荧光粉种类优劣
- 格式:doc
- 大小:968.00 KB
- 文档页数:9
LED(Light Emitting Diode),即发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。
采用LED的灯具,具有工作电压低、耗电少、发光效率高、寿命长等特点,白光LED的能量转换效率可以是白炽灯的12倍,是荧光节能灯的2倍(如表1),随着LED技术的不断进步,其节能效率将不断提高,必将成为普通照明领域的主流,据业内专家预测,如果2013年LED灯具的平均光效达到120 lm/W、LED照明在普通照明市场的占有率达20%以上,并逐步取代白炽灯和三基色节能荧光灯,而成为普通照明的主流产品。
表1 白炽灯、荧光灯、LED照明三种光源比较标准的白光LED是荧光粉复合转换型LED(简称pc-LED), 目前主流的转换形式是蓝光芯片(以InGaN为主)加黄色荧光粉发射层,蓝光芯片发出的蓝光和荧光粉发出的黄光合成出白光,得到的这种白光色温较高,是蓝白色的冷光,通过加部分红色荧光粉来实现降低色温的目的,而采用加入绿色(或红色)荧光粉来实现白光LED发光的高显色性能。
市场对LED照明在显色指数、光效、稳定性、色温等方面的要求日益多样化,这就必然要求LED荧光粉品种的多样化;另外国内半导体照明企业对于LED 荧光粉的需求量在逐渐增加的同时对高品质LED荧光粉的要求也随之提高。
对于LED荧光粉,国际上目前的主要产品分为铝酸盐(YAG)体系、氮化物体系和硅酸盐体系三大类,拥有铝酸盐(YAG)体系的荧光粉生产技术和核心专利权垄断的企业主要为三菱化成、Osram、Intematix、日亚等,拥有硅酸盐荧光粉技术和生产经验的企业有丰田合成、Intematix、大连路明等,而拥有氮化物体系荧光粉技术和专利的企业只有Osram、日亚等。
国内学术界对于铝酸盐(YAG)体系荧光粉的研究较多,但很少有能够达到生产且产品质量可与国际大品牌比拼的技术,铝酸盐(YAG)体系荧光粉的生产与销售依然为台湾(弘大)或美国企业(Intematix)所垄断;国内对于氮氧化物或氮化物荧光粉的研究还不够成熟,只有中村宇极、有研稀土等少数几家企业和少量的高校和研究机构对氮化物荧光粉进行研究,能够进行小批量销售的也仅中村宇极、有研稀土、Intematix等少数几家荧光粉企业。
全面解析:现阶段白光LED荧光粉技术∙LED照明商用化的快速发展,预计将会加大白光LED荧光粉的市场需求,在各界持续投入荧光粉的研发能量之下,目前已发展出的三大主流白光LED荧光粉,将可望因应不同应用,满足对于性能的多样性与严苛度的要求。
为控制全球温室气体排放,节约地球有限的能源资源,近年来各国制定能源政策同时,无不竞相提出“节能减碳”计划,其中白炽灯已为澳洲、欧盟以及美国加州等陆续宣布淘汰的照明设施。
发光二极管(LED)具有发热量低、耗电量小、寿命长、反应速度快、以及体积小等优点,目前全球白光LED照明产业持续蓬勃发展,尤其在手机面板背光源、照明以及汽车产业的应用更有无穷潜力。
近年来,国内外多家面板厂商已将白光LED导入作为笔记本电脑液晶显示器背光源,取代使用汞的传统冷阴极荧光灯管。
从解决环保及能源问题观点而言,白炽灯泡向来存在低能源效率与发热问题;至于含汞荧光灯,则存在汞污染的缺点,为此LED照明无疑将成为全球照明大厂全力以赴的目标。
虽然白光LED使用于民生照明还存在诸多问题亟待解决,然可预见的将来,在制造成本逐渐降低、照明应用领域陆续开发之下,未来10年内,白光LED预期将成为极具潜力的照明商品。
自1993年日本日亚化学成功开发出全球第一个商业化以氮化铟镓(InGaN)为材质的蓝、紫光LED之后,更加速以白光LED作为照明新世代的来临。
日亚化学更在1996年发表InGaN/Y3Al5O12:Ce3+(简称YAG:Ce)荧光粉的单芯片白光LED,自此全球热烈展开白光LED相关技术研发的竞逐。
日亚化学已在2007年内量产发光效率达每瓦150流明的白光LED,该公司同时表示第一阶段将先量产顺向电流20毫安的产品,此项LED发光效率堪称目前全球业界最高纪录。
目前市场上白光LED生产技术主要分为两大主流第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(D ic hromatic)或三波长(Trichromatic)白光,此项技术称之为荧光粉转换白光LED(Phosphor Converted-LED);第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。
