平移与旋转复习案
- 格式:doc
- 大小:746.50 KB
- 文档页数:3
《第23章 旋转》复习学案 NO :32班级_______姓名_______小组_______评价_______一、学习目标1、通过自主复习,清理本章所学知识,使知识系统化、条理化;2、掌握图形的旋转变换、中心对称(图形)的性质、用坐标表示旋转及在作图、计算上的应用;二、自主复习1、知识点整理复习⎧⎫⎪⎪⎧⎪⎪⎪⎪⎪⎨⎨⎬⎪⎪⎪⎩⎪⎪⎪⎪⎩⎭平移中心对称图形几何变换旋转中心对称图形设计关于原点对称的点的坐标轴对称 3、知识点清理(清理完毕后小声读三遍)(1)在同一平面内,把一个图形绕着_____转动_________的图形变换叫做旋转;________、_____________、____________是它的三要素;其性质有:①对应点到旋转中心的距离__________;②对应点与旋转中心的连线构成的夹角等于__________;③旋转前后的图形_________,对应线段_________,对应角___________。
(2)把一个图形绕着某一点旋转_______,如果它能够与另外一个图形________,那么这两个图形关于这一点成中心对称。
把一个图形绕着某一点旋转_______,如果它能够与自身________,那么这个图形叫做中心对称图形。
中心对称的性质:①关于中心对称的两个图形______;②关于中心对称的两个图形,对称点的连线都经过________,并且被________平分;③关于中心对称的两个图形,对应线段_________,对应角___________。
它们的区别是:中心对称是指_____个图形的关系,而中心对称图形是指_____个图形。
它们的联系是:如果把中心对称的两个图形看成一个整体,那么这个图形的整体就是一个中心对称图形。
(3)关于x 轴对称的两个点坐标关系是:横坐标_______,纵坐标____________;关于y 轴对称的两个点的坐标关系:横坐标____________,纵坐标__________;关于原点对称的两个点坐标关系是:横坐标____________,纵坐标_____________。
旋转对称图形学习目标1、通过具体实例认识旋转对称图形;2、探索图形之间的变换关系;3、灵活运用轴对称、平移和旋转的组合进行图案设计。
重点:认识旋转对称图形。
难点:综合运用变换解决有关问题。
一.课前准备1、如果一个图形绕着某一定点旋转一定的角度后能与自身,那么这个图形就叫做。
2、请说出数学中你熟悉的三个旋转对称图形(1)、(2)、(3) ,并回答分别至少旋转多少度后能与自身重合。
3、旋转任意角度都能与自身重合的图形是。
1、如下图(1)、(2),请问:(1)它们是不是旋转对称图形?(2)若是,旋转中心在何处,需要旋转多少度后,能与自身重合?(3)它们是轴对称图形吗?(1)(2)2、如右图,画△ABC和过点P的两条直线PQ、PR。
画出△ABC关于PQ对称的三角形△A′B′C,再画出△A′B′C关于PR对称的三角形△A′′B′′C′′.观察△ABC和△A′′B′′C′′,你能发现这两个三角形有什么关系吗?三.课堂检测1、观察下列图形,其中不是旋转对称图形的有( )(1) (2) (3) C (4) X2、如下图,它们绕哪一个点至少旋转多少度能与自身重合?(右图考虑颜色)3、请尝试设计一个至少旋转720后能与自身重合的图形.4、如图所示的两个图形是不是轴对称图形?如果是,请画出对称轴.这两个图形能不能经过旋转与自身重合?如果能,分别需要旋转多少度?四、总结提升1、说出你本节课的收获;2、请在下列正方形网格中,以右图为基本图案,借助轴对称、平移或旋转(至少含两种)设计一个完整的花边图案。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in ourbusy schedule. We proofread the content carefully before the release ofthis article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
课时22.图形的对称、平移与旋转【课前热身】1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.24.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD =10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部B.外部C.边上D.以上都有可能【知识梳理】1.轴对称(1)轴对称和轴对称图形:①轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.②轴对称:对于两个图形,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称称点.(2)轴对称的性质①对应线段__ ___,对应角__ ___.②对应点所连的线段被对称轴___ ______.③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.中心对称(1)中心对称与中心对称图形①中心对称:在平面内,一个图形绕某一个点旋转180°后能与另一个图形重合,则这两个图形关于这个点成中心对称,这个点叫做这两个图形的对称中心.②中心对称图形:在平面内,一个图形绕某个点旋转 __ ___,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2)中心对称图形的性质中心对称图形上的每一对对应点所连成的线段都被对称中心平分.3.