数字电路教学大纲(通信)
- 格式:docx
- 大小:61.10 KB
- 文档页数:7
《数字电路》课程教学大纲一、课程基本信息英文名称Digital Circuit 课程代码PHYS2017课程性质专业选修课程授课对象物理学学分3学分学时54学时主讲教师修订日期2021.9指定教材康华光,《电子技术基础.数字部分》,高等教育出版社,2013年二、课程目标(一)总体目标知识目标:使学生掌握数字逻辑的基本知识及数字逻辑电路的分析方法和设计方法,以及若干典型的中、小规模集成电路的功能及应用,具备一定的数字电路分析和设计能力。
能力目标:培养学生分析电路问题和解决电路问题的能力,为以后深入学习电子技术某些领域中的内容,以及为电子技术在专业中的应用打好基础。
素质目标:掌握辩证唯物主义基本原理,建立科学的世界观和方法论,培养学生在电子技术方面的工程素养为目标。
(二)课程目标:课程目标1:掌握逻辑代数和数字逻辑电路的基础知识,能将其用于实际工程问题的分析课程目标2:具备对数字逻辑器件的特性和功能进行分析的能力,能够对组合逻辑电路和时序逻辑电路进行描述和分析。
课程目标3:具备对数字逻辑电路进行初步设计的能力,能运用基本原理和方法,根据设计要求完成数字逻辑电路(组合逻辑电路、时序逻辑电路)的设计。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1 第一章数字逻辑概论第二章逻辑代数与硬件描述语言第三章逻辑门电路第五章锁存器和触发器毕业要求3:了解物理学与其他学科、社会实践的联系。
毕业要求8:具有自主学习和终身学习意识和社会适应能力。
课程目标2 第四章组合逻辑电路第六章时序逻辑电路毕业要求3:了解物理学与其他学科、社会实践的联系。
毕业要求8:具有自主学习和终身学习意识和社会适应能力。
课程目标3 第四章组合逻辑电路第九章脉冲波形的变化与产生第十章时序逻辑电路毕业要求3:了解物理学与其他学科、社会实践的联系。
毕业要求7:具有课题调研、设计、数据处理和学术交流能力。
数字电路课程教学大纲课程编码:04060051学分:3.5学分总学时:64学时(48/16)适用专业:电子信息工程、电子科学与技术、通信工程、自动化、电气工程及其自动化一、课程的性质、目的与任务“数字电路”是电信工程学院各专业的一门重要的基础课程。
目的在于系统介绍数字电路的数学工具,阐述数字系统的基本分析与设计方法。
其任务是通过数字电路的学习,为后续微机原理、接口技术专业课程打下良好的理论和硬件基础;掌握数字系统的设计方法及常用器件的应用,培养学生具有一定的设计能力和解决实际问题的综合能力。
二、先修课程高等数学、大学物理、电路分析基础三、教学基本要求了解半导体存储器的原理及D/A、A/D转换器的电路工作原理。
理解多谐振荡器、单稳态触发器和施密特触发器的构成特点及应用。
掌握半导体器件的开关特性;数的各种进制之间的转换;逻辑代数的公式及图形法化简;TTL门及MOS门电路的输入、输出关系;组合逻辑电路的分析和设计方法;触发器特性及在时序逻辑电路中的应用。
四、教学内容(一)数字电路基础知识 10学时1.数制和码2.逻辑函数及其简化(1)逻辑代数的基本运算和公式(2)逻辑代数的基本定理及函数表示方法(3)逻辑函数的公式化简法(4)逻辑函数的卡诺图化简法(二)组合逻辑电路的分析和设计 12学时1.SSI组合逻辑电路的分析与设计2.MSI组合逻辑功能件的分析与应用3.组合逻辑电路的冒险现象分析及克服方法(三)时序逻辑电路的分析和设计 12学时1. 集成触发器2. SSI时序逻辑电路的分析与设计3. MSI时序功能件的功能特点及其应用(四)半导体存储器 4学时1. 半导体存储器概述及顺序存储器(SAM)2. 随机存储器(RAM)3. 只读存储器(ROM)(五)脉冲单元电路 6学时1. 单稳态触发器2. 斯密特触发器3. 多谐振荡器、555时基电路的应用(六)A/D、D/A 转换电路 4学时1. D/A转换电路原理及简单应用2. A/D转换电路原理及简单应用五、教学参考书王毓银主编.数字电路逻辑设计(第三版).高等教育出版社,1999年康华光主编.电子技术基础(数字部分)(第四版).高等教育出版社,2000年阎石主编.数字电子技术基础(第四版).高等教育出版社,1998年。
