………………………………………………( )(A ) 2/3, (B ) 3/2 (C) 3/4 (D) 不能确定.5、函数f(x)在[a ,b ]上有定义,在(a ,b )内可导,则( )(A) 当f (a )f (b )<0时,存在ξ∈(a ,b ),使f(ξ)=0(B )对任何ζ∈(a ,b ),有(C)当f (a )=f (b )时,存在ξ∈(a ,b ),使f ¹(ξ)=0(D)存在ξ∈(a ,b),使f(a )—f (b)=f ¹(ξ)(b-a )6、下列对于函数y =x cos x 的叙述,正确的一个是………………………………………()(A )有界,且是当x 趋于无穷时的无穷大,(B)有界,但不是当x 趋于无穷时的无穷大,(C) 无界,且是当x 趋于无穷时的无穷大,(D )无界,但不是当x 趋于无穷时的无穷大。
7、下列叙述正确的一个是……………………………………………………………( )(A )函数在某点有极限,则函数必有界;(B)若数列有界,则数列必有极限;(C ) 若则函数在0处必有导数,(D )函数在可导,则在必连续。
8、 当时,下列不与等价的无穷小量为…………………………………( )(A ) (B) (C ) (D )9.都是无穷小量,它们关于x 的阶数由大到小排列顺序为()10.二、填空题(每题2分,共20分) 1、的连续区间是_____[0,1/2]______________2、 已知,则a =______b =__________3、 的间断点为x 不等于____它们是______无穷间断点(填类型)4、 5、6、 则k =_________7、若函数 在x =0连续,则a =_________8、设,,则_________9、,则________10、已知函数,则d y =_____11。
高等数学(一)期中测试题答案一、选择题(10×2分=20分) 1.函数)ln(ln x y=的定义域为( D )A .(0 ,+∞)B .(1 ,+∞)C .(e ,+∞)D .[e ,+∞) 2.下列( A )是初等函数 A .112--=x xyB .⎪⎩⎪⎨⎧--=0112x x y11=≠x xC .2cos -=x yD .)1ln(2--=xy3.下列极限存在的是( A ) A .2)1(limxx x x +∞→ B .121lim-→xx C .xx e1lim→ D .xxx 1lim2+∞→4.下列各式中正确的是( D ) A .ex xx =+→)11(limB .exx x =+∞→1)11(limC .e x x x =+∞→1)1(lim D .ex x x =+→1)1(lim5.=--→4)2sin(lim22xx x ( B )A .0B .41 C .21 D .16.函数⎪⎩⎪⎨⎧=01sin xx y0=≠x x 在0=x 处( C )A .没定义B .不连续C .连续但不可导D .可导7.下列函数在给定区间上满足罗尔定理的是( A ) A.[]3,2,652∈+-=x x xyB.[]2,0,)1(132∈-=x x yC.[]1,0,∈=-x xeyxD.[]3,0,1∈+=x x y8.若函数)(x f y =在区间0)(,0)(),('''<>x f x f b a 内,则)内,在(b a x f )(( B )A .单调递增且是凹的B .单调递增且是凸的C .单调递减且是凹的D .单调递减且是凸的 9.若)(2)('x x f x f ,则的一个原函数是=( D ) A .x2 B .2ln 2xC .2ln 2xD .2ln22x10.若等于则dx ef eC x F dx x f xx)(,)()(⎰⎰--+=( D )A .C e F x +)(B .Ce F x+-)( C .C e F x +-)( D .CeF x+--)(二、填空题(10×2分=20分) 1.=+→xx x )11(lim12.曲线处的切线方程是在0=+=x e x yx012=+-y x3.若函数⎩⎨⎧+=,,)(x a e x f x 00>≤x x 在==a x处连续,则0 14.设函数==)0(,‘则y xe y x15.302.1的近似值为 1.0076.设函数==)(,ln )2(x f x x f ‘则x17.设=----=)(则‘0),4)(3)(2)(1()(f x x x x x x f 24 8.若⎰=+=)(,3arctan )(x f c x dx x f 则 2913x+9.曲线12+=xy的渐近线为xy±=10.拉格朗日定理是柯西定理在xx g =)(时的特殊情形。
2022-2023学年广东高一上学期数学期中考试试题一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞B .[1,)+∞C .[1,2)D .[1,2)(2⋃,)+∞3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x x =>,则当0x <时,()(f x = ) A .1xB .1x --C 1x -D 1x -5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 6.(5分)函数2y x x =+-( ) A .[0,)+∞B .[2,)+∞C .[4,)+∞D .[2)+∞7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)-C .(1,)-+∞D .