2017全国数学竞赛试题及答案
- 格式:doc
- 大小:291.50 KB
- 文档页数:3
2017年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2017元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2017高中数学全国联赛试题及答案B卷一、选择题(每题10分,共60分)1. 若函数f(x)=x^2+2x+3,求f(-1)的值。
A. 0B. 1C. 2D. 3答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为多少?A. 9B. 10C. 11D. 12答案:A3. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为多少?A. √3/2B. -√3/2C. 1/2D. -1/2答案:A4. 已知函数f(x)=x^3-3x^2+2x,求f'(x)的值。
A. 3x^2-6x+2B. 3x^2-6x+1C. 3x^2-6x+3D. 3x^2-6x-2答案:A5. 若直线l的方程为y=2x+1,且与圆x^2+y^2=4相切,则直线l与圆的切点坐标为多少?A. (1, 3)B. (1, 1)C. (-1, 1)D. (-1, 3)答案:B6. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,求三角形ABC的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B二、填空题(每题10分,共40分)7. 已知函数f(x)=x^2-4x+3,求f(x)的最小值。
答案:08. 已知等比数列{bn}的首项b1=2,公比q=3,则b5的值为多少?答案:4869. 若复数z满足|z|=2,且z的实部为1,则z的虚部为多少?答案:±√310. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)的值。
答案:3x^2-12x+11三、解答题(每题20分,共40分)11. 已知函数f(x)=x^2-4x+3,求f(x)的单调区间。
解:首先求导数f'(x)=2x-4,令f'(x)>0,解得x>2;令f'(x)<0,解得x<2。
因此,函数f(x)的单调增区间为(2, +∞),单调减区间为(-∞, 2)。
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017年全国高中数学联合竞赛一试(A 卷)一,填空题:本大题共8小题,每小题8分,共64分1. 设()x f 是定义在R 上的函数,对任意实数x 有()().143-=-⋅+x f x f 又当时70<≤x ,()()x x f -=9log 2,则()100-f 的值为__________.2. 若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是___________.3. 在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为____________.4. 若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是__________.5. 正三棱锥,,,中21==-AP AB ABC P α的平面过AB 将其面积平分,则棱PC 与平面α所成角的余弦值为________.6. 在平面直角坐标系xOy 中,点集(){}1,0,1,,-==y x y x K 丨.在K 中随机取出三个点,则这三个点中存在两点之间距离为5的概率为_________.7. 在△ABC 中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,△ABC 的面积为3,则AN AM ⋅的最小值为________.8. 设两个严格递增的正整数数列{}{}2017,1010<=b a b a n n 满足:,对任意整数n,有n n n a a a +=++12,.______,2111的所有可能值为则b a b b n n +=+二,解答题:本大题共三小题,满分56分.解答应写出文字说明,证明过程或演算步骤9. (本题满分16分)设k,m 为实数,不等式[]b a x m kx x ,12∈≤--对所有成立。
证明:22≤-a b10. (本题满分20分)设,,,321x x x 是非负实数,满足1321=++x x x 求()⎪⎭⎫⎝⎛++++5353321321x x x x x x 的最小值和最大值. 11. (本题满分20分)设复数()()()()2Re Re 0Re ,0Re ,22212121==>>z z z z z z ,且满足(其中()z Re 表示复数z 的实部).(1)()的最小值;求21Re z z(2)求的最小值212122z z z z --+++参考答案及解析一,填空题: 1. 【答案】21-【解析】由条件知,()()()x f x f x f =+-=+7114,所以()()()()214log 15127141001002-=-=-=-=⨯+--f f f f 2. 【答案】[]13,1+-,【解析】由于[]3,1cos 212-∈-=y x ,故[]3,3-∈x ,由21cos 2x y -=可知,()112121cos 22-+=--=-x x x y x .因此当1-=x 时,y x cos -有最小值-1(这时2π可以取y );当()π可以取这时有最大值时,y y x x 13cos 3+--.由于()11212-+x 的值域是[]131+-,,从而[]13,1cos +--,的取值范围是y x3. 