图形的平移(1)定义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.(2)平移的性质①平移不改变图形的____________,即平移前后两图形是全等的.②经过平移,对应线段____________,对应角相等,对应点所连接的线段____________.③平移的条件:平移的方向、平移的距离.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为_________,转动的角称为_______.(2)旋转的性质①旋转不改变图形的____________,即平移前后两图形是全等的.②经过旋转,图形上的每一点都绕__________沿相同方向转动了____________.任意一对对应点与旋转中心的连线所成的角都是_______,对应点到旋转中心的距离_____.③旋转的三要素:旋转中心、旋转方向、旋转角度.【例题讲解】例1 如图,方格纸中有三个点A、B、C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.例2如图,在直角坐标系中,A(-l,5),B(-3,0),C(-4,3).(1)在直角坐标系中作出△ABC关于y轴对称的△A′B′C′,并相应写出△A′B′C′三个顶点的坐标.(2)在直角坐标系中作出△ABC关于原点对称的△DEF,并相应写出△DEF三个顶点的坐标.(3)如果△ABC中任意一点M的坐标为(x,y),那么它在△A′B′C′的对应点M′的坐标是________;在△DEF的对应点N的坐标是________.例3如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC = a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a =150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【中考演练】1.如图,半圆A和半圆B均与y轴相切于点O,其直径CD、EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C、E和点D、F,则图中阴影部分的面积是____.2.如图,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6.将纸片折叠,使点B与点D 重合,折痕为AE,则CE=__ __.第1题第2题第4题3.如图是三种化合物的结构式及分子式,则按其规律第5个化合物的分子式为___ ___.4.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_ ___个.5.如图,在平面直角坐标系中,对△ABC进行循环反复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2020次变换后所得的A点坐标是____ ___.6.将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是_ ____.7.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为_ ___cm2.8.如图,阴影部分为2m宽的道路,则余下的部分面积为__ __m2.第7题第8题9.如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的面积均为3,那么阴影部分的面积是__ __.10.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为____cm. 11.如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为__ __.第9题第10题第11题12.下列图形中既是轴对称图形又是中心对称图形的是( )13.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是( )A.6B.12C.24D.3014.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )15.下列图案中,不能由一个图形通过旋转而构成的是( )16.如图,在平行四边形ABCD中,AE⊥BC,垂足是E,现将△ABE进行平移,平移方向为射线AD的方向,平移的距离为线段BC的长,则平移后得到的图形为( )17.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.18.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2)将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.。
15.1.1图形的平移◆随堂检测1、下列几种运动属于平移的是()(1)水平运输带上的砖的运动;(2)啤酒生产线上的啤酒通过压盖机前后的运动;(3)升降机上下做机械运动;(4)足球场上足球的运动A.一种 B.两种 C.三种 D.四种2、下列图形中,由原图平移得到的图形是()原图 A. B. C.D.3、在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A. B. C . D.4、如图所示,△ABC平移后成为△EFB,下列说法正确的个数有:()①线段AC的对应线段是BE;②点B的对应点是点C;③点B的对应点是点F;④平移的距离是线段CF的长度。