荧光粉,紫外荧光粉,隐形光变荧光粉,无机荧光粉颜料金点塑胶颜料有限公司的紫外隐形荧光粉的化学成份由模糊的硅酸盐、钨酸盐,单一的元素Ba、Sr最后深化到标准的化学式,其化学组成为::YErYbF3 上转化荧光粉,即紫外线激发荧光粉的成分为:化学组成:YErYbF3外观:白色无机粉末晶粒尺寸:30nm激发波长:980nm发光颜色:绿光特性:透光率较高,有较高的耐溶剂、耐酸碱性能金点塑胶颜料有限公司的紫外光变荧光粉产品性能:金点荧光粉分类:无机、有机、长波(365nm)、短波(254nm)发光颜色:红色、紫色、黄绿色、蓝色、绿色、黄色、白色、蓝绿色、橙色、黑色用法用量:建议添加量:0.05%~0.5%,一般为0.05-0.1%毒性与安全性:对皮肤无刺激性,不含对人体有害的物质,符合安全玩具和食品包装标准产品粒径:5-10 um特性:最高承受温度为600amp#176C。
透光率较高,有较高的耐溶剂、耐酸碱性能储存方法:应密封储存于密闭、干燥、阴暗处,避免阳光直射包装:25公斤/桶(可零售一公斤起订)金点无机荧光粉1. 荧光色泽鲜艳,具有良好的遮盖力(可免加不透光剂)。
2. 颗粒细圆球状,易分散,98%的直径约1-10u。
3. 耐热性良好:最高承受温度为600癱,适合各种高温加工之处理。
4. 良好耐溶剂性、抗酸、抗碱、安定性高。
5. 没有色移性,不会污染。
6. 无毒性,加热时不会溢出福尔马林,可用之于玩具和食品容器之着色。
7. 色体不会溢出,在射出机内换模时,可省却清洗手续。
金点荧光粉用于油墨中的使用方法:紫外无色荧光油墨又称隐形无色荧光油墨,它和温变油墨(又称热敏油墨)、光学变色油墨,金属变色油墨,防涂改油墨,镜像变色油墨等共同组成了当前国内防伪油墨。
其中荧光油墨以其技术成熟,质量稳定,品种齐全,印刷方式多样等优点被广泛接受。
在普通光源下该油墨成无色透明或接近白色,印在纸张或塑料薄膜上不显颜色,在紫外光下显出不同颜色,金点公司生产的紫外荧光粉主要有:红色、紫色、黄绿色、蓝色、绿色、黄色、白色、蓝绿色、橙色、黑色等颜色。
荧光粉研究报告荧光粉这玩意儿,说起来还挺有趣的。
记得有一次,我在一个老旧的实验室里,看到角落里放着一堆五颜六色的粉末,当时我就好奇,这是啥呀?后来才知道,原来那就是荧光粉。
咱们先来说说啥是荧光粉。
简单来讲,荧光粉就是能在紫外线或者其他特定条件下发出各种漂亮颜色光芒的粉末。
它就像是黑夜中的小精灵,能给我们带来惊喜的视觉效果。
荧光粉的种类那可真是多了去了。
比如说,有硫化锌型荧光粉,这种荧光粉发出的光比较明亮,就像夏日里最耀眼的阳光。
还有稀土类荧光粉,像铕、铽这些元素掺杂进去,发出的光色彩纯正,鲜艳得很。
荧光粉的用途也是相当广泛。
在照明领域,那些节能的荧光灯里面可少不了它。
它能让灯光更亮更节能,晚上看书学习的时候,多亏了有它,眼睛能舒服不少。
还有在显示技术方面,像咱们熟悉的电视机、电脑显示屏,荧光粉在里面发挥着重要作用,让我们能清晰地看到各种精彩的画面。
在安全标识方面,荧光粉更是大显身手。
比如在一些消防通道、紧急出口的标识上,涂上荧光粉,哪怕是在黑暗中,也能让人一下子就找到逃生的方向。
我曾经有一次在一个商场里,突然停电了,整个商场一片漆黑,但是那些涂有荧光粉的安全标识却特别显眼,指引着大家有序地疏散,那时候我就深刻感受到了荧光粉的重要性。
再来说说荧光粉的制作过程。
这可不是一件简单的事儿,需要经过精细的化学合成和严格的工艺控制。
就像烹饪一道美味的菜肴,每一种原料的比例、加入的顺序、温度的控制,都得恰到好处,否则做出来的“菜”可就不好吃啦。
在制作荧光粉的时候,首先得挑选合适的原材料。
这些原材料就像是建筑的基石,质量好不好直接影响到最终产品的性能。
然后,要把这些原材料按照一定的比例混合在一起,放进特制的反应炉里进行反应。
这个过程就像是一场化学反应的舞会,各种分子和原子在里面欢快地跳动,最终形成我们想要的荧光粉。
但是,荧光粉也不是完美无缺的。
有些荧光粉可能存在稳定性不好的问题,用着用着颜色就变了,或者亮度不够了。
荧光粉的分类荧光粉是一种能够在紫外线或电磁辐射的激发下发出可见光的物质。
根据其不同的性质和用途,荧光粉可以分为多个分类。
本文将对不同分类的荧光粉进行介绍。
一、荧光增白剂荧光增白剂是一种常见的荧光粉,其主要作用是在白色物质中增强蓝光的发射,从而提高物体的白度和亮度。
荧光增白剂广泛应用于纸张、塑料、织物等行业,使产品更加白亮。
荧光增白剂的工作原理是通过吸收紫外线,然后重新发射蓝光,使物体看起来更白。
二、荧光颜料荧光颜料是一种具有强烈荧光效果的颜料,能够在黑暗环境中发出明亮的光芒。