数字电路课程教学大纲《数字电路》课程教学大纲课程编码:总学时:讲授/理论51学时适用专业:电子信息科学与技术先修课程:高等数学、大学物理、电路分析、模拟电子线路一、本课程地位、性质和任务《数字电路》是电子信息专业的主干课程,是一门重要的专业技术基础课。
《数字电路》与《模拟电子线路》一起,为理解现代电路结构、通信电子线路等硬件电路结构打下良好的基础。
通过本课程的学习,使使学生熟练掌握数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有运用数字逻辑电路初步解决数字逻辑问题的能力。
同时也为以后专业课程的学习以及从事数字电子技术领域的工作打下扎实的理论基础。
二、课程教学的基本要求本课程是电信专业的一门重要的专业基础课程,通过本课程的学习,使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力。
三、课程学时分配、教学要求及主要内容(一) 课程学时分配一览表章节主要内容总学时学时分配讲授讨论习题实验其他第1章数制与码制 4 2 第2章逻辑代数基础 6 6 第3章门电路 6 6 第4章组合逻辑电路8 8第5章触发器 6 6第6章时序逻辑电路10 8第10章脉冲波形的产生与整形 4 4第11章数/模、模/数转换电路 4 4(二) 课程教学要求及主要内容第1章数制与码制教学目的和要求:本章介绍数制的概念、各种常用数制数的表示以及它们之间的转换;介绍真值与机器数、原码、反码、补码的概念,要求掌握三种码之间的转换、三种码进行数值运算时各自的优缺点以及运算方法;介绍信息编码的意义,掌握二进制码、循环码、标准ASCII码,认识循环码作为计数表示的优点、键盘各按键的ASCII码值。
教学重点和难点:带符号定点小数、整数的加减运算、ASCII码。
教学内容:1.1 概述(理解、熟练掌握)1.2 几种常见的数制(理解)1.3 不同数制间的转换(理解、熟练掌握)1.4 二进制算术运算(理解、熟练掌握)1.5 几种常见的编码:循环码、格雷码、BCD码、ASCII码(理解)第2章逻辑代数基础教学目的和要求:本章是本课程的基础和重点章节,逻辑代数是分析和设计数字电路的数学工具,本章主要介绍逻辑代数的公式、定理及逻辑函数的化简方法,要求掌握常用进制及其转换,基本和常用逻辑运算,逻辑代数的公式、定理,逻辑函数的公式、图形化简法,逻辑函数的各种表示方法及相互之间的转换。
数字电路课程教学大纲数字电路课程教学大纲数字电路是计算机科学与工程领域中的重要基础课程,它涉及到数字信号的处理和数字电路的设计。
本文将对数字电路课程的教学大纲进行探讨,以期为教师和学生提供一种有效的教学和学习方法。
一、课程简介数字电路课程是计算机科学与工程专业的基础课程之一,旨在培养学生对数字电路的基本概念和设计方法的理解和运用能力。
本课程包括数字信号的表示与处理、数字逻辑门电路的设计与分析、组合逻辑电路与时序逻辑电路的设计等内容。
二、课程目标1. 理解数字信号的基本概念和表示方法,掌握数字电路的基本原理和设计方法。
2. 掌握数字逻辑门电路的设计与分析,能够使用逻辑门实现基本的逻辑功能。
3. 理解组合逻辑电路的设计原理和方法,能够设计和分析常见的组合逻辑电路。
4. 理解时序逻辑电路的设计原理和方法,能够设计和分析常见的时序逻辑电路。
5. 能够使用计算机辅助设计工具进行数字电路的仿真和验证。
