《高等数学》期中考试A
- 格式:doc
- 大小:162.50 KB
- 文档页数:4
2019-2020 学年 第 1 学期 第 1 次考试试题与答案课程名称 高等数学A (1)1、下列极限不存在的是( C ). (A )1lim sin x x x→∞;(B )lim arctan x x →+∞;(C )e 1lim e 1xx x →∞+-; (D )lim x →+∞.解析:(A )11lim sin lim 1x x x x xx→∞→∞=⋅= (由于10x→,因此11sin x x )(B )πlim arctan 2x x →+∞=(C )e 11e lim lim 1e 11e x x xx x x --→+∞→+∞++==--,e 1lim 1e 1x x x →-∞+=--,因此e 1lim e 1xx x →∞+-不存在.(D )lim limx x →+∞==2、()1lim 1kxx x →∞-=( A ).(A )e k -; (B )e k; (C )1ek-;(D )1e k.解析:()()11lim 1lim 1e kkxxk x x x x ---→∞→∞⎡⎤-=-=⎢⎥⎣⎦.3、当0x →时,423sin cos x x x 与nx 为等价无穷小,则n =( B ). (A )4; (B )6;(C )7;(D )9.解析:423636600sin cos cos lim lim 1x x x x x x x x x→→== (sin x x ) 4、关于函数3233()(3)(2)x x x f x x x +--=+-的间断点,下列正确的是( D ).(A )3x =-与2x =均为无穷间断点; (B )3x =-与2x =均为可去间断点;(C )3x =-为无穷间断点,2x =为可去间断点; (D )3x =-为可去间断点,2x =为无穷间断点.解析:322233333(3)(1)18limlim lim (3)(2)(3)(2)25x x x x x x x x x x x x x x →-→-→-+--+--===-+-+--,因此3x =-为可去间断点; 当2x →时,分母极限为0,分子极限为非0实数,因此2x =为无穷间断点.5、设cos 0()20e 0x a x x f x x b x >⎧⎪==⎨⎪+<⎩在0x =处连续,则,a b 的值为( C ). (A )1,1a b ==; (B )1,2a b ==; (C )2,1a b ==;(D )2,2a b ==.解析:连续点处左右极限存在并都与函数值相等;0lim ()lim cos x x f x a x a ++→→==,00lim ()lim (e )1xx x f x b b --→→=+=+, 因此,21a b ==+,可得:2a =,1b =.6、设()(1)(2)(3)(4)f x x x x x =----,则方程()0f x '=的实根的个数为( C ). (A )1;(B )2;(C )3;(D )4.解析:显然()f x 连续可导,且满足(1)(2)(3)(4)0f f f f ====,分别在[1,2],[2,3],[3,4]三个区间内使用罗尔定理,可得()0f x '=在三个区间内至少各有一根,因此()0f x '=至少有三个根;另外,由于()f x '为三次多项式,因此最多只有三个根.综上,本题选C . 7、已知(3)2f '=,则0(3)(3)lim2h f h f h→--=( A ). (A )1-; (B )1; (C )12-; (D )12. 解析:00(3)(3)1(3)(3)1limlim (3)1222h h f h f f h f f h h →→----'=-=-=--.8、函数32()32f x x x =-+在[1,3]上的最大值和最小值分别为( D ). (A )最大值为5,最小值为0; (B )最大值为2,最小值为0; (C )最大值为0,最小值为2-;(D )最大值为2,最小值为2-.解析:2()360f x x x '=-=,可得在[1,3]只有一个驻点2x =,将驻点函数值与端点比较即可,(1)0f =,(2)2f =-,(3)2f =,可得最大值为2,最小值为2-.9、函数23()(1)4f x x =-在1x =处的曲率为( B ). (A )34; (B )32; (C )54; (D )52. 解析:33222213322(1)31(1)2x y K y x =''==='+⎡⎤⎛⎫+-⎢⎥⎪⎝⎭⎢⎥⎣⎦10、墙角处立着一个长度为5m 的梯子,如图所示,梯子顶端A 点以1.5m/s 的速度正在匀速下滑,当A 点与墙角O 点之间距离为4m 时,梯子底端B 点向右滑动的速度为( B ). (A )1.5m/s ; (B )2m/s ; (C )2.5m/s ; (D )3m/s .解析:OA 的距离设为y ,OB 的距离设为x ,显然有2225x y +=,通过这个式子可求出两个速度之间的关系, 两边对t 求导数得:d d 0d d x y xy t t +=,将3x =,4y =,d 1.5d y t =-代入解得d 2d xt=m/s 11、设()f x =()f x 的定义域是 . 答案:1e ,e -⎡⎤⎣⎦解析:由21ln 0x -≥解得1ln 1x -≤≤,再由于ln x 为单调函数,因此1e e x -≤≤.12、22212lim()12n nn n n n→∞+++=+++ . 