(1,3)8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( ) A .1abB .2a b+ C .222a b + D .112a b+ 12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 .15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.答案及解析2022-2023学年广东高一上学期数学期中检测仿真卷(1)一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P【答案】A【详解】由已知中阴影部分在集合M 中,而不在集合P 中, 故阴影部分所表示的元素属于M ,不属于P (属于P 的补集), 即()U C P M ,故选:A .2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞ B .[1,)+∞ C .[1,2)D .[1,2)(2⋃,)+∞【答案】D 【详解】由题意得:1020x x -⎧⎨-≠⎩,解得:1x 且2x ≠, 故函数的定义域是[1,2)(2⋃,)+∞, 故选:D .3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}【答案】D 【详解】AB B B A =⇒⊆,{2A =-,1}的子集有φ,{2}-,{1},{2-,1},当B φ=时,显然有0a =;当{2}B =-时,221a a -=⇒=-;当{1}B =时,122a a ⋅=⇒=;当{2B =-,1},不存在a ,符合题意,∴实数a 值集合为{1-,0,2},故选:D .4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x =>,则当0x <时,()(f x = )A .1B .1C 1D 1【答案】B【详解】函数()f x 为R 上奇函数,可得()()f x f x -=-,又()1(0)f x x >, 则当0x <时,0x ->,()()1)1f x f x =--=-=.即0x <时,()1f x =. 故选:B .5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 【答案】C【详解】A .x R ∃∈,取12x =,则2114x =<,因此是真命题; B .由22a b a b =⇒=,反之不成立,例如取1a =,1b =-,满足22a b =,但是a b ≠,因此22a b =是a b=的必要不充分条件,因此是真命题;C .集合2{(,)|}x y y x =表示点的集合,而集合2{|}y y x =表示数的集合,它们不表示表示同一集合,因此是假命题;D .全集为R ,若A B ⊆,则()()R R B A ⊆,是真命题.故选:C .6.(5分)函数y x =+( )A .[0,)+∞B .[2,)+∞C .[4,)+∞D .)+∞【答案】B【详解】函数的定义域为[2,)+∞, 又函数为单调增函数, 当2x =时,取得最小值为2.∴值域是[2,)+∞.故选:B .7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)- C .(1,)-+∞ D .(1,3)【答案】B【详解】根据题意,()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数, 则(1)f a f ->(2)(|1|)f a f ⇒->(2)|1|2a ⇒-<, 解可得:13a -<<,即a 的取值范围为(1,3)-, 故选:B .8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]【答案】C【详解】当0x 时,2()(1)1f x x =--, 此时()min f x f =(1)1=-, 而当0x <时,①1a =时,()2f x =为常函数,此时在R 上满足函数()f x 有最小值为1-, ②1a ≠时,函数()f x 此时为单调的一次函数,要满足在R 上有最小值, 只需10(1)021a a a -<⎧⎨-⨯+-⎩,解得112a -<,综上,满足题意的实数a 的取值范围为:112a -, 故选:C .二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 【答案】BCD 【详解】由110a b<<,得0b a <<,则0a b ab +<<,选项A 正确,选项C 错误; 根据0b a <<可得||||b a >,所以选项B 错误; 由0b a <<,得0b a >,0a b >,则22b a b a a b a b +⋅=,当且仅当b aa b=时等号成立,又a b ≠, 所以b aa b+不能取得最小值2,选项D 错误. 故选:BCD .10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数 【答案】BD【详解】对于A :函数1()f x x=的定义域为(-∞,0)(0⋃,)+∞,所以函数在(0,)+∞和(,0)-∞上都为单调递减函数,故A 错误;对于B :命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++”故B 正确;对于C :两个三角形全等,则两个三角形必相似,但是两个三角形相似,则这两个三角形不一定全等,则两个三角形全等是两个三角形相似的充分不必要条件,故C 错误;对于D :若()y f x =为奇函数,且函数y x =也为奇函数,则函数则()y xf x =为偶函数,故D 正确. 