三、课程内容1. 数字信号的表示与处理a. 二进制数制及其转换b. 布尔代数与逻辑运算c. 逻辑函数与逻辑表达式d. 简化逻辑函数与逻辑化简2. 逻辑门电路的设计与分析a. 基本逻辑门电路的特性和真值表b. 逻辑门电路的代数和逻辑运算c. 逻辑门电路的时序特性和时序分析d. 逻辑门电路的布尔函数和逻辑函数3. 组合逻辑电路的设计与分析a. 组合逻辑电路的基本原理和设计方法b. 组合逻辑电路的编码器和解码器c. 组合逻辑电路的多路选择器和多路加法器d. 组合逻辑电路的比较器和译码器4. 时序逻辑电路的设计与分析a. 时序逻辑电路的基本原理和设计方法b. 时序逻辑电路的触发器和锁存器c. 时序逻辑电路的计数器和移位寄存器d. 时序逻辑电路的状态机和序列检测器5. 数字电路的仿真与验证a. 数字电路的仿真原理和方法b. 数字电路的验证原理和方法c. 数字电路的计算机辅助设计工具的使用四、教学方法1. 理论授课:通过讲解和演示,向学生传授数字电路的基本概念和设计方法。
一、总则1.本课程的教学目的和要求:本课程是我院计算机科学与技术专业的一门专业基础课程。
通过本课程的学习,使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力,为以后学习计算机组成原理、微机原理、单片机原理等后续课程的学习以及从事数字电子技术领域的工作打下扎实的基础。
2.本课程的主要内容:逻辑代数的公式、定理,逻辑函数的化简方法。
半导体二极管、三极管、MOS管的开关特性。
CMOS、TTL集成逻辑门。
组合电路的基本分析和设计方法。
加法器、比较器、编码器和译码器、数据选择器和分配器,只读存储器。
基本、同步、主从、边沿触发器,时钟触发器功能分类及转换。
时序电路的基本分析和设计方法。
计数器、寄存器、读/写存储器、顺序脉冲发生器。
多谐振荡器、施密特触发器。
数模、模数转换器。
3.教学重点与难点:教学重点是:逻辑代数的基本概念、公式、定理,逻辑函数的化简方法。
各种门电路的逻辑功能,两种集成逻辑门的电气特性。
各类触发器的逻辑功能及触发方式。
组合、时序电路的分析、设计方法。
常用典型组合、时序电路的功能、特点和应用。
典型中、大规模集成电路器件的功能和应用。
多谐、施密特、单稳的特点、功能、参数及应用。
数模、模数转换器的典型电路原理、输出量与输入量间的定量关系,特点、参数。
教学难点:逻辑代数的公式、定理的正确应用,逻辑函数化简的准确性。
集成逻辑门的电气特性。
组合、时序电路的设计。
触发器的触发方式以及脉冲产生,整形电路、数模、模数转换电路的工作原理。
4.本课程的知识范围及与相关课程的关系本课程是计算机科学与技术专业的硬件基础课程,其先修课为高等数学、普通物理、电路基础、模拟电路,后读课程为计算机组成原理、微机原理、单片机原理、计算机接口技术、计算机网络技术等。
5.教材的选用:数字电子技术基础简明教程(第二版)清华大学电子学教研组编余孟尝主编高等教育出版社1999年10月第2版二、课程内容及学时分配:第一章逻辑代数基础1.教学内容:概述逻辑代数、数制及其转换、BCD码。
《数字电路》教学大纲一、课程基本信息课程编号:124006英文名称:Digital Circuit授课对象:本课程为通信工程、电子信息工程、计算机科学与技术、自动化专业本科学生必修课。
开课学期:第4学期学分/学时:3学分 / 周学时为3学时,总学时为51学时与相关课程的衔接:本课程的前续课程为“电路分析基础"、“线性电子线路",后续课程为“微机原理及接口电路"、“通信原理”。
教学方式:(1)课堂讲授、课后自学等形式.(2)小型,实用的综合数字电路设计(书面形式)。
考核方式:本课程为考试课程,作业与平时测验占总成绩的30%,期末闭卷考试,占总成绩的70%课程简介:本课程是通信、电子、计算机科学与技术、自动化专业的一门重要的技术基础课程。
它涉及数字技术中的基本原理、基本分析和设计方法,具有很强的工程实践性.其任务是:使学生掌握数字逻辑电路的一般分析和设计方法,同时了解数字电路在实际应用中的典型参数与特点.二、课程教学目的和要求:本课程的教学目的是:通过本课程的学习,使学生能掌握数字电子技术的基础理论、基本分析方法和基本测量技能和基本电路设计方法,培养学生的逻辑思维能力和综合运用数字电路理论分析和解决实际问题的能力,组织和从事数字电子电路实验的初步技能。
了解数字电子技术的发展与应用,拓宽知识面,为以后的学习、创新和科学研究工作打下扎实的理论和实践基础。