【答案】2113 【解析】:易知()()10,0,3,F A .设P 的坐标是()⎪⎭⎫⎝⎛∈2,0,sin 10,cos 3πθθθ则()()ϕθθθπθθ+=+=⎪⎭⎫ ⎝⎛∈⋅⋅=+=∆∆sin 2113sin cos 10232,0,sin 10321OFP OAP OAPF S S S其中211310arctan .1010arctan 面积的最大值为时,四边形当OAPF ==θϕ 4. 【答案】75【解析】考虑平稳数abc{}个平稳数有则若2,1,0,1,0∈==c a b{}{}个平稳数有则,若632,2,1,0,2,11=⨯∈∈=c a b{}个平稳数有,则,若422,98,9=⨯∈=c a b综上可知,平稳数的个数是2+6+63+4=755. 【答案】1053 【解析】设AB,PC,的中点分别为K,M ,则易证平面ABM 就是平面α,由中线长公式知()()23241122141212222222=⨯-+=-+=PC AC AP AM 所以252123222=⎪⎭⎫ ⎝⎛-=-=AK AM KM 又易知直线PC 在平面α上的射影是直线MK ,而CM=1,23=KC ,所以 10535431452cos 222=-+=⋅-+=∠MC KM KC MC KM KMC 故棱PC 与平面α所成角的余弦值为1053 6. 【答案】74 【解析】易知K 中有9个点,故在K 中随机取出三个点的方式数为8439=C 种.将K 中的点按右图标记为O A A A ,821,,,⋯,其中有8对点之间的距离为5.由对称性,考虑取41A A ,两点的情况,则剩下的一个点有7种取法,这样有5687=⨯个三点组(不计每组中三点的次序).对每个()53,8,2,1++⋯=i i i A A K i A 中恰有,,两点与之距离为5(这里下标按模8理解),因而恰有{}()8,,2,1,,53⋯=++i A A A i i i 这8个三点组被计了两次,从而满足条件的三点组个数为56-8=48,进而所求概率为748448=7. 【答案】13+【解析】由条件知,()AC AB AN AC AB AM 4143,21+=+=,故().481414321⎪⎭⎫ ⎝⎛⋅++=⎪⎭⎫ ⎝⎛+⋅+=⋅AC AB AC AB AC AB AN AM由于443sin 213==⋅==∆A S ABC ,进一步可得2cos =⋅=⋅A AC AB ,从而1321481+=⋅+=⎪⎪⎭⎫ ⎝⎛⋅+≥⋅AC AB AC AB AN AM1332,3244+⋅⨯==的最小值为,时AN AM8. 【答案】13,20【解析】有条件可知:121,,b a a 均为正整数,且21a a <,由于191051222017b b b =⋅=>,故{}3,2,11∈b .反复运用{}n a 的递推关系知122334455667788910213413218135835232a a a a a a a a a a a a a a a a a +=+=+=+=+=+=+=+=因此()34m od 1251221110101b b b a a ≡==≡而()34m od 262132113183421131111b b a a =⨯=⨯=+⨯=⨯故有,, ① 另一方面,注意到故有,512213455,112121b a a a a a =+<<1155512b a <② ()无解②分别化为,①,时当,55512,34mod 261111<==a a b ()551024,34mod 522111<==a a b 时,①,②分别化为当得到唯一的正整数181=a 20,11=+b a 此时()551536,34mod 783111<==a a b ,②分别化为,①时当,得到唯一正整数101=a ,此时 1311=+b a综上所述,11b a +的所有可能值为13,20 9. 【证明】()()③②,①,.122211222-≥-+⋅-⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+≤--=≤--=m b a k b a b a f m kb b b f m ka a a f③知,②由①⨯-+2 ……………………4分()()()42222≤⎪⎭⎫⎝⎛+-+=-b a f b f a f b a22≤-a b 故 ……………………16分10.【证明】解:由柯西不等式()()15533535323212332211321321=++=⎪⎪⎭⎫ ⎝⎛⋅+⋅+⋅≥⎪⎭⎫ ⎝⎛++++x x x x x x x x x x x x x x x0,0,1321===x x x 时不等式等号成立,故欲求的最小值为1, ……………………5分因为()()()596662011063146201)355(534151)355)(53(515353232123212321321321321321321=++≤⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++++⋅≤++++=⎪⎭⎫ ⎝⎛++++x x x x x x x x x x x x x xx x x x x x x x x x 分21,0,21321===x x x 当时不等式等号成立,故欲求的最大值为59.………………20分11,【答案】 解:(1)对()()()2Re ,0Re .,i ,2,1222==->=∈+==kkkk k x k k k k z y x z x R y x y x z k 由条件知设因此()()()()()()()2222i i Re e 21212122212121221121≥-+≥-++=-=++=y y y y y y y yy y x x y x y x z z R又当()()2Re .2Re 2212121的最小值为,这表明,时z z z z z z === ……………………5分的右支上均位于双曲线,2:2221=-'y x C P P . 设()()02,022121,,的左,右焦点,易知分别是,F F C F F - 根据双曲线定义,有222222122111+'='+=F P F P F P F P ,,进而得 2424222221222121121121212121≥'-'++='-'+=+-+++=+-+++P P F P F P P P F P F P z z z z z z z z………………15分等号成立当且仅当()的中点恰是时,例如,当上位于线段21221212i 22P P F z z P P F '+=='综上可知,24222121的最小值为z z z z +-+++ ……………………20分。