故选:BD .11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1abB 2bC .222a b +D .112a b+ 【答案】ACD【详解】对于命题1ab :由221a b ab ab =+⇒,A 正确;对于命题2a b +:令1a =,1b =时候不成立,B 错误;对于命题222222:()2422a b a b a b ab ab ++=+-=-,C 正确; 对于命题111122:2a b a b a b ab ab+++==,D 正确. 故选:ACD .12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 【答案】ABC【详解】根据题意,依次分析选项:对于A :对于任意一个圆,任意的一条直径均可以平分周长和面积,故圆的“优美函数”有无数个,A 正确;对于B :由于3()f x x =的图象关于原点对称,而单位圆也关于原点对称,故3()f x x =可以是单位圆的“优美函数”, B 正确;对于C ,,0(),0x x f x x x =--<⎪⎩为奇函数,且经过原点,若圆的圆心在坐标原点,则()f x 是这个圆的“优美函数”, C 正确,对于D :函数图象是中心对称图形的函数一定是“优美函数”,但反之“优美函数”不一定是中心对称的函数,如图,故D 错误;故选:ABC .三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 【答案】4【详解】函数1(0,1)x y a a a -=>≠的图象恒过定点A , 可得(1,1)A ,点A 在一次函数y mx n =+的图象上, 1m n ∴+=,m ,0n >,12m n ∴+=mn ,14mn ∴, 111()4m n m n mn mn +∴+==(当且仅当12n =,12m =时等号成立), 故答案为:4.14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 . 【答案】34;211()42f x x x =+ 【详解】由21x =,得12x =,f ∴(1)2113()224=+=; 令2x t =,得2t x =,2211()()2242t t f t t t ∴=+=+, 211()42f x x x ∴=+. 故答案为:34;211()42f x x x =+. 15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .【答案】6(5,3]2【详解】由题意,(1)(45)0f a f a -+->,即(1)(45)f a f a ->--, 而又函数()y f x =为奇函数,所以(1)(54)f a f a ->-. 又函数()y f x =在[1-,1]上是增函数, 有1111451154a a a a --⎧⎪--⎨⎪->-⎩⇒0231265a a a ⎧⎪⎪⎪⎨⎪⎪>⎪⎩⇒6352a < 所以,a 的取值范围是6(5,3]2.故答案为:6(5,3]2.16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 【答案】1[,3]3【详解】函数()(||2)f x x x =-,4()1xg x x =+, 因为44()411x g x x x ==-++在(1,)a -上单调递增, 所以()g x g <(a )41aa =+, 又222,0()(||2)2,0x x x f x x x x x x ⎧-=-=⎨--<⎩,因为(1)1f -=,由221x x -=,1x =±①当11a -<<+()f x f <(1)1=,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以411aa +,解得13a ,故1123a <+ ②当12a +时,()f x f <(a )22a a =-,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以2421aa aa -+,可得260a a --,解得23a -, 故123a .综上所述,实数a 的取值范围为1[,3]3.故答案为:1[,3]3.四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .【答案】(1){|41AB x x =-<或34}x <;AB R =;(2)(){|4U A B x x =-或4}x【详解】(1)因为函数()f x =的定义域是2{|160}{|44}A x x x x =->=-<<,集合{|1B x x =或3}x , 所以{|41AB x x =-<或34}x <;A B R =;(2)因为全集U R =,所以{|4UA x x =-或4}x ,所以(){|4U A B x x =-或4}x .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 【答案】(1)(4,)B =+∞;(2)4[3,2)【详解】(1)由题意,得关于x 的方程240x x m -+=无实数根, 所以△1640m =-<,解得4m >, 即(4,)B =+∞;(2)因为{|34}A x a x a =<<+为非空集合, 所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集,则2a <且34a , 即423a <, 综上所述,实数a 的取值范围为4[3,2).19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围. 