A1个B2个C3个D4个5、卷帘门上有A、B两点,(B点在A点下方)当A点向上移1m,那么B点向移动了 m。
O平移到了点o ,你能作出平移后的圆吗?O ∙ O '◆ 典例分析ABC ∆平移后得到△DEF ,如图所示,若∠A=80O ,∠E=60O ,你知道∠C 的度数吗?说明理由。
◆课下作业●拓展提高1、火车在笔直的铁路上开动,火车头以100千米/时的速度前进了半小时,则车尾走的路程是( )A 、100千米B 、50千米C 、200千米D 、无法计算2、将线段AB 平移1cm,得到的线段是A /B /,则A 到点A /的距离是 。
3、如图所示,在等边三角形ABC 中,D 、E 、F 分别是边BC 、AC 、AB 的中点,图中有两个小等边三角形,其中△FBD 可以看成是由△AFE 平移而得到,则平移的方向是 ,平移的距离为 。
4、△DEF 是把△ABC 水平向左平移3.5cm 得到,你能作出△ABC 吗?DE F5、如图所示,长方形ABCD ,对角线AC,BD 相交于O,DE ∥AC,CE ∥BD,那么△EDC 可以看作由 平移得到的,平移的距离是线段 的长度。
●体验中考1、(2009年广东广州)将图1所示的图案通过平移后可以得到的图案是( )2、(2009年青海)如图,请借助直尺按要求画图: (1)平移方格纸中左下角的图形,使点1P 平移到点2P 处. (2)将点1P 平移到点3P 处,并画出将原图放大为两倍的图形.15.1.2平移的特征◆随堂检测1、在下面的六幅图案中,平移(1)可得到(2)、(3)、(4)、(5)、(6)中的哪个图案?2、在下列说法中,①四边形在平移过程中,对应线段一定相等;②四边形在平移过程中,对应线段一定平行;③四边形在平移过程中,周长不变;④四边形在平移过程中,面积不变,、其中正确的是:( )A 、①②③B 、①②③④C 、②③④D 、①③④ 3、平移不改变图形的 和 ,只改变图形的4、小明把自己的左手手印和右手手印按在同一张白纸上,左手手印 (填能或不能)通过平移与右手手印完全重合。
平移与旋转--知识讲解【学习目标】1.理解平移、旋转的基本概念,掌握平移、旋转的基本特征,并能利用平移与旋转的性质进行证明有关问题;2.知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计;理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3.能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、平移1.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.2.(•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______.【答案】25°【解析】∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△A′B′C′.则有AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,∠C=∠C,∠B=∠B′.举一反三:【变式】(•临淄区一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20;解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+A C=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.类型二、旋转的概念及性质3.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6)AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5)四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、 OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示4.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型三、旋转的作图5. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心;⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.6.(•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).【思路点拨】(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可. 【答案与解析】解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,由勾股定理得,BC=222+3=13,线段BC 旋转过程中所扫过得面积S=π21134⨯()=.【总结升华】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 举一反三【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.