2017高中数学全国联赛试题及答案B卷一、选择题(每题5分,共30分)1. 下列函数中,哪个函数是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin x \)D. \( y = \cos x \)答案:B2. 已知函数 \( f(x) = \frac{1}{x} \),那么 \( f(1) \) 的值是多少?A. 0B. 1C. -1D. 不存在答案:B3. 计算下列极限:\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 无穷大答案:B4. 已知 \( a \) 和 \( b \) 是两个正数,且 \( a + b = 1 \),那么 \( a^2 + b^2 \) 的最小值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)答案:D5. 一个圆的半径是 \( r \),那么它的面积 \( A \) 与半径 \( r \) 之间的关系是什么?A. \( A = \pi r \)B. \( A = 2\pi r \)C. \( A = \pi r^2 \)D. \( A = 4\pi r^2 \)答案:C6. 已知 \( \log_2 8 = 3 \),那么 \( \log_2 16 \) 的值是多少?A. 4B. 2C. 3D. 1答案:A二、填空题(每题5分,共20分)1. 计算 \( \int_{0}^{1} x^2 dx \) 的值是 _______。
答案:\( \frac{1}{3} \)2. 如果 \( \sin \theta = \frac{1}{2} \),那么 \( \cos 2\theta \) 的值是 _______。
答案:\( \frac{1}{2} \)3. 一个等差数列的前三项分别是 2,5,8,那么它的第五项是_______。
“《数学周报》杯”2017年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C .解:由题设可知1y yx -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >. 二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 第(5)题是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=. 三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得 ()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,第(10)题第(9)题所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分 (12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. ……………………………………………………10分 又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. ………………………………………………15分 所以点P 为CH 的中点. ………………………………………………20分 (13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b .所以a b +=.由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是,可求得2==a b将b =代入223y x =,得到点Q ,12). …………………15分再将点Q 的坐标代入1y kx =+,求得=k所以直线PQ 的函数解析式为1y x =+. 根据对称性知,所求直线PQ 的函数解析式为1y x =+,或1y =+. ………………20分 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得2P x =-从而2()3P Q k x x =+.所以,直线PQ 的函数解析式为1y =+,或1y x =+. ………………………………………20分 (14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分 则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2017, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。
按2017年全国初中数学竞赛试题
考试时间2017年3月20日9︰30-11︰30满分150
答题时注意:1、用圆珠笔或钢笔作答2、解答书写时不要超过装订线3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1、设53
2
x -=
,则代数式(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .2