【答案】(1)16;(2)13(12,)+∞【详解】(1)0a >,0b >,且31a b +=,∴1313333(3)()1010216a b a b a b a b b a b +=++=+++=,当且仅当33a b b a =,即14a b ==时,等号成立, ∴13a b+的最小值为16. (2)2297m a b ab >++恒成立,22(97)max m a b ab ∴>++,222197(3)133a b ab a b ab a b ++=++=+⨯⋅,2(3)1344a b a b +⋅=,当且仅当3a b =,即12a =,16b =时,等号成立,2211139713412a b ab ∴+++⨯=,1312m ∴>, 即实数m 的取值范围为13(12,)+∞.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.【答案】(1)见解析;(2)2220()20x xx f x x xx ⎧-=⎨+<⎩(3)(x ∈-∞,3][3-,)+∞;(4)0m >或1m =-【详解】(1)完整图:(2)0x <,顶点(1,1)--,过点(0,0),(2,0)- 顶点式:2()(1)1f x a x =+-代入(0,0),(2,0)-, 得1a =,2()2f x x x ∴=+, ∴2220()20x xx f x x xx ⎧-=⎨+<⎩, (3)()3f x ,当0x 时,2233x x x -⇒, 当0x <时,由对称性3x ⇒-, (x ∴∈-∞,3][3-,)+∞,(4)由图可知,0m >或1m =-. 21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由. 【答案】(1)最大值为f (2)35=,最小值为f (3)25=;(2)见解析【详解】(1)21()1x f x x +=+在[2,3]上单调递减.证明:令12121212221211,[2,3],,()()11x x x x x x f x f x x x ++∀∈<-=-++ 2112212212()(1)(1)(1)x x x x x x x x -++-=++,因为1223x x <,所以210x x ->,124x x >,124x x +>,121210x x x x ++->, 所以12()()f x f x >,所以()f x 在[2,3]上单调递减;()f x 在[2,3]的最大值为f (2)35=,最小值为f (3)25=;(2)若()f x 为奇函数,且x R ∈,则(0)00f a =⇒=. 下面证明:因为2()1x f x x =+,所以2()()1xf x f x x --==-+, 所以存在0a =.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.【答案】(1)1k ;(2)0k > 【详解】(1)()211222201222x x x xx k k =+--⋅⇒-+原式, 11,222x t ⎡⎤=∈⎢⎥⎣⎦令,则221k t t -+, 令2()21g t t t =-+,()[0g t ∈,1],()k g t 有解,()max k g t ∴,1k ∴.(2)12212302121x x x kk -+-+-=--原式可化为,令|21|(0)x t t =->,12230kt k t t+-+-=原式可化为2(32)210t k t k ⇒-+++=,若原方程有三个不同的实数解,等价于方程2(32)210t k t k -+++=的两根分别位于(0,1)和(1,)+∞之间, 令2()(32)21g t t k t k =-+++, 只需1(0)02(1)00g k g k ⎧>>-⎧⎪⇒⎨⎨<⎩⎪>⎩,0k ∴>.。
高等数学期中试卷班级 姓名 计分 一.填空题(本题满分30分,共有10道小题,每道小题3分),请将合适的答案填在空中.1.函数( )2.已知,2lim (2)0,2x x x →-=-则称函数当( )时为无穷小。
3.设x x x y arcsin 12-+=,则='y ______________________.4.设函数()x y y =由方程42ln 2x y y =+所确定,则=dx dy _______________.5.设 = _________.6.函数()22sin x x e x f x +--=在区间()∞+∞-,上的最小值为_____________. 7.3201sin limsin 2x x x x →=8.设()231ln e x y ++=,则='y 9.设⎩⎨⎧==t y t x ln 2 则=dxdy10.