通过本课程的学习,应达到以下基本要求:(1) 掌握逻辑代数运算的基本规则,逻辑函数的化简 (代数,卡诺图);(2)掌握常用的组合逻辑部件及组合逻辑电路的设计方法;(3)掌握常用的时序逻辑部件及时序逻辑电路的设计方法;(4)了解数字电路在实际应用中的特点,如TTL,CMOS,单稳态,多谐振荡器,施密特触发器,AD/DA 转换器的典型参数与特点;(5)可编程逻辑器件PLD的基本结构.三、教学内容与学时分配:1、第一章:逻辑代数基础(8学时)第一节概述第二节逻辑代数中的三种基本运算第三节逻辑代数的基本公式和常用公式第四节逻辑代数的基本定理第五节逻辑函数及其表示方法第六节逻辑函数的公式化简法第七节逻辑函数的卡诺图化简法第八节具有无关项的逻辑函数及其化简重点内容:一、数制与编码、逻辑代数的基本公式、常用公式和定理二、逻辑函数的表示方法(真值表、逻辑式、逻辑图、波形图、卡诺图)及相互转换的方法三、最小项和最大项的定义及其性质,逻辑函数的最小项之和和最大项之积的表示方法四、逻辑函数的化简方法(公式化简法和卡诺图化简法)五、无关项在化简逻辑函数中的应用2、第二章:门电路(4学时)第一节概述第二节半导体和三极管的开关特性第三节最简单的与、或、非门电路第四节TTL门电路第五节其他类型的双极型数字集成电路第六节CMOS门电路重点内容:晶体管TTL电路和MOS集成逻辑门电路3、第三章:组合逻辑电路(10学时)第一节概述第二节组合逻辑电路的分析方法和设计方法第三节若干常用的组合逻辑电路第四节组合逻辑中的竞争与冒险现象重点内容:组合电路的分析与设计和通用逻辑模块及其应用4、第四章:触发器(4学时)第一节概述第二节触发器的电路结构与动作特点第三节触发器的逻辑功能及其描述方法重点内容:一、触发器的工作原理二、触发器的不同电路结构及各自的动作特点三、触发器的电路结构类型和逻辑功能类型之间的关系5、第五章:时序逻辑电路(14学时)第一节概述第二节时序逻辑电路的分析方法第三节若干常用的时序逻辑电路第四节时序逻辑电路的设计方法重点内容:一、同步时序电路分析与设计、异步时序电路的分析二、几种常见的中规模集成时序逻辑电路的逻辑功能和使用方法6、第六章:脉冲波形的产生与整形(4学时)第一节概述第二节施密特触发器第三节单稳态触发器第四节多谐振荡器第五节555定时器及其应用重点内容:一、施密特触发器、单稳态触发器、多谐振荡器电路的工作原理二、555定时器的应用(组成施密特触发器、单稳态触发器、多谐振荡器电路的接法,电路的定量计算)7、第七章:半导体存储器(2学时)第一节概述第二节只读存储器(ROM)第三节随机存储器(RAM)第四节存储器容量的扩展第五节用存储器实现组合逻辑函数重点内容:一、存储器的分类、工作原理二、存储器的扩展接法三、用存储器设计组合逻辑电路的方法8、第八章:可编程逻辑器件(2学时)第一节概述第二节可编程阵列逻辑(PLA)第三节通用阵列逻辑(GAL)重点内容:PLD的分类及其各自的特点9、第九章:数模和模数转换(3学时)第一节概述第二节 D/A转换器第三节A/D转换器重点内容:一、权电阻型和倒T型D/A转换器的工作原理,输出电压的定量计算二、A/D转换器的主要类型,基本工作原理,性能的比较三、D/A和A/D转换器的转换精度和转换速度四、作业、实践环节:第一章的作业为数制与编码、逻辑代数基础及逻辑函数的简化;第二章的作业为双极型三极管工作状态的计算、集成门电路的逻辑功能分析;第三章的作业为组合电路的分析与设计和通用逻辑模块及其应用;第四章的作业为触发器的应用及触发器之间的转换;第五章的作业为同步时序电路分析与设计、异步时序电路的分析;第六章的作业为施密特触发器的计算,单稳态电路的分析,多谐振荡器的分析计算,555定时器的应用;第七章的作业为存储器的扩展接法、用存储器设计组合逻辑电路;第八章的作业为分析PAL电路功能;第九章的作业为A/D、D/A转换电路的基本原理和简单计算。
数字电路课程教学大纲一、课程的基本信息适应对象:本科,电子科学与技术、电子信息工程、通信工程课程代码:A7D00514学时分配:64赋予学分:4先修课程:电路分析、模拟电子技术后续课程:单片机原理、微机原理、自动控制原理、EDA技术二、课程性质与任务《数字电路》是电子信息类和电气类(包括电子类、电气类、自动控制类)各专业的专业基础课程,是一门实践性很强的技术基础课。