荧光颜料广泛用于油漆、涂料、墨水、塑料等产品中,使其在黑暗中更加醒目。
荧光颜料的颜色种类繁多,包括黄色、橙色、红色、绿色、蓝色等。
这些颜色在白天也能显现出明亮的效果。
三、荧光指示剂荧光指示剂是一种能够根据环境中特定物质的存在或变化而发生荧光变化的物质。
荧光指示剂被广泛应用于生物医学、环境监测等领域。
例如,荧光指示剂可以用于检测水中的污染物质,当污染物质存在时,荧光指示剂会发出荧光信号,从而实现对水质的监测。
四、荧光染料荧光染料是一种具有荧光效果的有机化合物,其分子结构中含有能够发光的基团。
荧光染料广泛应用于化妆品、食品、药品等行业中。
例如,荧光染料可以用于糖果中,使其在黑暗中发出明亮的光芒,增加产品的吸引力。
荧光染料还可以用于细胞标记和荧光显微镜观察等生命科学研究中。
五、荧光指纹粉荧光指纹粉是一种用于犯罪现场勘查的工具,能够显现出隐藏在物体表面的指纹。
荧光指纹粉被广泛应用于刑侦部门,提供了重要的犯罪证据。
荧光指纹粉的工作原理是通过增强指纹的对比度,使其在紫外线照射下呈现出明亮的荧光,便于警方进行指纹识别。
六、荧光粉涂层荧光粉涂层是一种将荧光粉作为添加剂加入到涂料中的涂层材料,能够使涂层在黑暗环境中发出荧光。
荧光粉涂层被广泛应用于安全标识、舞台效果等领域。
例如,荧光粉涂层可以用于夜间道路标志,提高夜间驾驶的安全性。
总结:荧光粉根据其不同的性质和用途可以分为荧光增白剂、荧光颜料、荧光指示剂、荧光染料、荧光指纹粉和荧光粉涂层等。
浅谈LED荧光粉一,LED荧光粉的种类YAG铝酸盐荧光粉,优点:亮度高,发射峰宽,成本低,应用广泛,黄粉效果较好缺点:激发波段窄,光谱中缺乏红光的成分,显色指数不高,很难超过85硅酸盐荧光粉优点:激发波段宽,绿粉和橙粉较好缺点:发射峰窄,对湿度较敏感,缺乏好的红粉,不太耐高温,不适合做大功率LED,适合用在小功率LED氮化物荧光粉优点:激发波段宽,温度稳定性好,非常稳定红粉、绿粉较好缺点:制造成本较高,发射峰较窄硫化物荧光粉优点:激发波段宽红粉、绿粉较好,缺点:湿度敏感,制造过程中会产生污染,对人有害,有很强的臭味,会腐蚀支架 (属于淘汰的产品但市场有卖假粉的人为了赚取更多的利润,有可以用这种成份的荧光粉来充当好荧光粉)荧光粉对白光LED光衰的影响实现白光LED的途径有多种,目前使用最为普遍最成熟的一种是通过在蓝光晶片上涂抹一层黄色荧光粉,使蓝光和黄光混合成白光,所以荧光粉的材质对白光LED的衰减影响很大。
市场最主流的荧光粉是YAG钇铝石榴石荧光粉、硅酸盐荧光粉、氮化物荧光粉,与蓝光LED 芯片相比荧光粉有加速老化白光LED的作用,而且不同厂商的荧光粉对光衰的影响程度也不相同,这与荧光粉的原材料成分关系密切。
选用最好材质的白光荧光粉,使做出的白光LED 相比同行在衰减控制方面有了很大的提高。
二、介绍常用的YAG成份荧光粉的相关知识1.YAG合成工艺比较固相法缺陷:1)合成温度高、反应时间长2)对原料品质要求高3)粉体团聚严重、样硬、需机械破碎、球磨等后处理4)形貌不规则、颗粒流动性差、无法进一步进行包膜等后处理工艺5)难以有效地控制粒径分布控制反应沉淀法1)合成温度低、反应时间短2)合成粉体疏松,无需机械破碎、球磨等后处理工艺3)形貌规则,颗粒呈球形,流动性和稳定性好4)颗粒粒径可控5)容易实现包膜等后处理工艺2.YAG粉体制备流程比较 控制反应沉淀法固相法三、结果与讨论1.YAG荧光粉XRD分析图1不同反应方法制备的YAG荧光粉XRD谱图(a)商用固相法合成 (b)控制反应沉淀法合成2.控制反应沉淀法制备YAG前驱体颗粒生长机制及SEM分析前驱体颗粒生长机制前驱体SEM分析图2 颗粒在反应器平均停留时间6h,连续通料(a)10h,(b)15h,(c)20h前驱体颗粒生长形貌图 YAG形貌SEM图图3 不同合成方法制备的YAG粉体的形貌(a)控制反应沉淀法合成 (b)商用固相法合成3.YAG粉体荧光发射光谱分析图4 YAG发射光谱图结论1.采用控制反应沉淀法在1200℃成功地制备了由许多大小约1mm的一次粒子紧密团聚而成宏观粒径为9mm左右的球形纯相Y2.94Al5O12:Ce0.06黄色荧光粉,合成温度比传统的高温固相法降低了约300℃2.在控制反应沉淀制备球形YAG粉体的过程中,微细粒子的团聚是前驱体颗粒长大的主要方式,连续通料反应20h后,前驱体颗粒球形化程度较好,粒径分布在9mm,因此通过控制反应器内的流体运动状态及连续通料时间能够较好的控制前驱体颗粒形貌及粒径大小,并可以通过优化工艺合成粒径更小的YAG荧光粉。
磁粉探伤荧光粉分类磁粉探伤荧光粉是一种用于无损检测的荧光探伤材料,它能够通过发光的方式显示出被测物体表面及其内部的缺陷。