答案:12 解析:22222222212121212111n n nn n n n n n n n n n n n n +++≤+++≤++++++++++++ 由112(1)2n n n +++=+ ,得2222211(1)(1)1222121n n n n nn n n n n n n ++≤+++≤+++++ 而21(1)12lim 2n n n n n →∞+=+,21(1)12lim 12n n n n →∞+=+,由夹逼准则得原极限为12. 13、函数()y y x =由方程2e 610y xy x ++-=确定,则(0)y ''= . 答案:2-解析:将0x =代入方程解得0y =,方程两边对x 求导得e 6620yy y xy x ''⋅+++=,将0x =,0y =代入解得(0)0y '=;方程两边对x 再求导得2e ()e 66620yyy y y y xy '''''''⋅+⋅++++= 将0x =,0y =,0y '=代入得:(0)2y ''=-.14、已知(sin )xy x =,则y '= . 答案:(sin )(ln sin cot )xx x x x + 或 1(sin )ln sin (sin )cos xx x x x x x -+⋅解法一:换底()lnsin lnsin (sin )e e ln sin (sin )(ln sin cot )x x x x x x y x x x x x x x ''''⎡⎤⎡⎤====+⎣⎦⎣⎦解法二:取对数ln ln sin y x x =,两边对x 求导,ln sin cot y x x x y'=+ 因此:(sin )(ln sin cot )xy x x x x '=+解法三:公式法(指数函数求导公式+幂函数求导公式)1(sin )ln sin (sin )cos x x y x x x x x -'=+⋅15、设arctan y =1d x y == .x解析:()2211d d 21y x x ==++,则1d x y x == 16、函数32535y x x x =-++的凹区间为 . 答案:5,3⎡⎫+∞⎪⎢⎣⎭,写成开区间也正确.解析:23103y x x '=-+,6100y x ''=->,得53x >. 17、计算极限 011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦.解:0011ln(1)lim lim ln(1)ln(1)x x x x x x x x →→⎡⎤-+-=⎢⎥++⎣⎦20ln(1)lim x x x x →-+=0111lim 2x x x→-+=01lim 2(1)2x x x x →==+18、设xy =,求0x y ='. 解:取对数11ln ln(8)2ln(2)ln(1)32y x x x x =++-+-+ 两边对x 求导,12113(8)22(1)y y x x x '=+--+++得:12113(8)22(1)x y x x x ⎤'=+--⎥+++⎦,因此20211111112124248x y =⋅⎡⎤'=+--=-⎢⎥⋅⎣⎦19、设22ln(1),(1)2arctan ,x t y t t ⎧=+⎨=+-⎩求221d d t y x =. 解:2d 22(1)d 1y t t t =+-+3222221t t t t ++=+,2d 2d 1x tt t =+ 322d d 222d 1d d 2d y y t t t t t t x x t t ++===++,2222d 21(21)(1)2d 21y t t t t x t t +++==+,因此221d 3d t y x == 20、设ln(1)y x x =-+,求函数的极值,并判断是极大值还是极小值. 解:111y x '=-+01x x==+,解得驻点:0x = 21(1)y x ''=+,(0)0y ''>,因此0x =处为极小值,函数有极小值(0)0y = 21、设1x >,证明不等式(1)ln 2(1)x x x +>-. 证明:设()(1)ln 2(1)f x x x x =+--,其中(1)0f =,11()ln 2ln 1x f x x x x x+'=+-=+-,且(1)0f '=,又由于22111()(1)0f x x x x x ''=-=->因此()f x '单增,则当1x >时有()(1)0f x f ''>=,则()f x 单增,因此当1x >时有()(1)0f x f >=. 四、解答下列各题(本题共2小题,每小题6分,共12分)22、计算极限21arctan 0sin lim xx x x +→⎛⎫ ⎪⎝⎭. 