2、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:
(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那么(,)
x y 为( B )。
A .(0,1)
B .(1,0)
C .(1,0)-
D .(0,1)-
3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223
cos sin 4
A B t +=,则实数t 所有可
能值的和为( C )
A .83-
B .53-
C .1
D .11
3
4、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,
BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C )
A .13S S <24S S
B .13S S =24S S
C .13S S >24S S
D .不能确定
5、设3333
1111
S 1232011=++++,则4S 的整数部分等于( A )
A .4
B .5
C .6
D .7
二、填空题(共5小题,每小题7分,共35分)
6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为31。
7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8。
同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是____。
9
1 8、如图,双曲线2
(0)y x x
=
>与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连接EF ,则△OEF 的面积为_____;2
3
9、⊙O 的三个不同的内接正三角形将⊙O 分成的区域的个数为_____。
28
A
B
C
E D
F
y
x
C
A B E
F
O
10、设四位数abcd 满足3333110a b c d c d ++++=+,则这样的四位数的个数为___。
5 三、解答题(共4题,每题20分,共80分)
11、已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值。
解:设方程20x ax b ++=的两个根为α、β,其中α、β为整数,且α≤β
则方程20x cx a ++=的两个整数根为α+1、β+1, 由根与系数关系得:α+β=-a ,(α+1)(β+1)=a 两式相加得:αβ+2α+2β+1=0即(α+2)(β+2)=3
∴⎩⎨⎧=+=+3212βα或⎩⎨⎧-=+-=+1232βα 解得:⎩⎨⎧=-=11βα或⎩
⎨⎧-=-=35βα
又∵a =-(α+β),b =αβ,c =-[(α+1)+(β+1)] ∴a =0,b =-1,c =-2或a =8,b =15,c =6 故a b c ++=-3或a b c ++=29
12、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点。
证明:如图,延长AP 交⊙2O 于点Q
连结AH ,BD ,QC ,QH
∵AB 为直径 ∴∠ADB =∠BDQ =900
∴BQ 为⊙2O 的直径 于是CQ ⊥BC ,BH ⊥HQ
∵点H 为△ABC 的垂心 ∴AH ⊥BC ,BH ⊥AC ∴AH ∥CQ ,AC ∥HQ ,四边形ACHQ 为平行四边形
则点P 为CH 的中点。
13、若从1,2,3,…,n 中任取5个两两互素的不同的整数1a ,2a ,3a ,4a ,5a ,其中总有一个整数是素数,求n 的最大值。
解:若n ≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一
个整数是素数,∴n ≤48,在1,2,3,┉┉,48中任取5个两两互素的不同的整数1a ,2a ,
3a ,4a ,5a ,
若1a ,2a ,3a ,4a ,5a 都不是素数,则1a ,2a ,3a ,4a ,5a 中至少有四个数是合数,不妨假设1a ,2a ,3a ,4a 为合数,
设1a ,2a ,3a ,4a 的最小的素因数分别为p 1,p 2,p 3,p 4 由于1a ,2a ,3a ,4a 两两互素,∴p 1,p 2,p 3,p 4两两不同 设p 是p 1,p 2,p 3,p 4中的最大数,则p ≥7
A
B
C
1O H
2O
P
D Q
因为1a ,2a ,3a ,4a 为合数,所以1a ,2a ,3a ,4a 中一定存在一个
a j ≥p 2≥72=49,与n ≥49矛盾,于是1a ,2a ,3a ,4a ,5a 中一定有一个是素数 综上所述,正整数n 的最大值为48。
14、如图△ABC 中,∠BAC =60°,AB =2AC 。
点P 在△ABC 内,且PA =3,PB =5,PC =2,求△ABC 的面积。
解:如图,作△ABQ ,使得:∠QAB =∠PAC ,∠ABQ =∠ACP ,
则△ABQ ∽△ ACP ,由于AB =2AC ,∴相似比为2 于是,AQ =2 AP =23,BQ =2CP =4
∠QAP =∠QAB +∠BAP =∠PAC +∠BAP =∠BAC =60° 由AQ :AP =2:1知,∠APQ =900 于是,PQ =3AP =3
∴BP 2
=25=BQ 2
+PQ 2
从而∠BQP =900
作AM ⊥BQ 于M ,由∠BQA =1200,知 ∠AQM =600,QM =3,AM =3,于是, ∴AB 2=BM 2+AM 2 =(4+3) 2+32=28+83 故S △ABC =21AB •ACsin600=8
3
AB 2=2376
A
C
P
B
Q
M。