课程的任务是使学生获得数字电子技术方面的基本理论、基本知识和基本技能,培养学生分析问题和解决问题的能力。
即通过本课程的学习,使学生在理解数字电路的基本概念、基本电路的工作原理和基本分析方法的基础上,能熟悉数字集成电路的工作原理、外特性和功能,掌握数字电路的分析方法,具备正确运用数字集成电路设计和调试数字系统的能力,为深入学习后续相关课程以及今后从事专业工作打下良好的基础三、教学目的与要求1、课程教学目的:数字电路课程是电子科学与技术专业本科生的技术基础课程,它涉及数字技术中的基本原理、基本概念和基本方法,具有很强的工程实践性。
设置本课程的目的是使学生通过该课程的学习,理解和掌握数字电路的基本原理,基本概念和基本数字电路的分析和设计方法,掌握常用的中、小规模集成逻辑器件的功能应用,学会使用各种数字集成芯片设计各种数字电路,并通过实验学会使用常用电子仪器测量和调试各种数字电路的方法,更好地培养学生在工程实践方面独立分析问题和解决问题的能力。
2、课程教学基本要求在《数字电路》理论课程教学过程中,理论课程教学内容要新颖,信息量要大。
课程讲授要把握两个淡化:淡化电路的内部结构,强调电路的外部特性;淡化逻辑表达式的化简,强调电子设计自动化的优化作用。
三个注意:注意新技术的发展,引入可编程逻辑器件;注意描述方法的变化,引入Verilog HDL描述语言;注意系统分析方法,引入数字系统设计。
在《数字电路》实验课程教学过程中,实验课程内容的技术性、综合性和探索性的关系要做到处理得当。
数字电路教学大纲一、课程简介本课程旨在介绍数字电路的基本理论和设计方法,帮助学生建立数字电路分析与设计的基本能力。
通过本课程的学习,学生将掌握数字电路的基本概念、逻辑门、布尔代数、组合逻辑电路、时序逻辑电路等知识。
二、教学目标1. 理解数字电路的基本理论和设计原理;2. 掌握数字电路的逻辑运算和布尔代数;3. 能够设计和分析组合逻辑电路和时序逻辑电路;4. 具备解决实际数字电路设计问题的能力。
三、教学内容1. 数字电路基础知识- 二进制数系统- 逻辑代数和布尔代数- 逻辑门及其特性2. 组合逻辑电路设计- 组合逻辑电路的基本结构- 卡诺图方法简化布尔表达式- 组合逻辑电路的设计与分析3. 时序逻辑电路设计- 时序逻辑电路的时钟信号- 触发器及其应用- 状态机设计方法四、教学方法1. 理论讲授通过讲解理论知识,使学生建立数字电路的基本概念和理论框架。
2. 实例分析通过具体的实例,帮助学生理解数字电路的设计过程和方法。
3. 实践操作通过实验操作,增强学生对数字电路理论知识的实际运用能力。
五、教学评估1. 平时表现考察学生课堂表现、作业完成情况和参与度。
2. 期中考试考察学生对数字电路基础知识的掌握情况。
3. 期末考试考察学生对组合逻辑电路和时序逻辑电路设计的能力。
六、教材参考1. 《数字电路与逻辑设计》2. 《数字电路设计与仿真》3. 《数字逻辑与数字系统设计》七、教学安排1. 开设学期:大三上学期2. 授课时间:每周三节课,每节90分钟3. 实验教学:每周一次,每次180分钟通过本课程的学习,学生将掌握数字电路设计的基本方法和技巧,为未来在数字电路领域的深入研究和实践打下坚实基础。
希望学生在学习过程中勤奋钻研,不断提升自己,取得优异的成绩。
祝各位同学学习愉快!。
数字电路与系统(学分4,学时53+7)一、课程的性质和任务《数字电路与系统》是电气工程及自动化专业基础课,是该专业类学生学习和掌握数字系统、计算机原理、数字通讯、数字控制等方面知识的入门课程。
本课程从应用角度出发,学习数字电路的常用集成器件原理、符号、功能,以及由常用器件组成的组合电路、时序电路的分析和设计方法,进而分析和设计由中规模乃至大规模集成电路组成的数字系统。
同时也涉及了各种数字电路和系统,建立数字系统的整体概念,为使学生以后具有用硬件和软件设计中、大规模数字系统的能力打下基础。