解法一:2211arctanarctan0sin sin lim lim 1xx x x x x x x x ++→→-⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2sin arctan sin 0sin lim 1x xx x x x xx x x x +--→⎡⎤-⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦30sin limex x x x +→-=20cos 1lim3ex x x +→-=22012lim 3ex x x+→-=16e -=解法二:2211sin ln arctan arctan 00sin lim lim e x x xxx x x x ++→→⎛⎫= ⎪⎝⎭21sin ln 10lim e x x x x x +-⎛⎫+ ⎪⎝⎭→=3sin 0lim e x xx x +-→= 下同解法一解法三:2211sin ln arctan arctan 00sin lim lim e xxx xx x x x ++→→⎛⎫= ⎪⎝⎭20lnsin ln limex x xx+→-=0cos 1sin lim 2ex x x xx +→-=20cos sin lim2sin ex x x x x x+→-=3200cos sin cos sin cos limlim26eex x x x xx x x xxx++→→---==2201lim66ee x x x+→--==23、在抛物线24y x =-上的第一象限部分求一点(,)P a b ,过P 点作切线,使该切线与两坐标轴所围成的三角形面积最小.解:切线斜率为22x a x a y x a =='=-=- 切线方程2(4)2()y a a x a --=--求切线与两坐标轴交点,令0y =,解得242a x a+=,令0x =,解得24y a =+三角形面积为223(4)116()844a S a a a a a +⎛⎫==++ ⎪⎝⎭,02a <≤ 求驻点22116()3804S a a a ⎛⎫'=+-= ⎪⎝⎭,即4238160a a +-=,解得243a =,a =3132()64S a a a ⎛⎫''=+ ⎪⎝⎭,0S ''>,因此当a =时面积取到最小值, 此时切点坐标为83⎫⎪⎭.。
专业课原理概述部分一、选择题(每题1分,共5分)1. 微分学的中心概念是()A. 极限B. 导数C. 微分D. 积分2. 函数f(x)在x=a处可导,那么f'(a)等于()A. f(a)的值B. f(x)在x=a处的斜率C. f(a)的极限D. f(a)的平均变化率3.下列函数中,奇函数是()A. f(x) = x²B. f(x) = x³C. f(x) = cos(x)D. f(x) = e^x4. 不定积分∫(1/x)dx的结果是()A. ln|x| + CB. x + CC. 1/x + CD. e^x + C5. 多元函数f(x, y)的偏导数f_x表示()A. 仅对x求导B. 对x和y同时求导C. x和y的乘积求导D. f对x的积分二、判断题(每题1分,共5分)1. 极限存在的充分必要条件是左极限和右极限相等。
()2. 一切初等函数在其定义域内都可导。
()3. 若函数f(x)在区间[a, b]上单调增加,则f'(x)≥0。
()4. 二重积分可以转化为累次积分。
()5. 泰勒公式是麦克劳林公式的推广。
()三、填空题(每题1分,共5分)1. 函数f(x)在点x=a处的极限为______,记作______。
2. 若f(x) = 3x² 5x + 2,则f'(x) =______。
3. 不定积分∫sin(x)dx的结果是______。
4. 二重积分∬D dA表示______的面积。
5. 泰勒公式中,f(n)(a)表示______。
四、简答题(每题2分,共10分)1. 简述导数的定义。
2. 解释什么是函数的极值。
3. 简述定积分的基本思想。
4. 举例说明如何应用微分方程解决实际问题。
5. 简述多元函数求导的基本法则。
五、应用题(每题2分,共10分)1. 求函数f(x) = x²e^x的导数。
2. 计算定积分∫(从0到π) sin(x)dx。
(A ) 可去间断点 (B ) 跳跃间断点 (C ) 无穷间断点 (D ) 振荡间断点装订线内不要答题自觉遵 守考 试规 则,诚 信 考 试,绝 不 作弊(3)设函数)(x f 二阶可导,且0)(>'x f ,0)(>''x f ,则当0>∆x 时,有( )(A )0>>∆dy y (B )0<<∆dy y (C )0>∆>y dy (D )0<∆<y dy(4)函数q x x x f ++=2)(3的零点的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 与q 取值有关(5)若函数)(x f 满足)( )()(+∞<<-∞=-x x f x f ,且在)0,(-∞内,0)(>'x f ,0)(<''x f ,则在),0(+∞内 ( )(A ) )(x f 单调增加且其图象是凸的; (B ) )(x f 单调增加且其图象是凹的;(C ) )(x f 单调减少且其图象是凸的; (D ) )(x f 单调减少且其图象是凹的。
(6)设)(x f 在),0(δU 内具有连续的二阶导数,0)0(='f ,)0( 1)(lim 0<=-''→a a e x f x x 则 ( )(A ) 0=x 是函数)(x f 的极小值点; (B ) 0=x 是函数)(x f 的极大值点;(C ) ))0(,0(f 是曲线)(x f y =的拐点; (D ) ))0(,0(f 不是曲线)(x f y =的拐点。
(7)曲线1)3)(2(2)(2-+-=x x x x f ( ) (A ) 没有渐近线; (B ) 仅有水平渐近线;(C ) 仅有铅直渐近线; (D ) 既有水平渐近线又有铅直渐近线。