【答案】(∠AOA′=∠BOB′=∠COC′=100°)平移与旋转--巩固练习【巩固练习】一、选择题1.如图所示的图形中的小三角形可以由△ABC平移得到的有 ( )A.3个 B.4个 C.5个 D.6个2.(•株洲)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.下面生活中的物体的运动情况可以看成平移的是().(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).A.(1)(3) B.(4)(5) C.(3)(5) D.(2)(6)4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m26.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二、填空题7.(春•博野县期末)图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.8.如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.9.(•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.10.(春•新化县期末)钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_______度.11.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于__________度.12.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.三.解答题13.如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.14.(吉安校级期中)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.15.如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【答案与解析】一、选择题1.【答案】C ;【解析】图中小三角形△BDE ,△CEF ,△DGH ,△EHI ,△FIJ 都可以由△ABC 平移得到.2.【答案】B ;【解析】解:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C +∠ACB′=∠B+∠ACB′=60°.故选B .3.【答案】D ;【解析】(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).故选D.4.【答案】B ;【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心.5.【答案】B ;6.【答案】B ;【解析】因为△BCE 旋转90°得到△DCF ,所以EC=CF,∠CFD=∠CEB=60°,即∠EFC=45°,所以∠EFD=60°-45°=15°.二、填空题7.【答案】①③④⑤⑥;【解析】解:由图形平移的性质,知图形在平移时,其特征不发生改变的有①③④⑤⑥.8.【答案】ABC , A ′B ′C ′,平行,平行;【解析】平移的性质.9.【答案】42;【解析】解:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.10.【答案】120°;【解析】2036012060⨯︒=︒.11.【答案】105°;【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.12.【答案】等边三角形;【解析】因为△ABC旋转60°得到△''ABC,则AB= AB′,∠BAB′=60°,所以是等边三角形.三、解答题13.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.14.【解析】解:(1)如图1所示过点B作BC⊥OA,垂足为C.∵△OAB为等边三角形,∴∠BOC=60°,OB=BA.∵OB=AB,BC⊥OA,∴OC=CA=1.在Rt△OBC中,,∴BC=.∴点B的坐标为(1,).(2)如图2所示:∵点B1与点A1的纵坐标相同,∴A1B1∥OA.①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B的坐标为(1,2),∴点B1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).15.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).。
第五课时:平移和旋转(新授课)【学习内容】:平移和旋转——旋转现象北师大版小学数学三年级下册第18~20页及21页“数学游戏”。
【学习目标】:1.学生能按照课本实例联系生活经验,感知旋转现象,并会区别平移和旋转现象。
2.能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3.经历观察、想象等过程,发展推理能力,并能有条理的阐述自己的观点。
【学习重难点】:能够区别平移和旋转现象;能在方格纸上画出一个简单图形沿水平方向和竖直方向平移后的图形。
【学习准备】:多媒体课件有关旋转运动的视频,自制小风车。
【课型】:新授课。