磁粉探伤荧光粉根据其成分和用途的不同可以分为几个不同的类别。
我们来介绍一种常见的磁粉探伤荧光粉——铁粉荧光粉。
铁粉荧光粉是由红外吸收剂、荧光增白剂和稳定剂等组成的。
它们能够在磁场中形成磁场线,并且能够通过荧光显示出材料内部的缺陷。
铁粉荧光粉广泛应用于金属材料的检测中,如铁、钢等。
它们能够显示出裂纹、毛细孔等缺陷,并且具有灵敏度高、分辨率高等特点。
除了铁粉荧光粉,还有一种常见的磁粉探伤荧光粉——铝粉荧光粉。
铝粉荧光粉主要由铝粉、荧光增白剂和稳定剂等组成。
它们能够在磁场中形成磁场线,并且能够通过荧光显示出材料内部的缺陷。
铝粉荧光粉广泛应用于非金属材料的检测中,如陶瓷、塑料等。
它们能够显示出裂纹、气孔等缺陷,并且具有灵敏度高、分辨率高等特点。
除了铁粉荧光粉和铝粉荧光粉,还有一种常见的磁粉探伤荧光粉——铜粉荧光粉。
铜粉荧光粉主要由铜粉、荧光增白剂和稳定剂等组成。
它们能够在磁场中形成磁场线,并且能够通过荧光显示出材料内部的缺陷。
铜粉荧光粉广泛应用于电子元器件的检测中,如电路板、电子芯片等。
它们能够显示出焊缝、接触不良等缺陷,并且具有灵敏度高、分辨率高等特点。
除了铁粉荧光粉、铝粉荧光粉和铜粉荧光粉,还有一种常见的磁粉探伤荧光粉——锌粉荧光粉。
锌粉荧光粉主要由锌粉、荧光增白剂和稳定剂等组成。
它们能够在磁场中形成磁场线,并且能够通过荧光显示出材料内部的缺陷。
锌粉荧光粉广泛应用于航空航天领域的检测中,如飞机发动机、航天器等。
它们能够显示出疲劳裂纹、应力腐蚀等缺陷,并且具有灵敏度高、分辨率高等特点。
总结起来,磁粉探伤荧光粉是一种用于无损检测的荧光探伤材料,根据其成分和用途的不同可以分为铁粉荧光粉、铝粉荧光粉、铜粉荧光粉和锌粉荧光粉等几个不同的类别。
它们都具有灵敏度高、分辨率高等特点,并且能够通过荧光显示出材料内部的缺陷。
荧光粉的分类
荧光粉根据其化学成分和特性可以分为以下几类:
1. 有机荧光粉:主要成分是有机物,常见的有机荧光粉有荧光染料粉、荧光塑料粉等。
有机荧光粉具有色彩鲜艳、光稳定性好等优点,常用于彩色墨水、涂料、塑料制品、纤维等领域。
2. 稀土系荧光粉:主要成分是稀土元素,如钐、铽等。
稀土系荧光粉主要具有强的吸收和发射光谱特性,可用于制造荧光灯、LED等光源。
3. 硫化物荧光粉:主要成分是化合物硫化物,在长波紫外线的照射下发光。
硫化物荧光粉具有发光亮度高、光稳定性好等优点,常用于制造荧光标识、探雷仪、以及光学玻璃等产品。
4. 铝酸盐系荧光粉:主要成分是金刚石或纯铝酸盐。
铝酸盐系荧光粉主要具有高的发光效率、光稳定、耐高温等特点,适用于制造荧光灯管、彩色电视显像管等。
5. 碳酸盐系荧光粉:主要成分是碳酸盐化合物。
碳酸盐系荧光粉具有高亮度、稳定性好等特点,广泛应用于制造荧光材料、涂料、油墨等产品。
需要注意的是,以上荧光粉的分类并不是非常严谨,有些荧光粉可能属于多个分类,或者还有其他特殊类别的荧光粉。
1、普通荧光灯用荧光粉:主要是锑锰激活的卤磷酸钙荧光粉,色温范围2700K-10000K(根据用户需要调整),分为球磨和不球磨两种。
2、彩色荧光灯用荧光粉:主要有蓝粉(钨酸钙:铅)、绿粉(硅酸锌:锰)、橙色粉(硅酸钙:铅)、红粉(砷酸镁:锰)等。
3、紫外及近紫外荧光粉:主要产品为重硅酸钡:铅等黑荧光粉,发射波长在300-400nm之间,适用于制造灭蚊灯及晒图灯等。
4、长余辉荧光粉(夜光粉)5、阴极射线荧光粉6、电子粉:碳酸钙、碳酸钡、碳酸锶7、电子粉浆:混合型、共晶型、灰粉等8、灯用高纯水银(含量99.9999%)9、灯用加固剂:焦硼磷酸钙3.荧光灯荧光灯即低压汞灯,它是利用低气压的汞蒸气在放电过程中辐射紫外线,从而使荧光粉发出可见光的原理发光,因此它属于低气压弧光放电光源。
荧光灯内装有两个灯丝。
灯丝上涂有电子发射材料三元碳酸盐(碳酸钡、碳酸锶和碳酸钙),俗称电子粉。
在交流电压作用下,灯丝交替地作为阴极和阳极。
灯管内壁涂有荧光粉。
管内充有400Pa-500Pa压力的氩气和少量的汞。
通电后,液态汞蒸发成压力为0.8 Pa的汞蒸气。
在电场作用下,汞原子不断从原始状态被激发成激发态,继而自发跃迁到基态,并辐射出波长253.7nm和185nm的紫外线(主峰值波长是253.7nm,约占全部辐射能的70-80%;次峰值波长是185nm,约占全部辐射能的10%),以释放多余的能量。
荧光粉吸收紫外线的辐射能后发出可见光。
荧光粉不同,发出的光线也不同,这就是荧光灯可做成白色和各种彩色的缘由。