三、计算下列极限 (每题5分,共20分)(1))||sin 12(lim 410x x e e x x x +++→(2))1ln()cos 1(1cos11lim 230x x x x x x -++-+→(3))tan 11(lim 20xx x x -→(4) x x x )arctan 2(lim π+∞→四、计算下列各题(每题6分,共24分)(1)设x e x x y -=1sin sin x x +,求y '.( 2 )设函数)(x y 由方程组⎪⎩⎪⎨⎧=+-++=01sin 3232y t e t t x y 确定,试求0t 22=dx y d( 3 ) 21)(2-+=x x x f , 试求)()(x f n( 4 ) 已知方程)ln()(2y x y x x y --=-确定y 是x 的函数,求dy .五.(6分)证明:当1<x 时,xe x ≥-11六.(5分)设)(),(x g x f 在],[b a 上二阶可导,且0)(≠''x g ,)()(b f a f ==,0)()(==b g a g 证明:(1)在),(b a 内,0)(≠x g ;(2)至少存在一点),(b a ∈ξ,使得)()()()(ξξξξg f g f ''''=成立.。
大一高等数学a期中试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是不定积分∫x^2 dx的解()。
A. x^3B. x^3 + CC. 3x^2 + CD. 3x^2答案:C4. 以下哪个选项是定积分∫(0 to 1) x dx的值()。
A. 0C. 1D. 2答案:B5. 函数y=e^x的原函数是()。
A. e^xB. e^x + CC. ln(x)D. ln(x) + C答案:B6. 以下哪个选项是微分方程dy/dx + y = 0的通解()。
A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)答案:A7. 以下哪个选项是函数y=x^3的二阶导数()。
A. 3x^2B. 6xC. 18xD. 6答案:B8. 以下哪个选项是函数y=ln(x)的一阶导数()。
B. xC. ln(x)D. e^x答案:A9. 以下哪个选项是函数y=x^2 - 4x + 4的最小值()。
A. 0B. 1C. 4D. -4答案:A10. 以下哪个选项是函数y=x^3 - 3x的拐点()。
A. x = 0B. x = 1C. x = -1D. x = 2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3的一阶导数是____。
答案:3x^22. 函数f(x)=x^2+2x+1的极值点是____。
答案:x = -13. 函数f(x)=sin(x)的不定积分是____。
答案:-cos(x) + C4. 函数y=e^x的二阶导数是____。
答案:e^x5. 函数y=ln(x)的二阶导数是____。
答案:1/x^2三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x+8在x=2处的切线方程。
专业课原理概述部分一、选择题(每题1分,共5分)1. 微分学的中心概念是()。
A. 极限B. 导数C. 微分D. 积分A. f(x) = |x|B. f(x) = x^2 + 1C. f(x) = 1/xD. f(x) =√x3. 不定积分∫(1/x)dx的结果是()。
A. ln|x| + CB. x + CC. x^2/2 + CD. e^x + C4. 多元函数f(x, y) = x^2 + y^2在点(1, 1)处的偏导数f_x'是()。
A. 0B. 1C. 2D. 35. 线性方程组Ax=b有唯一解的条件是()。
A. A为满秩矩阵B. A为方阵C. A为可逆矩阵D. A为零矩阵二、判断题(每题1分,共5分)1. 极限存在的充分必要条件是左极限等于右极限。
()2. 任何连续函数都一定可导。
()3. 二重积分可以转换为累次积分。
()4. 拉格朗日中值定理是罗尔定理的推广。
()5. 两个矩阵的乘积一定是方阵。
()三、填空题(每题1分,共5分)1. 函数f(x) = e^x在x=0处的导数f'(0)等于______。
2. 若函数f(x)在区间[a, b]上连续,则该函数在该区间上______。
3. 微分方程y'' y = 0的通解是______。
4. 矩阵A的行列式记作______。
5. 向量组线性相关的充分必要条件是______。
四、简答题(每题2分,共10分)1. 请简要说明罗尔定理的内容。
2. 什么是函数的极值?如何求函数的极值?3. 简述泰勒公式的意义。
4. 什么是特征值和特征向量?5. 简述空间解析几何中直线的方程。
五、应用题(每题2分,共10分)1. 计算极限lim(x→0) (sin x)/x。
2. 求函数f(x) = x^3 3x的导数。
3. 计算不定积分∫(cos x)dx。
4. 求解微分方程y' = 2x。
5. 计算二重积分∬D (x^2 + y^2) dxdy,其中D是由x轴,y轴和直线x+y=1围成的区域。
20XX年复习资料大学复习资料专业:班级:科目老师:日期:一、填空题 (每小题4分,共20XX 分)1、22lim sin 1x xx x →∞=+ 。
2、1lim(ln )n n n n →∞= 。
3、设321)(+=x x f ,则()(0)n f = 。