曲线23bx ax y +=有拐点()3,1,则,a= . b=二选择题(请选择一个正确答案序号填在括号中,共8小题,每小题3分共24分)1、指出下列哪些是基本初等函数( )(1)2y x =;(2) y =; 3;(sin y x = 4;)32ln(x y +=2、设在[0,1]上函数f(x)的图像是连续的,且()f x '>0,则下列关系一定成立的是( ) 1;f(0)<0 2;f(1)>0 3;f(1)>f(0) 4;f(1)<f(0)3、函数y=1+3x-x3有( )(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2 (D )极小值-1,极大值34、曲线1704,4y P x ⎛⎫--=- ⎪⎝⎭上一点处的切线方程是( )(A )5x+16y+8=0 (B )5x-16y+8=0 (C )5x+16y-8=0 (D )5x-16y-8=0351lim 232+--→x x x x5、31xy +=的反函数是( )A ;3ln 1y x =+()B ;1y =C ;13-=x yD ;31x y e +=()6、函数f(x)=xsinx+2x 2是( )A.偶函数B.奇函数C.非奇非偶函数D.有界函数7、设函数f(x)在区间I 连续,那么f(x)在区间I 的原函数( )A.不一定存在B.有有限个存在C.有唯一的一个存在D.有无穷多个存在8.函数y=ex-x-1单调增加的区间是( ) A.[)+∞-,1 B.()+∞∞-, C.(]0,∞- D.[)+∞,0 三、求函数321)(2--+=x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x →(10分)四、求函数 y=e -x ×conx 的二阶及三阶导数(8分)五、判断曲线21y x x =- 的凹 凸性和拐点(10分)六、某质点的运动方程是S=t 3-(2t-1)2,则在t=1s 时的瞬时速度为 。
高等数学(上)期中测试题一 填空题:(每小题4分,共32分,要求:写出简答过程,并且把答案填在横线上)1.设1(1),0(),0x x x f x x a x ⎧⎪-<=⎨⎪+≥⎩在(,)-∞+∞上处处连续,则a =-1e。
解()()111100lim 1lim 1xxx x x x e -----→→⎧⎫⎡⎤-=+-=⎨⎬⎣⎦⎩⎭()0lim x x a a +→+=,有连续性有a =-1e2. 已 知 (3)2f '=,则0(3)(3)lim2h f h f h →--=1-。
解 已知()0(3)(3)3lim2h f f h f h→--'== 则00(3)(3)1(3)(3)lim lim 22h h f h f f f h h h →→----=-()1132122f '=-⋅=-⨯=-3.函数()2cos f x x x =+在[0,]2π上的最大值为6π+解 令()12sin 0f x x '=-=得6x π=()026622f f f ππππ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭则最大值为6π+4. 设5(sin )5(1cos )x t t y t =+⎧⎨=-⎩ , 则t dy dx==0,22t d y dx==120解()05sin 051cos t t t dy dy t dt dx dxt dt======+220t t t dy d dy dx d d y dx dt dx dxdxdt===⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎝⎭==()()()22cos 1cos sin 1cos 151cos 20t t t tt t =+++==+5. 设1(0)xy xx +=>,则y '=()1ln xx x x x ++解 两边取对数有()ln 1ln y x x =+两边关于x 求导得1ln y xx y x'+=+,整理后即得结果 6. 设函数()y y x =由方程cos()0x y xy ++=确定,则dy =sin 11sin y xy dx x xy --。
高数上期期中考试和答案一、选择题(每题5分,共30分)1. 极限的定义是:函数f(x)当x趋近于a时的极限为L,如果对于任意的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,都有|f(x)-L|<ε,则称f(x)在x=a处的极限为L。
根据极限的定义,下列函数中,极限不存在的是()。
A. f(x) = x^2B. f(x) = sin(x)C. f(x) = 1/xD. f(x) = 1/x^2答案:C2. 函数f(x) = x^3 - 3x + 2在x=1处的导数为()。
A. 0B. 3C. -6D. 6答案:B3. 曲线y=x^2+2x-3在点(1,0)处的切线斜率为()。
A. 1B. 2C. 3D. 4答案:B4. 函数f(x) = e^x的不定积分为()。
A. e^x + CB. e^x - CC. 1/e^x + CD. 1/e^x - C答案:A5. 以下哪个函数是偶函数()。
A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:D6. 以下哪个函数是周期函数()。
A. f(x) = x^2B. f(x) = e^xC. f(x) = sin(x)D. f(x) = ln(x)答案:C二、填空题(每题5分,共20分)7. 函数f(x) = x^2在区间[0,1]上的定积分为______。
答案:1/38. 函数f(x) = 2x在区间[1,2]上的定积分为______。
答案:29. 函数f(x) = x^3的不定积分为______。
答案:1/4 * x^4 + C10. 函数f(x) = 1/x的不定积分为______。
答案:ln|x| + C三、计算题(每题10分,共40分)11. 计算极限lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