/lemma-php/dispose/view.php/49770.htm/question/?qid=1406060802146一、"荧光粉"发光的启示为了弄清荧光粉的化学成分,我们首先想到了荧火虫的发光,荧火虫的发光原理主要有以下一系列过程。
成光蛋白质+成光酵素含氧成光蛋白质(发出绿光)含氧成光蛋白质+H2O成光蛋白质这就是荧火虫为何能持续发光,并且光亮一闪一闪的原因,值得注意的是,荧火虫所发出的绿光是一种"冷光",其结果转化率竟达97%。
低压荧光粉材料范文低压荧光粉材料是一种常见的发光材料,广泛应用于电子显示器、荧光灯、LED等光电产品中。
它具有高亮度、低功耗、长寿命等优点,且制备工艺相对简单,成本较低。
本文将介绍低压荧光粉材料的种类、制备方法以及应用领域等方面的内容。
低压荧光粉材料主要有三种类型:硫化物型、硝酸盐型和硼酸盐型。
硫化物型荧光粉是目前应用最广泛的一种类型,因其发光亮度高、色彩饱和度好而受到青睐。
硫化物型荧光粉主要由硫化物作为主要发光成分,通常掺杂不同的稀土离子以调节发光颜色。
硝酸盐型荧光粉是一种传统的材料,具有较低的亮度和较宽的发光半高宽,但其价格相对便宜,所以在一些低要求的应用中仍有一定的市场需求。
硼酸盐型荧光粉具有较高的发光亮度和热稳定性,但由于其价格较高,应用相对较少。
低压荧光粉的制备方法主要有固相反应法、溶胶凝胶法和共沉淀法等。
固相反应法是最常用的一种制备方法,通常将所需的原料粉末按一定的摩尔比例混合均匀后进行球磨,然后以高温固相反应的方式合成。
溶胶凝胶法是一种较为复杂的制备方法,涉及到溶胶的合成、凝胶的形成和固化等多个步骤,但可以制备出颗粒均匀、纯度高的荧光粉材料。
共沉淀法通过共沉淀反应使得所需的材料溶液中的金属离子生成固体沉淀,然后通过煅烧处理制得荧光粉。
各种制备方法各有优劣,具体选择哪种方法取决于所需的荧光粉材料和制备条件。
低压荧光粉材料具有广泛的应用领域。
在电子显示器中,荧光粉被广泛应用于液晶显示器(LCD)的背光源中,通过荧光粉的发光来照亮显示屏。
在荧光灯中,磷光粉被涂覆在荧光灯管内壁上,当电流通过管内的气体时,气体电离并产生紫外线,激发磷光粉发光。
在LED中,荧光粉用于转换LED发出的蓝色光或紫外光为其他颜色的可见光,如白光。
此外,低压荧光粉材料还可用于荧光检测、荧光标记等领域。
综上所述,低压荧光粉材料是一种重要的发光材料,具有高亮度、低功耗、长寿命等优点。
根据其成分和制备方法的不同,低压荧光粉材料可分为硫化物型、硝酸盐型和硼酸盐型等类型。
红色荧光粉效率较低,成为LED用荧光粉乃至白光LED发展的瓶颈。
本文阐述了我们研制的三个系列的高效、低先衰、适用范围宽的LED用红色荧光粉。
稀土元素在这三种系列荧光粉中都发挥了重要作用。
其中硫化物系列荧光粉以二价铕作为激活剂,该荧光粉具有激发范围宽,同时呈现峰值在600nm以上的红色宽带发射,并且可根据不同的需要调节激发和发射峰值等优点。
该荧光粉的缺点是稳定性不够好,在使用过程中先衰较大。
但通过在制备过程中,添加剂的有效引及制备后期粉体的表面处理,该荧光粉的稳定性得到了很大的提高。
第二个系列红色荧光粉为稀土铝酸盐系列。
该荧光粉的特点是化学和光学性质稳定,先衰很小,发射出峰值波长大于650nm以上的深红色光,适合蓝光和橙红光激发。
第三个系列的红色荧光粉为碱土和过渡金属复合氧化物系列。
该系列荧光粉以三价铕为激活剂,在紫外、紫光或蓝光的激发下都能发射出三价铕的特征红色光谱。
该荧光粉的特点是性质稳定、发光效率高、适合紫外、紫光和蓝光激发。
发光二极管LED是一种可将电能转换为光能的能量转换器件,具有工作电压低,耗电量少,性能稳定,寿命长,抗冲击,耐震动性强,重量轻,体积小,成本低,发光响应快等优点。
因此在显示器件和短距离、低速率的光纤通信用光源等方面有广泛的应用,特别是近年来蓝色、紫色及紫外LED的迅速发展,使LED在照明领域取代白炽灯和荧光灯成为可能。
白光LED的产生有两种途径:第一种方法就是将红、绿、蓝三种LED组合产生白光;第二种方法就是用LED去激发其它发光材料混合形成白光,即用蓝光LED配合发黄光的荧光粉,或者用蓝光LED配合发绿色光和发红色光两种荧光粉,或者用紫光或紫外LED去激发红、绿、蓝三种荧光粉等。
从目前的发展趋势来看,在可行性、实用性和商品化等方面,第二种方法都远远优于第一种方法,因此合成具有良好发光特性的特殊荧光粉相当关键。
目前,采用蓝光、紫光或紫外光LED配合荧光粉产生白光的技术己经相对成熟,但可应用于LED的红色荧光粉,不是有效转换效率低,就是性质不稳定、光衰大。
列举封装形式来说明:
1.直插形式的封装,一般为了提高良品率,提高光效可以采用8-13um颗粒的荧光粉来
封装。