4、已知232,()arctan 32x y f f x x x -⎛⎫'== ⎪+⎝⎭,求0|x dy dx == 。
5、设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,0,2arcsin 1)(2tan 3x ae x xe xf xx在0=x 处连续,则=a 。
二、单项选择题 (每小题4分,共20XX 分)1、设ln ||()sin |1|x f x x x =-,则)(x f 有( )。
A. 一个可去间断点,一个跳跃间断点 B. 两个无穷间断点 C. 一个跳跃间断点,一个无穷间断点 D. 两个跳跃间断点 2、 若0→x 时,2)(kx x f =与x x x x g cos arcsin 1)(-+=是等价无穷小,则k 等于( )。
A. 1B. 32C. 43D. 23、 设)(x y y =是由方程1+=+x e xy y所确定的隐函数,则022|=x dxyd 等于( )。
A. 3-B. 2-C. 1-D. 0 4、设)(x f 处处可导,则( )。
A. 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞B. 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞厦门大学《高等数学(A )》期中试卷____学院____系____年级____专业C. 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞D. 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞5、设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆ 的线性主部为1.0,则)1('f 等于( )。
高等数学试卷大题 一二三四五六七八九十成绩一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分5小题, 每小题4分, 共20分)1、设f x y x y xy x y (,)=+-+-32231,则f x '(,)32=( )(A) 59 (B) 56 (C) 58 (D) 552、设曲面z xy =在点(,,)326处的切平面为S ,则点(,,)124-到S 的距离为( ) (A )-14 (B )14 (C )14(D )-143、设f (x ,y )是连续函数,则二次积分 ( )4、函数y x z 2+=在点(3,5)沿各方向的方向导数的最大值为( )(A)5 (B) 0 (C) 3(D) 25、曲线2,ln ),1sin(t z t y t x ==-=在对应于1=t 点处的切线方程是( ) (A) 1111-==z y x ; (B) 21111-=-=z y x ; (C)2111-==z y x ; (D) 211z y x ==. 二、填空题(将正确答案填在横线上) (本大题分5小题, 每小题4分, 共20分)1、设u xy yx=+,则∂∂∂2u x y = 。
2、设f x y (,)有连续偏导数,u f e e xy=(,),则d u = 。
3、设L 是从点A (-1,-1)沿曲线x 2+xy +y 2=3经点E (1,-2)到点B (1,1)曲线段,则曲线积分________.4、设u f x y =(,)在极坐标:x r y r ==cos ,sin θθ下,不依赖于r ,即u =ϕθ(),其中ϕθ()有二阶连续导数,则∂∂∂∂2222u x uy+=________________.5、设,则I =________________。
三、解答下列各题 ( 本 大 题8分 )曲面S 1x y z =,求该曲面的切平面使其在三个坐标轴上截距之积最大。
卷号:(A ) ( 年 月 日) 机密学年第2学期2010级计算机专业《高等数学》期中考试试卷A 卷一、选择题(本大题共5小题,每小题2分,共10分) 1.下列方程所示曲面是双叶旋转双曲面的是( )(A) 1222=++z y x (B) z y x 422=+(C) 14222=+-z y x (D) 1164222-=-+z y x 2.二元函数 222214y x y x z +++=arcsin ln的定义域是( )(A) 4122≤+≤y x (B) 4122≤+<y x (C) 4122<+≤y x (D) 4122<+<y x3.已知),(y x f 在点),(00y x 处连续,且两个偏导数),(00y x f x ,),(00y x f y 存在是),(y x f 在 该点可微的( )(A) 充分条件,但不是必要条件; (B) 必要条件,但不是充分条件;(C) 充分必要条件 ; (D) 既不是充分条件,也不是必要条件. 4. 下列直线中平行xOy 坐标面的是________ .(A ).233211+=+=-z y x ; (B ).⎩⎨⎧=--=--04044z x y x ; (C ).10101zy x =-=+; (D ).3221=+=+=z t y t x ,,. 5.函数z y x u sin sin sin =满足),,(0002>>>=++z y x z y x π的条件极值是( )(A) 1 ; (B) 0 ; (C) 61 ; (D) 81 . 