二、课程内容、基本要求与学时分配(一)数字逻辑基础 2学时1. 数字电路2. 数制3. 数制间的转换4. 代码5. 带符号的二进制数教学要求:掌握二进制、八进制、十进制、十六进制数的计数规律及相互转换;掌握原码、反码、补码以及带符号的二进制数的表示方法;了解数字系统的有关概念;了解BCD码与十进制数的关系及各自特点,以及格雷码的作用、特点和编码的原理。
(二)逻辑门电路 3学时1. 逻辑门电路介绍2. 半导体二极管和三极管的开关特性3. 分立器件门电路4. 集成逻辑门电路5. MOSFETs教学要求:掌握高、低电平与正、负逻辑的概念;掌握二极管、三极管、MOS管的开关特性;掌握CMOS和TTL反相器电气特性和功能;掌握与门、或门、非门、与非门、或非门、与或门、与或非门、异或门、同或门、三态门、OC门、CMOS传输门的逻辑符号、逻辑功能;了解二极管与门和或门,三极管非门的电路结构及工作原理;了解CMOS和TTL反相器的电路结构工作原理。
(三)逻辑代数基础 9学时1.逻辑代数的运算法则2.逻辑函数的标准形式3.逻辑函数的公式化简法4. 逻辑函数的卡诺图化简法教学要求:掌握逻辑代数的公理、定理及重要规则;掌握逻辑函数的代数化简法和卡诺图化简法;了解逻辑函数表达式的不同形式与变换;了解逻辑代数中有关逻辑变量,逻辑运算、逻辑函数、最小项和最大项等基本概念。
《数字通信》课程教学大纲一、课程基本信息二、课程目标本课程的课程目标为:1.掌握伪随机序列中m序列和Gold序列的基本概念、性质、产生方法及计算机编程;了解扩频调制技术,掌握两种普遍使用的扩频调制方法:直接序列扩频和跳频扩频;2.掌握无线信道的衰落特性、针对卫星通信系统的无线链路分析,和无线通信信道。
了解针对无线通信系统中的衰落现象,改善系统性能的分集技术、MIMO技术、OFDM技术以及多址技术。
3.理解不确定性、信息、互信息、熵和相对熵等基本概念,掌握无失真数据压缩时的信源编码定理和数据压缩算法、信道编码定理、信息容量定理和有失真数据压缩时的信源编码定理--率失真定理;4.了解码距与纠检错位数的关系;掌握线性分组码的原理、生成矩阵与校验矩阵的分析计算,重点是循环码的原理与编码解码方法;掌握卷积码的原理、图形描述(树状图、网格图、状态图)与解析描述(生成矩阵、监督矩阵)以及最大似然译码(主要为维特比译码算法);了解卷积码的网格编码调制的思想、Turbo码和低密度奇偶校验码等近年来新兴的编码研究热点。
5.掌握通信系统的同步技术,主要包括载波同步、码元同步、帧同步以及扩频同步的基本概念和实现方法。
三、课程支撑的毕业要求指标点本课程支撑信息工程专业毕业要求中的如下指标点:●指标点1.4:掌握信息工程专业知识,并能够综合应用相关知识解决信息工程领域复杂工程问题;●指标点2.4:能够应用信息工程专业知识,并通过文献研究,深入分析信息工程领域复杂工程问题,获得有效结论;●指标点3.1:掌握电子电路基础知识,能够设计/开发通信、电路、信号处理、微波器件或信息安全系统解决方案。
四、课程目标与课程支撑的指标点的对应关系五、课程目标与教学内容和教学环节的对应关系六、课程内容与学时分配课程的教学内容与学时分配如下:1.扩频调制:(6学时)伪随机序列的基本概念,包括m序列和Gold序列的性质、产生方法和计算机编程;扩频调制技术,两种普遍使用的扩频调制方法:直接序列扩频和跳频扩频。
《数字电子技术》教学大纲一、课程的性质与任务课程性质:本课程是电子信息工程、通信工程专业本科学生的学科基础必修课。
课程任务:《数字电子技术》课程是电子信息工程、通信工程专业必修的一门学科基础课,该课程的教学目的是使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路初步解决数字逻辑问题的能力,为以后学习微机原理、单片机原理等后续课程的学习以及从事数字电子技术领域的工作打下扎实的基础。