2.做SMD3528这种形式的封装,可以采用8-17um颗粒的荧光粉来封装,但是8um的荧
光粉封装出来的产品良品率高好控制,缺点是光效没有13um,或者说17um颗粒大的荧光粉封装出来的光效高。
如何来取得双赢呢?我们一般建议白光工程师采用13um 颗粒的来做3528形式的封装。
这样随然没有17um颗粒大的荧光粉封装出来的光效高,但也不会输给17um颗粒荧光粉所封装出来的产品太多,从生产制造的角度去考虑13um颗粒的荧光粉好控制,良品率高过17um封装出来的产品更有利于降低生产成本。
3.5050,5630,3535,这类形式的封装可以采用17um-25um类型的荧光粉来封装,因
为他载体面积大,对大颗粒的荧光粉承载完全是可以满足的,但是缺点是用大颗粒的荧光粉,容易沉淀,不好控制一致性,这需要我们采用不同的工艺,不同粘度的荧光粉胶来拌大颗粒的荧光粉。
4.大功率1W这种封装形式的产品我们一般建议白光工程师采用17-25um或者加4um的
荧光粉来改善光斑。
5.大功率集成模组,COB形式的封装,我们一般建议白光工程师采用25-30um颗粒的
荧光粉来进行封装。
原创作品,作者弘大荧光粉经销商李东平转载请注明,谢谢大家!
最近发现很多网站转载这篇文章,并未注明原创作者。
请转载尊重原创者劳动成果转载是注明。
谢谢!!!。
鸿彩荧光粉又称紫外线激发荧光粉。
是由金属(锌、镉)硫化物或稀土氧化物与微量活性剂配合,经煅烧而成,外观无色或浅白色。
是一种在紫外光(200~400nm)照射下,依颜料中金属和活化剂种类、含量的不同,而呈现出各种颜色的可见光(400~800nm)。
荧光粉包括无机、有机、长波(365nm)、短波(254nm)四种。
按激发光源的波长不同,又可分为短波紫外线激发荧光粉(激发波长为254nm)和长波紫外线激发荧光粉(激发波长为365nm)本系列产品在可见光光源下,呈现白色或接近透明色,在不同波长光源下(254nm、365nm、850nm、980nm)显现一种或多种荧光色泽,荧光粉颜色有大红、玫瑰红、紫红、橙红、蓝色、绿色、紫色、橙色、橙黄等。
技术参数吸收外来能量,发出光,而自身不变。
比重为1.36 、平均粒径≤15µm、分解温度>230℃、吸油量为56克油/100克颜料。
产品1、Z系列荧光颜料是一种能耐高温及具有高光泽的荧光颜料,最适用于塑料注塑成型,它们具有良好的耐温性和不粘模具性,在注射过程中,不会呈现有颜色粘贴在模型上。
此外它们还具有良好的色泽强度和明亮的色调,能耐温度,在各类190℃-300℃塑料中注射成型,在塑料注射加热过程中完全没有甲醛气体排放,具有高度的耐光性,适用于室外应用,安全环保。
本产品无毒无害。
在避光、干燥、常温环境下可长期储存而不影响品质和使用效果。
2、紫外防伪型荧光粉系列产品色彩种类丰富共有,各种颜色搭配,变化无穷,防伪荧光粉做成成品后光泽鲜艳,无毒环保,易分散,无颗粒。
用途广泛用于:塑料、硅胶、注塑成型、油墨、涂料、纸张涂料、纺织印花色浆、广告装潢、水性体系、儿童玩具、安全标识、体育产品等。
添加的比例在油漆中的比例:5%-10%在油墨中的比例:10%-20%产品包装10Kg /25kg/桶,同时可根客户要求包装。
全面解析:现阶段白光LED荧光粉技术∙LED照明商用化的快速发展,预计将会加大白光LED荧光粉的市场需求,在各界持续投入荧光粉的研发能量之下,目前已发展出的三大主流白光LED荧光粉,将可望因应不同应用,满足对于性能的多样性与严苛度的要求。
为控制全球温室气体排放,节约地球有限的能源资源,近年来各国制定能源政策同时,无不竞相提出“节能减碳”计划,其中白炽灯已为澳洲、欧盟以及美国加州等陆续宣布淘汰的照明设施。
发光二极管(LED)具有发热量低、耗电量小、寿命长、反应速度快、以及体积小等优点,目前全球白光LED照明产业持续蓬勃发展,尤其在手机面板背光源、照明以及汽车产业的应用更有无穷潜力。
近年来,国内外多家面板厂商已将白光LED导入作为笔记本电脑液晶显示器背光源,取代使用汞的传统冷阴极荧光灯管。
从解决环保及能源问题观点而言,白炽灯泡向来存在低能源效率与发热问题;至于含汞荧光灯,则存在汞污染的缺点,为此LED照明无疑将成为全球照明大厂全力以赴的目标。
虽然白光LED使用于民生照明还存在诸多问题亟待解决,然可预见的将来,在制造成本逐渐降低、照明应用领域陆续开发之下,未来10年内,白光LED预期将成为极具潜力的照明商品。
自1993年日本日亚化学成功开发出全球第一个商业化以氮化铟镓(InGaN)为材质的蓝、紫光LED之后,更加速以白光LED作为照明新世代的来临。