【知识链接】:上一节已学习平移现象,本节的知识是结合一些生活经验,如:缆车滑行、国旗徐徐上升、直升机螺旋桨的旋转以及小风车旋转等基础上理解。
【学法指导】:通过已有生活经验,利用学具认识理解旋转现象。
【学习过程】:一、自主学习。
(20分钟)(一)温故知新。
(布置学生课前预习 3分钟)1.什么是旋转现象,你能举出生活中哪些物体的运动是旋转运动?2.怎样区别平移和旋转现象?(鼓励学生用自己的语言表述)(二)交流感知、互助释疑。
(阅读课本第18、19页,小组内完成下列任务。
9分钟)1.平移和旋转的概念。
什么样的运动是旋转呢?物体以一个点或一个轴为中心进行圆周运动,就可以看作是旋转现象。
(可举例说明)2.平移和旋转的特点。
(对比得出结论)平移的特点:做直线运动。
旋转的特点:做圆周运动3.学生试着用学具做旋转动作。
(小组内换多种学具演示)(三)探究出招,合作求解。
(小组讨论交流答疑解惑后集体反馈 8分钟)1.学生结合上面三个问题,小组内探索交流,探索平移和旋转两种现象的区别与联系,集体反馈时教师要加强对学生语言组织能力的指导。
2.学生结合上面问题,小组合作,完成小黑板显示题目。
借助多种图形练习平移和旋转运动。
二、课堂作业。
(18分钟)(先独立答题,组内交流,整体性的疑惑应集中解决。
)(一)作业当堂清。
《图形的平移与旋转》全章复习与巩固(提高)巩固练习【巩固练习】 一、选择题1.轴对称与平移、旋转的关系不正确的是( ).A .经过两次翻折(对称轴平行)后的图形可以看作是原图形经过一次平移得到的B .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过一次平移得到的C .经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D .经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过一次平移得到的 2.在旋转过程中,确定一个三角形旋转的位置所需的条件是( ). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A .①②④ B .①②③ C .②③④ D .①③④3.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( ).A B C D4.(2016·株洲)如图,在△ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 顺时针方向旋转后得到△A ’B ’C ’,若点B ’恰好落在线段AB 上,AC 、A ’B ’交于点O ,则∠COA ’的度数是( )A .50°B .60°C .70°D .80°5.如图,把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处, 若90FPH =o∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ). A.20 B.22 C.24 D.30第4题 第5题6.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼 成如下图的一座“小别墅”,则图中阴影部分的面积是( ). A .2 B .4 C .8 D .107. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ).A.6π B.3π C.16π+ D.18.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE. 过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( ). A .①③④ B .①②⑤ C .③④⑤ D .①③⑤二、填空题9. 如图,图B 是图A 旋转后得到的,旋转中心是 ,旋转了 .10.在Rt ∆ABC 中,∠A <∠B,CM 是斜边AB 上的中线,将∆ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.第9题第10题第12题11.(2016•大连)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .12. 如图,正方形ABCD经过顺时针旋转后到正方形AEFG的位置,则旋转中心是,旋转角度是度.13. 时钟的时针不停地旋转,从上午8:30到上午10:10,时针旋转的旋转角是 .14. 如图所示,可以看作是一个基本图形经过次旋转得到的;每次旋转了度.15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是 .16.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a=_________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是_________(用含n的代数式表示).三、解答题17. 如图,在正方形ABCD中,F是AD的中点,E是BA延长线上一点,且AE=12 AB.①你认为可以通过平移、轴对称、旋转中的哪一种方法使△ABF变到△ADE的位置?若是旋转,指出旋转中心和旋转角.②线段BF和DE之间有何数量关系?并证明.18.阅读:我们把边长为1的等边三角形PQR沿着边长为整数的正n(n>3)边形的边按照如图1的方式连续转动,当顶点P回到正n边形的内部时,我们把这种状态称为它的“点回归”;当△PQR回到原来的位置时,我们把这种状态称为它的“三角形回归”.