二、填空题(本大题共10个填空题,每空3分,共30分)1.已知52==||,||b a 且,),(3π=∠b a则_______)()(=+⋅-b a b a 32.2.通过曲线⎩⎨⎧=-+=++0562222222y z x z y x ,且母线平行于y 轴的柱面方程是_________________. 3.若),ln(222z y x u ++=则._________________=du4. 已知球面的一直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________________..5. 函数2223u x y z z =++-在点()01,1,2M -的梯度为___________及沿梯度方向上函数的方向导数为_________.6.设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________. 7.设⎪⎩⎪⎨⎧=+≠++=0 , 00 , ),(2222222y x y x y x y x y x f ,求),(y x f x =___________________________.8.xy y x y x +→)2,1(),(lim=___________.y xy y x )tan(lim )0,2(),(→=___________.三、解下列微分方程(本大题共3小题,每小题5分,共15分) 1.给定一阶微分方程dydx= 3x (1)求它的通解;(2)求过点(2,5)的特解;(3)求出与直线y = 2x – 1 相切的曲线方程。
第1页 共3页淮 海 工 学 院09 - 10 学年 第 二 学期 高等数学A (2) 期中试卷答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1. 由向量)0,1,1(-=a,)2,0,1(-=b 围成的平行四边形面积为-----------------( )(A )23 (B )3 (C )92(D )62. 设arctan ,sin x z y=则(1,)2xx f π=------------------------------------( )(A ) 12-(B) 0 (C)12(D) 13. z y e u x-+=ln 在点)1,1,0(-处沿下列哪个方向的方向导数最大-----------( )(A ))1,1,0(- (B ))1,1,1(- (C ))1,1,0( (D ))1,0,1( 4.二次积分⎰⎰ex dy y x f dx 1ln 0),(的另一种积分次序为----------------------( ) (A ) x d y x f dy ye e ⎰⎰10),( (B ) x d y x f dy e ey⎰⎰1),( (C ) x d y x f dy e e ey⎰⎰1),( (D ) x d y x f dy e e ey⎰⎰1),(5.2272(21)(1)x y x y ds +=++=⎰----------------------------------------------------------------( )(A )0 (B ) π (C )2π (D )6.设∑为锥面22yx z +=与平面1z =所围立体Ω的表面内侧,则223x zdydz xyzdzdx zdxdy ∑--=⎰⎰ ----------------------------------------------------( )(A )π- (B )3π-(C )3π(D )π7.设幂级数0(7)n n n a x ∞=-∑的收敛半径为R ,若其在3x =处发散,则必有-----( )(A )3R < (B )4R < (C )4R = (D )4R > 8.设)(x f 是以π2为周期的周期函数,其在],(ππ-上的解析式为21,0()3,0x x f x x x ππ⎧--<≤=⎨-<≤⎩,若记)(x f 的傅里叶级数为()S x ,则(8)S π=-----( ) (A )1 (B )32(C )2 (D )3二、计算题(本大题共4小题,每题7分,共28分)1. 设),(y x f z =是由 z x z y 25)35ln(-=- 所确定的隐函数,求yz xz ∂∂+∂∂32.2. 设1(,)z f xy x y x=+,其中f 可微,求)0,1(dz.第2页 共3页3.用极坐标计算122401)yx y dx -++⎰⎰.4.取L 为22132xy+=的顺时针方向,用格林公式求422(2)(1)23Lx y dx y dyx y+-++⎰.三、计算题(8分)记曲线zx y z ln21+=在点),,(0000z y x M 处的切平面为∏,若已知直线z y x L -==32:与∏垂直,求点),,(0000z y x M 及∏的方程.四、问答题(8分)请判定级数551(1)sin 5nnn n n ∞=-∑的敛散性,若收敛,请说明其为绝对收敛还是条件收敛?第3页 共3页五、证明计算题(本题8分)求证:23(32)(2)y yx e x y dx x e x y dy +-+-+为某二元函数(,)u x y 的全微分, 并求(,)u x y .六、计算题(本题8分)设∑为椭球面122222=++zyx 的上半部分,点(,,)P x y z ∈∑,π为∑在P点处的切平面,),,(z y x ρ为点)0,0,0(O 到平面的距离,求(,,)zdSx y z ρ∑⎰⎰.七、应用题(本题8分)“蒙古包”是满族对蒙古族住房的称谓,“包”是家的意思.蒙古包的侧面是圆柱形,其包顶是半球形,包顶的单位面积造价是其侧面的1.5倍,在搭建时若要求蒙古包容纳的体积π45一定,问怎样搭建才能使总造价最低?。