二、课程的基本内容及要求(一)逻辑代数基础知识1.课程教学内容(1)概述(包含数制,补充码制)(2)逻辑代数的基本概念、公式和定理(3)逻辑涵数的公式化简法(4)逻辑函数的表示方法及其相互转换2.课程重点难点重点: 数制与码制的表示方法;三种基本逻辑运算和几种导出逻辑运算;真值表、逻辑式、逻辑图之间的相互转换;基本公式和基本定律;三个重要规则;常见的逻辑式;用并项法、吸收法、消去法、配项法对逻辑函数进行化简;用卡诺图表示逻辑函数;用卡诺图化简逻辑函数;难点:二、八、十六进制的转换;将真值表转换为逻辑式。
吸收律和摩根定律;代入规则;运用代数化简法对逻辑函数进行化简。
用卡诺图化简逻辑函数以及具有无关项的逻辑函数的化简。
3.课程教学要求(1)掌握二、八、十、十六进制的表示方法及相互转换;(2)熟练掌握基本逻辑运算和几种常用复合导出逻辑运算;(3)熟练运用真值表、逻辑式、逻辑图来表示逻辑函数。
(4)理解并掌握逻辑代数的基本公式、基本定律和三个重要规则。
(5)掌握代数化简的几种基本方法并能熟练运用。
(6)熟练运用卡诺图化简逻辑函数。
(二)门电路1.课程教学内容(1)二极管、三极管和MOS管的开关特性;(2)分立元件门电路。
(3)CMOS集成门电路。
(4)TTL集成门电路。
2.课程重点难点重点:二、三极管的开关特性和开关等效电路。
TTL集成逻辑门电路的结构、工作原理和外部特性。
数字电路教学大纲(通信)
《数字逻辑电路设计》教学大纲
课程名称:数字逻辑电路设计
课程性质:专业基础课
学分:4.5
总学时:80,其中,理论学时:64,实验(上机)学时:16
适用专业:通信工程
先修课程:大学物理,电路
一、教学目的与要求
本课程是通信工程专业的必修的技术基础课程。
通过本课程的学习,使学生了解数字系统的基本概念,掌握数字系统的工作原理及设计方法。
二、课程的基本内容及要求
三、各章节主要知识点与教学要求
第一章数字逻辑概论( 3 学时)
第一节数字电路与数字信号
第二节数制
第三节二进制数的算术运算
第四节二进制代码
第五节二值逻辑变量与基本逻辑运算
第六节逻辑函数及其表示方法
本章重点:计算机中常用的数制及数制之间的转换;
计算机中常用的码制及码制之间的转换。
基本逻辑运算
本章难点:二进制,十进制,八进制之间的转换;
加权码和无权码的表示方法。
基本逻辑运算
本章教学要求:掌握计算机中常用的数制及数制之间的转换;掌握原码、反码、补码的概念。
十进制数的编码及可靠性编码。
掌握基本逻辑运算
第二章逻辑代数与硬件描述语言基础( 7 学时)
第一节逻辑代数
第二节逻辑函数的卡诺图化简法
第三节硬件描述语言Verilog HDL基础
本章重点:逻辑代数的基本公式、基本定理、基本规则;
逻辑函数的代数化简方法;
逻辑函数的卡诺图化简方法。
本章难点:逻辑函数的基本定理应用;
逻辑函数的卡诺图化简方法的使用。
本章教学要求:掌握逻辑代数的基本公式、基本定理、基本规则掌握逻辑函数的化简方法。
第三章逻辑门电路( 3 学时)
第一节MOS逻辑门电路
第二节TTL逻辑门电路
第三节射极耦合逻辑门电路
第四节砷化镓逻辑门电路
第五节逻辑描述中的几个问题
第六节逻辑门电路使用中的几个实际问题
第七节用Verilog HDL描述逻辑门电路
本章实验:集成门电路实验;(2学时)
本章重点:基本逻辑门电路的基本原理及特性;
三态门和集电极开路逻辑门的工作状态和原理。
本章难点:基本逻辑门电路的基本原理及特性;
三态门和集电极开路逻辑门的工作状态和原理。
本章教学要求:了解CMOS集成门电路基本结构及工作原理、TTL电路与CMOS电路的接口等其它接口电路
掌握三态门和集电极开路逻辑门的工作状态和原理。
第四章组合逻辑电路( 15学时)
第一节组合逻辑电路分析
第二节组合逻辑电路的设计
第三节组合逻辑电路中的竞争冒险
第四节若干典型的组合逻辑集成电路
第五节组合可编程逻辑器件
第六节用Verilog HDL描述组合逻辑电路
本章实验:组合逻辑电路的设计;(2学时)
译码器应用;(2学时)
数据选择器应用;(2学时)
加法器应用。
(2学时)
本章重点:组合逻辑电路分析的一般方法及组合逻辑电路的设计方法;
常用组合逻辑电路的原理及功能;
函数的组合逻辑电路实现方法。
本章难点:组合逻辑电路分析及设计方法;
函数的组合逻辑电路实现方法。