例如:如图2,边长为1的等边三角形PQR的顶点P在边长为1的正方形ABCD内,顶点Q与点A重合,顶点R与点B重合,△PQR沿着正方形ABCD的边BC、CD、DA、AB…连续转动,当△PQR连续转动3次时,顶点P回到正方形ABCD内部,第一次出现P的“点回归”;当△PQR连续转动4次时△PQR回到原来的位置,出现第一次△PQR的“三角形回归”.操作:如图3,如果我们把边长为1的等边三角形PQR沿着边长为1的正五边形ABCDE的边连续转动,则连续转动的次数k= 时,第一次出现P的“点回归”;连续转动的次数k= 时,第一次出现△PQR的“三角形回归”. 猜想:我们把边长为1的等边三角形PQR 沿着边长为1的正n (n >3)边形的边连续转动, (1)连续转动的次数k= 时,第一次出现P 的“点回归”; (2)连续转动的次数k= 时,第一次出现△PQR 的“三角形回归”;(3)第一次同时出现P 的“点回归”与△PQR 的“三角形回归”时,写出连续转动的次数k 与正多边形的边数n 之间的关系.19.(2015春•凉山州期末)如图,长方形ABCD 在坐标平面内,点A 的坐标是A (2,1),且边AB 、CD 与x 轴平行,边AD 、BC 与x 轴平行,点B 、C 的坐标分别为B (a ,1),C (a ,c ),且a 、c 满足关系式c=++3.(1)求B 、C 、D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?平移后点B 、C 、D 的对应分别为B 1C 1D 1,求四边形OB 1C 1D 1的面积;(3)平移后在x 轴上是否存在点P ,连接PD ,使S △COP =S 四边形OBCD ?若存在这样的点P ,求出点P 的坐标;若不存在,试说明理由.20. 如图,P 是等边三角形ABC 中的一点,PA =2,PB =32,PC =4,求BC 边得长是多少?【答案与解析】 一.选择题 1.【答案】B.【解析】A 、多次平移相当于一次平移,故正确;B 、必须是对称轴有偶数条且平行时,才可以看作是原图形经过一次平移得到的,故错误;C 、一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换,故正确;D 、对称轴有偶数条且平行时,可以看作是原图形经过一次平移得到的,故正确. 故选B . 2.【答案】A. 3.【答案】B.BP4.【答案】B.【解析】解:由题意知:∠A=90°-50°=40°,由旋转性质可知:∴BC=B C′,∴∠B=∠BB ’C=50°,∵∠BB ′C =∠A +∠ACB ’=40°+∠ACB ’, ∴∠ACB ’=10°,∴∠COA ’=∠AOB ’=∠OB ’C+∠ACB ’=∠B+∠ACB ’=60°. 故选B .5.【答案】C.【解析】Rt △PHF 中,有FH=10,则矩形ABCD 的边BC 长为PF+FH+HC=8+10+6=24,故选C . 6.【答案】B.【解析】阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4. 故选B .7. 【答案】B.【解析】阴影部分的面积等于扇形DAB 的面积,首先利用勾股定理即可求得AB 的长,然后利用扇形的面积公式即可求得扇形的面积.8.【答案】D.【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积;④S △APD +S △APB = S △AP E +S △EPB =12. 二.填空题 9.【答案】X ;180°.【解析】观察图形中Z 点对应点的位置是图A 绕旋转中心X 按逆时针旋转180°得到的.故答案为:X ;180°.10.【答案】30°.【解析】解法一、在Rt △ABC 中,∠A <∠B∵CM 是斜边AB 上的中线, ∴CM=AM , ∴∠A=∠ACM ,将△ACM 沿直线CM 折叠,点A 落在点D 处 设∠A=∠ACM=x 度, ∴∠A+∠ACM=∠CMB , ∴∠CMB=2x ,如果CD 恰好与AB 垂直 在Rt △CMG 中, ∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD=∠BCD=∠ACM=30°根据CM=MD,得到∠D=∠MCD=30°=∠A∠A等于30°.解法二、∵CM平分∠ACD,∴∠ACM=∠MCD∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°11.【答案】2.12.【答案】A,45.【解析】∵正方形ABCD经过顺时针旋转后得到正方形AEFG,∴旋转中心为点A,旋转角为∠CAD,∵AC是正方形ABCD的对角线,∴∠CAD=45°,∴旋转角为45°.故答案为:A,45.13.【答案】50°.【解析】从上午8:30到上午10:10,共1个小时40分钟;时针旋转了536圆周,故旋转角的度数是50度.故答案为:50°.14.【答案】3;90.【解析】如图所示的图形可以看作按照逆时针(或顺时针)旋转3次,且每次旋转了90°而成的.故答案是:3;90.15.【答案】6.【解析】如图,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG=4,再根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.16.【答案】(1)a=2,(2)3n+1.