高等数学A (中)期中复习题1.二元函数的极限、连续、偏导数、可微的概念及其关系,梯度、极值与方向导数.2.求偏导数(复合函数、隐函数),求极值、方向导数。
3.多元函数微分学的应用1)切线与法平面、切平面与法线。
2)条件极值(实际问题的应用)。
4.解析函数的概念,Cauchy-Riemann 方程,初等解析函数的性质,解析函数的导数的几何意义。
5.求区域共性映到上半平面或单位圆的一个映射(记住分式线性映射的四个性质,熟记五个公式)。
(1)上半平面Im 0z >到单位圆1w <的分式线性变换(Im 0)i z w e z θλλλ-=>-,通常取z i w z i -=+。
(2)单位圆1z <到单位圆1w <的分数线性变换(1)1i z a w e a a zθ-=<-。
(3)带形域{:0Im }D z z π=<<映为上半平面Im 0w >的共形映射z w e =。
(4)角形域{:0arg }()D z z n πθθ=<<<到角形域{:0arg }G w w n θ=<<的共形映射n w z =。
(5)上半单位圆{:||1I m 0D z z z =<>且映为上半平面I m 0w >的共形映射221111z z w w z z -+⎛⎫⎛⎫=-=- ⎪ ⎪+-⎝⎭⎝⎭或 6. 二重积分1)二重积分化二次积分;2)二重积分的计算;3)交换二次积分的顺序并计算二次积分。
222121222222223(1,1,)1()1||||1,(||)2(,)3(,)40.5,3,3(1,3,3)6tan,|.7DxxxxD x y x y dxdydx f x y dydx f x y dyz zz x yx yx t y t z t Mxu zarc grad uy-+≤+===∂∂=+≠+=∂∂=-==---==⎰⎰⎰⎰⎰⎰题型填空题设:则。
XXX《高等数学(A)》期中试卷(含答案)的区域为圆盘D,半径为t。
根据题意,有:limtx2y2t2f(x2y2)dxdyt4limtDf(x2y2)dxdyt4limt2t(t2r2) f(r2) rdrdt4limt2t(t2r2) f(r2) rdrt4limt2t(1(r/t)2) f(r2) rdr t2令u=r/t,则上式变为:limt2t(1u2) f(t2u2) tdu t221(1u2) f(u2t2) du22f(0)limt01(1u2) du2f(0)因此,所求极限为f(0)。
2、解:eydydx = ∫e^x [y]0^1 dx = ∫e^x (3x) dx = 3∫x e^x dx 3[xe^x - ∫e^x dx] = 3xe^x - 3e^x + C因此,所求积分为3xe^x - 3e^x + C。
3、解:根据题意,有:xyz + x^2 + y^2 + z^2 = 2对两边同时求全微分,得:zdx + ydx + 2xdy + 2zdz = 0因此,有:dz = -(zdx + ydx + 2xdy) / (2z)在点(1.0.-1)处,有:z = f(x。
y) = 1 - x^2 - y^2y = 0,dx = 1,有:dz| (1,0,-1) = -dx / 2 = -1/2因此,所求导数为-1/2.4、解:根据题意,有:D: y = 4 - x^2.y = 2x - x^2.x + y = 0将y = 4 - x^2和y = 2x - x^2相减,得:2x - 4 = 0因此,x = 2,y = -2.将其带入原式,有:D (x^2 + y^2) dxdy = ∫0^2 ∫2x-x^2^4-x^2 dxdy 0^2 [(2x^3/3 - 2x^5/5) - (x^5/5 - x^7/21)] dx 16/15因此,所求积分为16/15.5、解:根据题意,有:z^2 = x^2 + y^2.z = 1将z带入第一个方程,得:x^2 + y^2 = 1因此,所求积分为:x^2 + z) dV = ∫0^2∫0^1 ∫0^(1-z^2) (x^2 + z) r dr dz d 0^2∫0^1 [(r^4/4 + r^2z^2/2) |0^(1-z^2)] dz d0^2 [(1/20)(1-z^2)^(5/2) + (1/6)(1-z^2)^(3/2)] dz2/15)(2 2 - 1)因此,所求积分为(2/15)(2 2 - 1)。
高等数学a2期中测试题及答案一、选择题(每题5分,共20分)1. 极限lim(x→0)(sinx/x)的值是多少?A. 0B. 1C. 2D. -1答案:B2. 函数f(x)=x^2+3x+2在x=-1处的导数是多少?A. -4B. -2C. 4D. 2答案:A3. 以下哪个选项是正确的不定积分?A. ∫x dx = x^2 + CB. ∫e^x dx = e^x + CC. ∫sin(x) dx = cos(x) + CD. ∫cos(x) dx = sin(x) + C答案:B4. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/4 - ...C. 1 + 2 + 3 + ...D. 1/2 + 1/3 + 1/4 + ...答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=3x^2-2x+1,求f'(x)。