答案:-112. 计算定积分∫(0 to 1) x^2 dx。
共 7 页 第 1 页东 南 大 学 期 中考 试 卷课程名称 高等数学 考试学期X X -X X得分适用专业考试形式闭卷考试时间长度 150分钟17一.填空题(本题共5小题,每小题4分,满分20分)1.设向量 {1,1,5},{8,4,1}==-a b ,则a 在b 上的投影()1=b a ;2.曲线22232x y z x y ⎧++=⎨+=⎩在yOz 平面上的投影曲线为;3.设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分dz=;4.级数1(1)e n nxn n ∞=-∑的收敛域是 ;5.设3()1(0)f x x x π=+≤<,而1()sin ()n n S x b nxx ∞==-∞<<+∞∑,其中2()sin d ,1,2,n b f x nx x n ππ==⎰,则128327S ⎛⎫-=-⎪⎝⎭. 二.单项选择题(本题共4小题,每小题4分,满分16分)6.函数22,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 [ ](A)连续且偏导数存在 (B) 连续但偏导数不存在(C)不连续但偏导数存在 (D) 不连续且偏导数不存在 7.已知级数1nn u∞=∑条件收敛,则级数21nn u∞=∑ [](A )发散 (B )条件收敛 (C )绝对收敛 (D )可能收敛可能发散 8.下列广义积分中收敛的是 [ ] (A )e1d ln xx x⎰(B)e +∞⎰ (C)2x +∞⎰ (D )1502arctan d x x x⎰共 7 页 第 2 页9.直线132:1354x tL y t z t=+⎧⎪=-⎨⎪=+⎩与22:12y L x z +-== [] (A )平行 (B )垂直但不相交 (C )垂直相交 (D )异面且不垂直 三.计算下列各题(本题共5小题,每小题8分,满分40分) 10.一直线过点0(2,1,3)M -且与直线1:22x L y z -=-=+相交,又平行于平面 :3250x y z π-++=,求此直线方程.11.求两条直线15:124x L y z -=-=--与28:223x y z L -==-之间的距离d .12.设21()21315f x x x =++,求()(1)n f -.13.试求过直线20530x y x y z +-=⎧⎨---=⎩,且与曲面22z x y =+相切的平面方程.14.将()1f x x =-在[0,]π上展成余弦级数.四(15)(本题满分8分)设0ab ≠,(,)f x y 具有二阶连续偏导数,且2222220f f a b x y∂∂+=∂∂ ,(,)f ax bx ax =,2(,)x f ax bx bx =,求(,)xx f ax bx ,(,)xy f ax bx ,(,)yy f ax bx .五(16)(本题满分8分)求幂级数20(2)!nn x n ∞=∑的和函数,并指明收敛域.六(17)(本题满分8分)设12211,1,,1,2,n n n a a a a a n ++===+=,证明级数11n na ∞=∑收敛.共7 页第3 页共 7 页 第 4 页08-09-3高数B (期中)试卷参考答案09.4.17一.填空题(本题共5小题,每小题4分,满分20分)1.设向量 {1,1,5},{8,4,1}==-a b ,则a 在b 上的投影()1=b a ;2.曲线22232x y z x y ⎧++=⎨+=⎩在yOz 平面上的投影曲线为222410y y z x ⎧-++=⎨=⎩;3.设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分21d d d 1212f xyf z x y xzf xzf'-=+''++; 4.级数1(1)e n nxn n ∞=-∑的收敛域是(,0]-∞;5.设3()1(0)f x x x π=+≤<,而1()sin ()n n S x b nxx ∞==-∞<<+∞∑,其中2()sin d ,1,2,n b f x nx x n ππ==⎰,则128327S ⎛⎫-=-⎪⎝⎭. 二.单项选择题(本题共4小题,每小题4分,满分16分)6.函数22,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 [ C ](A)连续且偏导数存在 (B) 连续但偏导数不存在(C)不连续但偏导数存在 (D) 不连续且偏导数不存在 7.已知级数1nn u∞=∑条件收敛,则级数21nn u∞=∑ [ D ](A )发散 (B )条件收敛 (C )绝对收敛 (D )可能收敛可能发散 8.下列广义积分中收敛的是 [ C ] (A )e1d ln xx x⎰(B)e +∞⎰ (C)2x +∞⎰ (D )1502arctan d x x x⎰共 7 页 第 5 页9.直线132:1354x tL y t z t=+⎧⎪=-⎨⎪=+⎩与22:12y L x z +-== [ B ] (A )平行 (B )垂直但不相交 (C )垂直相交 (D )异面且不垂直 三.计算下列各题(本题共5小题,每小题8分,满分40分) 10.一直线过点0(2,1,3)M -且与直线1:22x L y z -=-=+相交,又平行于平面 :3250x y z π-++=,求此直线方程.解 设所求直线方程为213x y z l m n-+-==, 由该直线与直线L 共面,得 490l m n ++= 由该直线与平面π平行,得320l m n -+=,解得11l m =-,35n m =,代入所求直线方程,得21311135x y z -+-==--. 