日亚化学更在1996年发表InGaN/Y3Al5O12:Ce3+(简称YAG:Ce)荧光粉的单芯片白光LED,自此全球热烈展开白光LED相关技术研发的竞逐。
日亚化学已在2007年内量产发光效率达每瓦150流明的白光LED,该公司同时表示第一阶段将先量产顺向电流20毫安的产品,此项LED发光效率堪称目前全球业界最高纪录。
目前市场上白光LED生产技术主要分为两大主流第一为利用荧光粉将蓝光LED或紫外UV-LED所产生的蓝光或紫外光分别转换为双波长(D ic hromatic)或三波长(Trichromatic)白光,此项技术称之为荧光粉转换白光LED(Phosphor Converted-LED);第二类则为多芯片型白光LED,经由组合两种(或以上)不同色光的LED组合以形成白光,目前市场上白光LED商品以蓝光LED芯片搭配黄光荧光粉最为普遍,主要应用于汽车照明与手机面板等领域,以目前白光LED产品市场分析,荧光粉转换白光LED可谓主流。
下图1简要归纳并比较多种白光LED构装原理和优劣点,其中(a)型构装方式、演色性最佳,但成本最高,尚未能普及;构装方式(b)则具有技术最成熟且成本低廉之优势,但色偏、演色性不佳,须以适当红、黄光荧光粉加以改善,此外,最严重者为日亚化学专利限制难以规避;而构装方式(c)与(d)两者所制作的白光LED演色性俱佳、色偏小、成本低且专利局限较不严重,因此未来深具发展潜力。
图1利用发光二极管产生白光的原理与优劣点三大主流白光LED荧光粉性能各有千秋自从1996年日亚化学发表InGaN/Y3Al5O12:Ce3+(简称YAG:Ce)荧光粉的单芯片白光LED,荧光粉转换白光LED技术随之成为市场主流。
荧光粉的发展则由较不安定的硫化物与卤化物,演变至化学与高温安定性较佳的铝酸盐(Aluminate)、硅酸盐(Silicate)、氮化物(Nitride)以及氮氧化物(Oxynitride)荧光材料,近期则以氮化物(Nitride)以及氮氧化物(Oxy-nitride)最为热门(表1)。
据了解,现在业界公认效率最佳产生白光的组合仍是日亚化学利用蓝光LED芯片搭配YAG:Ce黄光荧光粉,此外,欧司朗光电半导体(Osram Opto S emi conductors)所发展的黄光荧光粉TAG表现则较为逊色;另外,利用蓝光LED 芯片搭配绿色与红色的硫化物或氧化物荧光粉亦是另一种可行的选项(图1构装型式(c))。
一般业界所公认可提供白光LED使用的优质荧光粉须同时具备对LED芯片发射波长具强烈吸收与高度光→光转换效率;物理化学性质安定且无毒性,抗氧化、抗潮、不与封装树脂、芯片与金属导线产生作用;优良温度荧光淬灭特性(至少120℃以上);搭配LED的发光特性(发射波长与色度);以及粒径适中且分布范围窄、分散性良好,若过粗或过细会导致光效差等条件。
表2归纳频宽、量子效率、热安定性、化学安定性以及发光波长是否可调变等特性,比较目前市场上业界最为关注的三大类热门荧光粉的性能。
石榴石型氧化物荧光粉日本的日亚化学所揭露的专利对石榴石型氧化物荧光粉化学组成涵盖甚广,尤其在钇铝石榴石黄光荧光粉成分Y3Al5O12:Ce3+进行系统化调整,其中将Y3+以Tb3+或Gd3+加以置换或将其中Al3+以Ga3+加以置换而衍生为多系列(Y,Gd,Sm)3 (Al,Ga)5O12:Ce3+可以搭配不同蓝光波长(440~480纳米)芯片的黄橙光荧光粉。
此外为改善利用YAG:Ce系列荧光粉所制作白光LED之演色性无法与传统白光光源比较之缺失,或者色温须要调变,必要时可在荧光粉的配方中加入表1中所列举红光荧光粉,才能加以有效改善。
另一方面,Philips-Lumileds曾经采用460纳米蓝光LED搭配绿光SrGa2S4:Eu2+与红光SrS:Eu2+荧光粉,制作演色系数(Ra)82~87,且色温为3,000~6,000K 之白光LED,此为图1中构装方式(c)之实施例。
近年来,由于近紫外(390~410纳米)与紫外光(365~385纳米)LED芯片的技术逐渐成熟,并顺利量产,以图1中构装方式(d)制作白光LED已经逐渐成熟。
尤其全球光电大厂如德国欧司朗光电、日本日亚化学与丰田合成(Toyada-Gosei)、美国Philips-Lumileds与Cree等多家公司无不积极投入。
值得注意的是美国Cree已生产出50毫瓦的385~405纳米紫外光LED;日亚已量产365、375与385纳米波长LED与其生产白光LED 的Ra值已≧90,具有高效率、高Ra值与多重色温的白光LED照明时代已指日可期。