答案:6x-26. 计算定积分∫(0 to 1) x^2 dx。
答案:1/37. 求函数y=ln(x)的反函数。
答案:e^y8. 计算二重积分∬(D) xy dA,其中D为x^2+y^2≤1的区域。
答案:π/8三、解答题(每题10分,共60分)9. 求极限lim(x→∞) (x^3-1)/(x^2+1)。
解:lim(x→∞) (x^3-1)/(x^2+1) = lim(x→∞) (x^3/x^2) =lim(x→∞) x = ∞10. 求函数f(x)=x^3-6x+8的极值点。
解:首先求导数f'(x)=3x^2-6,令f'(x)=0,解得x=±√2。
检查二阶导数f''(x)=6x,当x=√2时,f''(x)>0,因此x=√2是极小值点;当x=-√2时,f''(x)<0,因此x=-√2是极大值点。
11. 计算定积分∫(0 to π/2) sin(x) dx。
◎x 2+ y 20 ,(A)连续且偏导数存在 (0不连续但偏导数存在(B)连续但偏导数不存在(D)不连续且偏导数不存在 6.函数f(%, y)= <08-09-3高数A (期中)试卷参考答案09. 4. 17填空题(本题共5小题,每小题4分,满分20分)1 •交换积分次序 厂心匚2y(x,y)dx+gdy f f (x,y)dx =; 2.设e 。
-l + 0i = O,贝URez = In2 , Imz =;3. 设z = z(x,y)是由方程y + z = xf(y 2-z 2)所确定的隐函数,其中f 可微,则全微分dz = ______________ ;4. 设。
为由x+y = 7i 与]轴,y 轴围成的三角形的边界,Jefds=c5. 设/(x,y)连续,。
={(尤,叫0<族1,0< y <戏,且'(Xy) = xy + JJ7o,y)dxdyD则 y)dxdy =. D(本题共4小题,每小题4分,满分16分)单项选择题,(x, y)丰(0,0)在点(0,0)处 (x,y) = (0,0)7设O = g, y)\x 2+ /<1}, D^D 在第一象限部分,则下列各式中不成立的是[] (A) jj y]l-x 2 - y 2dxdy = 4 jj ^1-x 2 - y 2dxdy(B) JJxydxdj ; = 4 jj xydxdyD D x D £>! (C) jj(x + x 3y 2)dxdy = 0 (D) ^x 2y 3dxdy = ^x 3y 2dxdy DD D8 设/(0eC[0,+a)), I(R)= jjj /(x 2 + / + z 2)dv,则当 Rr(T 时,/(#)[] x 2+y 2+z 2<R 2 (A)是7?的一阶无穷小(B)是R 的二阶无穷小(O 是7?的三阶无穷小 (D)至少是7?的三阶无穷小9.设f(x,y)在原点的某邻域内连续,且lim , f(x ,y)— f(。
甘肃石化技师学院《高等数学》课程期中考试试题A 卷
一、单项选择题(每题选一个正确答案,填在该题后括号内。
每小题4分,共16分)
1. 函数sin
cos32
x y x =+的周期为( ) A. π; B. 4π; C. 23
π; D. 6π. 2. 下列函数对中为同一个函数的是( ) A. 2
12,x y x y x
==;
B. 12,y x y ==
C. 212,y x y ==;
D. 12,y x y ==3. 设21cos ,2x x αβ=-=,则当0x →时( )
A. α与β是同阶但不等价的无穷小;
B. α与β是等价无穷小;
C. α是β的高阶无穷小;
D. β是α的高阶无穷小. 4. 1lim sin
x x
→∞=( ) A. 1; B. 0; C. ∞; D. 不存在.
二、填空题(答案填写在横线上,每小题4分,共24分)
1. 若223lim 12
x x x a x →-+=-,则a = . 2. 2f (x)=
的定义域为 . 3. sin 2lim x x x
→∞== . 4. ()x α'= , '(tanx)= .
5.y 31x =+的反函数是 .
6.1lim(1z)z
z →∞+= .
三、计算题(答案填写在空白处,每小题6分,共36分)
1. 求3113lim()11
x x x →---.
2. 求.201cos lim
x x x
→-.
3. 设(1)(12)(13)y x x x =+++,求y ''.
4. 用定义验证lim 0n n q →∞
= (1q <).
5.求0sin lim
sin x x x x x
→-
6.设x (t sint)(1cost)
a y a =-⎧⎨=-⎩,求22d y dx .
四、简答题(答案填写在空白处,每小题6分,共24分)
1. 设()f x x =,讨论()f x 在点0x =处的连续性与可导性.
2. 设曲线通过点(2,3),且其上任一点的切线斜率等于这点的横坐标,求此曲线方程.
3. 设231cos ,0,()01,1.x x f x x x x x --∞<<⎧⎪=≤<⎨⎪≤<+∞⎩
,讨论()f x 在0x =和1x =处的可导性.
4. 求椭圆曲线22
124x y +=
上点处的切线方程和法线方程.。