11.求两条直线15:124x L y z -=-=--与28:223x y z L -==-之间的距离d . 解 41115223-=-ij k , 51641125223--=-, 53d =12.设21()21315f x x x =++,求()(1)n f -. 解 211212111()1213157235712(1)2814f x x x x x x x ⎛⎫==-=⋅-⋅ ⎪+++++++⎝⎭+ 110(1)12(1)74n n n n n x ∞++=-⎛⎫=-+ ⎪⎝⎭∑, ()11(1)!1(1)274n n n n n f ++-⎛⎫-=- ⎪⎝⎭13.试求过直线20530x y x y z +-=⎧⎨---=⎩,且与曲面22z x y =+相切的平面方程.解 设过直线20530x y x y z +-=⎧⎨---=⎩的平面方程为(1)(15)230x y z λλλλ++----=,设切点为000(,,)x y z ,则共 7 页 第 6 页0000022000(1)(15)230(1)221(2)115(3)x y z x y z x y λλλλλλλ++----=⎧⎪⎪==⎨+-⎪⎪=+⎩ 由(2),(3)解得 00115,22x y λλλλ+-==,2202(1)(15)4z λλλ++-=, 代入(1)得27810λλ-+=,解得1211,7λλ==,从而两切平面方程分别为 2450x y z ---=和82170x y z +--=。
山东大学2014-2015学年第一学期期中考试
《高等数学(Ⅰ)》试卷
姓名:________
一、选择题(每题2分,共16分)
1、 下列极限存在的是…………………………………………………………( )
(A ) x x 21
lim ∞→(B ) 1310lim -→x x (C ) x e x 1lim ∞→ (D ) x x 3lim ∞
→ 2
x 22x 0-ax +bx+1x a b e →当时,若()是比高阶的无穷小,则,的值是()…( a )
(A )1/2, 1 (B ) 1,1
(C )-1/2, 1 (D ) -1,1
3、,0)(lim >=→A x f a x ,0)(lim <=→B x g a
x 则下列正确的是…………………………( ) (A ) f (x )>0, (B ) g(x )<0, (C ) f (x )>g (x ) (D )存在a 的一个空心邻域,使f (x )g (x )<0。
4、已知, ,2lim )(0=→x x f x 则=→)2x (sin3x 0lim f x ………………………………………………( )
(A ) 2/3, (B ) 3/2 (C ) 3/4 (D ) 不能确定。
5、函数f(x)在[a ,b]上有定义,在(a ,b )内可导,则( )
(A ) 当f (a )f (b )<0时,存在ξ∈(a ,b ),使f (ξ)=0
(B )对任何ζ∈(a ,b ),有 (C )当f (a )=f (b )时,存在ξ∈(a ,b ),使f ¹(ξ)=0
(D )存在ξ∈(a ,b ),使f (a )-f (b )=f ¹(ξ)(b-a )
6、下列对于函数y =x cos x 的叙述,正确的一个是………………………………………()
(A )有界,且是当x 趋于无穷时的无穷大,(B )有界,但不是当x 趋于无穷时的无穷大,
(C ) 无界,且是当x 趋于无穷时的无穷大,(D )无界,但不是当x 趋于无穷时的无穷大。
7、下列叙述正确的一个是……………………………………………………………( )
(A )函数在某点有极限,则函数必有界;(B )若数列有界,则数列必有极限; (C ) 若,2lim )2()2(0=--→h h f h f h 则函数在0处必有导数,(D )函数在0x 可导,则在0x 必连续。
8、 当0→x 时,下列不与2x 等价的无穷小量为…………………………………( )
(A ))1(cos
-x (B )2arcsin x (C ))1ln(2x + (D) 12-x e
9.
()()6
3x f x =g x =tan x h x =x e -1⎫⎪⎪⎭(),(()()
lim 0x f x f ξξ→-=⎡⎤⎣
⎦
都是无穷小量,它们关于x 的阶数由大到小排列顺序为()
10.
二、填空题(每题2分,共20分)
1、x x f 21arcsin )(-=的连续区间是_____[0,1/2]______________
2、 已知5lim
112=-++→x a bx x x ,则a =______b =__________ 3、 )sinx 1(1-=y 的间断点为x 不等于____它们是______无穷间断点(填类型)
4、
=-→33-)sin(lim πππx x x 5、=+→x x
x x 1)(lim 2320 6、 ,)1(lim 2e x x k x =+∞
→ 则k =_________ 7、若函数⎩⎨⎧≥-<-=0
0arcsin 1)(1x x a x x f x 在x =0连续,则a =_________ 8、设0)(0=x f ,3)('0=x f ,则=∆∆+→∆x x x f x )
(00lim
_________ 9、2)('0=x f ,则=-→h
h x f h )
2(00lim ________ 10、已知函数x x x f cos )(2=,则d y =_____
11.