本章教学要求:掌握组合逻辑电路分析的一般方法及组合逻辑电路的一般设计方法;
理解组合逻辑电路设计中应考虑的问题;
掌握常见的基本组合逻辑电路的设计方法;
理解组合电路中的竞争与险象。
第五章锁存器和触发器( 8 学时)
第一节双稳态存储单元电路
第二节锁存器
第三节触发器的电路结构和工作原理
第四节触发器的逻辑功能
第五节用Verilog HDL描述锁存器和触发器
本章实验:触发器功能验证;(2学时)
本章重点:RS触发器的工作原理及特性分析;
JK触发器的工作原理及特性分析;
D触发器的工作原理及特性分析;
T触发器的工作原理及特性分析;
不同类型触发器之间的转换方法。
本章难点:不同类型触发器的功能分析和特性描述;
不同类型触发器之间的转换方法。
本章教学要求:掌握RS触发器、JK触发器、D触发器、T触发器的工作原理;
了解不同类型触发器的转换方法。
第六章时序逻辑电路( 15 学时)
第一节时序逻辑电路的基本概念
第二节同步时序逻辑电路的分析
第三节同步时序逻辑电路的设计
第四节异步时序逻辑电路的分析
第五节若干典型的时序逻辑集成电路
第六节用Verilog HDL描述时序逻辑电路
第七节时序可编程逻辑器件
本章实验:集成电路计数器、译码和显示。
(2学时)
本章重点:同步及异步时序逻辑电路的分析方法;
同步时序逻辑电路的设计方法。
寄存器与移位寄存器的工作原理;
异步N进制计数器的实现方法;
同步N进制计数器的实现方法;
任意进制集成计数器的实现。
本章难点:时序逻辑电路的功能分析及状态转换过程;
异步和同步N进制计数器的实现方法;
用给定集成计数器芯片实现任意进制计数器的方法。
本章教学要求:理解时序逻辑电路的结构与类型
掌握同步时序逻辑电路的分析方法;
掌握同步时序逻辑电路的设计的方法;
理解常用同步时序逻辑电路;
掌握用给定集成计数器芯片实现任意进制计数器的方法。
第七章存储器、复杂可编程器件和现场可编程门阵列(2学时)第一节只读存储器
第二节随机存取存储器
第三节复杂可编程逻辑器件
第四节现场可编程门阵列
第五节用EDA技术和可编程器件的设计例题
本章重点:存储器的分类与性能指标的相关概念;
存储器的扩展方法;
可编程阵列逻辑的工作原理。
本章难点:用可编程阵列逻辑实现逻辑函数的方法;
存储器的扩展方法。
本章教学要求:了解存储器的分类与性能指标的相关概念;
了解快闪存储器的特点;
掌握存储器的扩展方法;
掌握可编程阵列逻辑;
掌握CPLD和FPGA及其系统编程技术。
第八章脉冲波形的变换与产生( 4 学时)
第一节单稳态触发器
第二节施密特触发器
第三节多谐振荡器
第四节555定时器及其应用
本章实验:555定时器应用实验。
(2学时)
本章重点:多谐振荡器、单稳态触发器和施密特触发器的功能特点;
555定时器的工作原理及其应用。
本章难点:多谐振荡器、单稳态触发器和施密特触发器的功能特点分析;
用555定时器的构成不同类型振荡器的方法。
本章教学要求:了解多谐振荡器、单稳态触发器和施密特触发器的概念;
掌握多谐振荡器的工作原理及秒脉冲信号产生电路的构成方法;
掌握单稳态触发器的工作原理;
掌握施密特触发器的工作原理及构成多谐振荡器的构成方法;
第九章数模转换器和模数转换器( 2 学时)
第一节 D/A转换器
第二节 A/D转换器
本章重点:D/A转换器的工作原理;
A/D转换器的实现方法。
本章难点:D/A和A/D转换量之间的计算。
本章教学要求:了解D/A转换器和A/D转换器的概念和实例;
掌握D/A转换器的原理;
掌握A/D转换器的实现方法及种类。
四、成绩考核方式
本课程为考试课程,采用闭卷考试形式;作业及考勤成绩所占比例为10%、实验成绩所占比例为20%;期末考试成绩所占比例为70%。
五、教材与参考资料
教材:
《电子技术基础数字部分》,康华光主编,高等教育出版社,2006.1
参考资料:
1、《数字逻辑电路设计》,鲍可进、赵念强等,清华大学出版社,2003
2、《数字逻辑设计与VHDL描述》,徐惠民、安德宁,北京:机械工业出版社2002.4
执笔人:袁静
审定人:马英辉。