硅酸盐荧光粉硅酸盐荧光粉的发展源自1940年代初期美国通用(GE)的Zn2SiO4:Mn2+,历经(Sr, Ba,Mg)3Si2O7:Pb2+(1949)、BaSi2O5:Pb2+ (1960)、Sr4Si3O8Cl4:Eu2+(1967)、BaSi2O5:Pb2+(1960)等多种材料的发展,至1998年(Ba,Si)2SiO4:Eu2+的发现之后,硅酸盐荧光粉在白光LED的应用进展神速,如今已有多种可用于白光LED的材料,表3列举并比较常见的硅酸盐荧光粉的光谱特性。
目前主要硅酸盐荧光粉的重要专利仍为丰田合成、日亚化学、欧司朗光电半导体等公司所拥有。
在荧光粉转换白光LED的制作上,硅酸盐为另一种重要新选择,因该材料具有对紫外、近紫外、蓝光具有显著的吸收;在所有黄光荧光体中,具有最高辉度值;输出量子效率高于90%,并仍有改善空间;量产制备成本低廉;在紫外LED应用时,具有高温度稳定性(至少120℃以上);具有具物理(如高强辐射)与化学稳定性,抗氧化、抗潮、不与封装树脂作用;以及可搭配紫外/蓝光芯片,可供制作各种色温的白光LED的条件。
图2(a)与(b)分别显示具有高度弹性激发频宽的硅酸盐荧光粉激发光谱和Sr2+掺杂量对(Ba1-XSrX)2SiO4:Eu2+硅酸盐荧光体发光波长的效应。
上述光谱学特性显示(Ba1-XSrX)2SiO4:Eu2+荧光粉之独特性,也说明为何硅酸盐荧光粉成为目前业界制作白光LED的热门材料之一。
∙图2(a)有弹性激发频宽的硅酸盐荧光粉激发光谱、(b) Sr2+掺杂量对(Ba1-XSrX)2SiO4:Eu2+硅酸盐荧光体发光波长之效应。
荧光粉的热消光(Thermal Quenching Of Luminescence)或温度安定性素来为散热问题所困扰的高功率白光LED所重视的,图3显示德国公司Litec的Roth 博士针对(Ba1-XSrX)2SiO4:Eu2+硅酸盐与YAG:Ce荧光粉热消光特性的比较,研究结果显示两种荧光粉的热安定性不分轩轾,但在120℃以上时,硅酸盐之热消光较为明显,此项特性值得注意。
∙图3 (Ba1-XSrX)2SiO4:Eu2+硅酸盐与YAG:Ce荧光粉热消光特性之比较氮化物与氮氧化物荧光粉1980年代,金属氮(氧)化物早期多作为结构或功能性陶瓷使用,其在白光LED的应用直至近几年才开始被注意,目前全世界氮化物与氮氧化物荧光粉的领先者主要为荷兰Technical University of Eindhoven、日本National Inst itu te for Materials Science(NIMS)、日本三菱化学公司、日本Ube工业与欧司朗光电半导体等单位,虽然氮化物或氮氧化物荧光粉的制程通常需要高温、高压的条件,但本项荧光粉由于具有诸多特点得以展现在白光LED应用的潜力,包括多样化的晶体结构与化学组成,发光波长可调变;相当物理与化学稳定特性;可供紫外、近紫外或蓝光激发;荧光发射光谱具有极大的波长红位移;极小的温度荧光淬灭效应(至少>120℃);具有高度共价性键结(窄能隙),呈现强烈电子云扩散效应与晶场分裂效应;以及具有高度凝聚阴离子网状晶体结构,减弱温度对荧光淬灭效应等。
由于LED照明组件要求高演色性与安定性,氮化物与氮氧化物较氧化物拥有共价结构所衍生较强的电子云扩散(Nephelauxetic)效应,因而此种系列的白光LED用荧光粉逐渐被重视。
德国欧司朗光电半导体早在1999年于欧盟欧洲专利办公室(European Patent O ff ice)提出申请红黄光(Ca,Sr,Ba)xSiyNz:Eu氮化物荧光粉相关专利,其中可应用于蓝光与紫外光LED的SrzSi5N8:Eu与SrSi7N10:Eu均属之。
日本国际化学材料协会(National Institute for Materials Science, NIMS)于2001年提出申请能产生多光色的Cax(Eu, Tb,Yb,Er)y(Si,Al)12(O,N)16、高发光效率的氮氧化物荧光粉专利,此种材料涵盖掺杂各种稀土离子(如Eu2+、Ce3+、Dy3+、Eu3+与Mn2+)的橘黄光Ca-α-SiAlON以及绿光MSi2N2O2:Eu2+等荧光材料除了目前较热门氮化物CaAlSiN3与氮氧化物SrSi2O2N2:之外,最近日本三菱化学公司多位研究人员建议以橘光(Sr,Ca)AlSiN3:Eu2+氮化物可以搭配绿光CaSc2O4:Ce3+或Ca3(Sc,Mg)2Si3O12:Ce3+作为一般照明使用;而该公司所研发新颖绿光氮氧化物Ba3Si6O12N2:Eu可取代CaSc2O4:Ce3+氧化物并与搭配橘光CaAlSiN3:Eu2+氮硅化物,以应用于液晶面板背光源,上述建议的原理系以高亮度和高演色性作为照明与显示最大的区别。