,)(cos 的一个原函数是已知
x f x x =⋅⎰x x x x f d cos )(则 lim (cos cos cos )→∞
-+++=22221n n n n n n ππππ .
=-+⎰
21
212211arcsin -dx x x x
12. 已知参数方程⎩⎨⎧+==)
1ln(arctan 2t y t x ,求''y 13.
14.
()()()()()()()()()()()()f x h x g x .h x f x g x .g x f x h x .f x g x h x B C D A.,,,,,,,,()()
2sin lim ,12...n n x f
x x B C D
π→∞=+设函数则函数的间断点()A.不存在有一个有两个
有三个2x x dx
4sin x dx
⎰
15.
三、求导数(每题5分,共20分) (1), (2)
(3))2)(1()
2)(1(4422++++=x x x x y , (4)x x y sin 2)1(+=
四、证明题(每题6分,共12分)
1、对数列{}n x ,若a x k k =-∞→12lim a x k k =+∞→12lim ,证明a x n n =∞→lim
五、解答题(每题8分,共32分) 1.
2.求函数f (x )= 的单调区间,极值,其图形的凹凸区间,拐点及渐近线,并画图。
个人车位租赁合同范本
出租方(甲方):xxx 身份证号:xxxxxxxxx
承租方(乙方):xxx 身份证号:xxxxxxxxx
甲、乙双方经充分协商,现将甲方位于xxxxxxxxx 私家车位租给乙方作为车辆(车牌号:xxxxx )停放使用,并签订如下车位租赁合同条款,甲、乙双方共同遵守和执行。
一、本车位租金_xxx 元整/年,大写:_xxxx_.支付方式为_签订合同后一次性支付__.乙方到期如需续租,需提前1个月通知甲方。
车位管理费用由甲方支付,需乙方替交时留存物业缴费凭证当年租金从中扣除缴纳费用。
乙方留存租金收条/微信或支付宝截屏均可作为支付凭证。
()(
)2x+3x-2x+5dx
⎰2ln x y=arcsin x
y=x +lim x →∞2x+1
x
乙方另支付蓝牙卡设备押金xxx元,合同到期后返还。
二、租期为_xxx6__年__xx___月__xxx___日至__xxxx__年__xxx___月__xxx__日止。
三、如乙方在租赁期间要该场地转租给第三方使用时,必须征得甲方同意方可转租,否则视为违约,甲方可收回车位,剩余租金概不退还。
四、甲方责任及义务:
1、在租赁期间,如甲方需提前收回乙方使用的车位使用权,则甲方返还当年租金;如乙方提前退还车位,剩余费用不返还。
2、在租赁期间,如自然损坏产生的场地维修及检修费用由甲方支付,如人为损坏(包括乙方)场地维修所产生的费用由行为人负责支付。
3、甲方所出租的场地,仅供乙方作停泊车辆使用,不作任何保管;如乙方所停泊的车辆有任何损失或被人为损坏的,一切后果由乙方自负。
五、乙方责任及义务:
1、乙方在租赁期内必须按合同条款的规定按时缴付车位租金;如乙方拖欠租金达一周,即被视为是自行解除本合同行为,甲方有权将该车位收回,并保留向乙方追收拖欠费用和违约金的权利。
(如因特殊情况未能如期签订续租合同,必须提前以书面通知或电话通知的方式征得甲方同意,在双方签订续租合同时连同拖欠的费用一并付清)。
2、在租赁期内,如乙方需要提前退租车位的,乙方必须提前一个月通知甲方并解除本合同。
3、乙方必须将车辆按车位及物管要求停泊好并做好防盗措施,如发生任何车辆遗失或损坏的一切损失由乙方自负,如因乙方原因给甲方造成的损失,由乙方负责。
六、本合同以双方签约之日起生效,如今后有补充作补充协议处理,与此合同具同等效力。
七、本合同一式两份,甲、乙双方各执一份。
合同附近:甲方的车位使用权购买协议复印件、乙方的身份证及停驶车辆行驶证复印件。
出租人:承租人:
电话:电话:
__2016__年__x__月__x_日 __2016__年__x_月__xx__日。