【解析】根据正半轴上的整数与圆周上的数字建立的这种对应关系可以发现:圆周上了数字0、1、2与正半轴上的整数每3个一组012;345;678…分别对应.三.解答题17.【解析】解:(1)可以通过旋转使△ABF变到△ADE的位置,即把△ABF以A点为旋转中心,逆时针旋转90°可得到△ADE;(2)线段BF和DE的数量关系是相等.理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠EAD,∵F是AD的中点,AE=12 AB,∴AE=AF,∴△ABF以A点为旋转中心,逆时针旋转90°时,AB旋转到AD,AF旋转到AE,即F点与E点重合,B点与D点重合,∴BF与DE为对应线段,∴BF=DE.18.【解析】解:操作:3,5.猜想:(1)第一次点回归,连续转动的次数都是3次,故填3;(2)第一次出现△PQR的“三角形回归”,连续转动的次数就是多边形的边数,故填n;(3)当n不是3的倍数时,k=3n,当n是3的倍数时,k=n.19.【解析】解:(1)由题意得,a﹣6≥0且6﹣a≥0,所以,a≥6且a≤6,所以,a=6,c=3,所以,点B(6,1),C(6,3),∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,∴点D(2,3);(2)∵平移后A点与原点重合,∴平移规律为向左2个单位,向下1个单位,∴B1(4,0),C1(4,2),D1(0,2);(3)平移后点C到x轴的距离为2,∵S△COP=S四边形OBCD,∴×OP×2=4×2,解得OP=8,若点P在点O的左边,则点P的坐标为(﹣8,0),若点P在点O的右边,则点P的坐标为(8,0).综上所述,存在点P(﹣8,0)或(8,0).20.【解析】解:如图,将△ABP绕点B逆时针旋转60°得△BCQ,连接PQ.再过B作CQ的延长线的垂线BD,垂足为D,∴BQ=PB=23,∠PQB =60°,∴△PBQ是等边三角形,∴PQ=PB=23,∠QPC=60°.在△PCQ中,∵CQ=PA=2,,PQ=23,PC=4,∴CQ2+ PQ2=PC2,∴∠PQC=90°,∴∠CQB=∠PQB+∠PQC=150°,∴∠BQD=30°.在Rt△BQD中,BD=12BQ=3,QD=3,则CD=5.在Rt△BCD中,BC=32527+=.。
四年级下册数学教案平移与旋转北京版 (6)课题名称平移与旋转课时安排2课时教学目标1.能够熟练地进行图形的平移、旋转,掌握平移、旋转的基本概念,能灵活运用于实际生活中。
2.发现数学中的规律性,并学会用数学的方法去解决这些规律中的问题。
3.学会尊重每一个人的差异性,学会用合作的方式去解决问题。
教学重点1.平移的概念和实现方法。
2.旋转的概念和实现方法。
教学难点1.学生对于平移和旋转的概念是否能够理解。
2.学生能否在实践中进行平移和旋转。
教学过程教学准备教师准备挂图、黑板、粉笔等教学用具。
导入教师出示一个图形,并让同学们找出其中的规律。
然后请学生们说出这个图形的特征,最后让他们来完成这个图形的变换。
讲解接下来,教师向同学们讲解平移和旋转的概念。
讲解后将现实中与之相似的物体拿出来,让学生学会观察。
演示接着,教师将一个图形拿出来,向同学们演示如何进行平移。
将其中的注意事项对于同学们则需加以解释。
然后让同学们自行实践一下。
练习训练大约10分钟左右。
这一环节里面要求同学们交流,梳理经验并与他们的小伙伴们一起讨论问题。
达成在此环节,教师要更加注重差异化课程的教法。
比如说,有的同学能掌握旋转及平移的方法,而有些同学则掌握不了。
对于这些能力学习差异化的同学,教师要采用潜在利益的培训方法,使他们可以逐渐接近同学的标准。
教学评估1.学生能否准确地理解平移和旋转的概念。
2.学生能否用正确的方法进行图形的平移或旋转。
3.学生们上课时是否积极参与互动式教学模式。
课后作业完成相应的习题,并针对自己在上课时存在的问题进行反思。
教学反思这次教学主要是想让同学们掌握平移和旋转的方法,能够用正确的方式进行操作。
在教学过程中,我觉得学习的实效性很好。
在展示如何进行图形的平移和旋转之前,我先向同学们讲解了什么是平移,什么是旋转,以及它们的运作原理。
在学生们掌握了这些基础知识之后,我再通过实例剖析将它们运用到实际中。
实践中,同学们的进步速度还是很快的。
人教版数学二年级下册第三单元(第二课时)《平移和旋转》教案一、教学目标1.了解平移和旋转的基本概念。
2.掌握平移和旋转的操作方法。
3.能够在坐标系中进行简单的平移和旋转操作。
4.培养学生观察问题、分析问题、解决问题的能力。
二、教学重点1.平移的概念。
2.平移的操作方法。
3.旋转的概念。
4.旋转的操作方法。
三、教学内容1.什么是平移?–平移是指一个图形在平面上沿着一定的方向按照一定的距离移动。
–平移后图形的位置改变,但形状和大小不变。
2.平移的操作方法:–沿着给定的方向和距离将图形移动。
3.什么是旋转?–旋转是指一个图形围绕一点或一条线旋转一定的角度。
–旋转后图形的位置、形状和大小都不变。
4.旋转的操作方法:–确定旋转中心和旋转角度,绕着旋转中心把图形转动指定的角度。
四、教学过程1.导入新知识:–让学生观察周围的图形,引导他们思考图形的移动和旋转。
2.学习平移:–通过教师示范和学生操作,让学生了解平移的概念和操作方法。
–让学生在纸上进行简单的平移练习。
3.学习旋转:–通过教师示范和学生操作,让学生了解旋转的概念和操作方法。
–让学生在纸上进行简单的旋转练习。
4.拓展练习:–提供更多复杂的图形,让学生进行平移和旋转操作。
5.总结归纳:–让学生总结平移和旋转的共同点和不同点。
五、教学反思1.教师在教学过程中要注意引导学生进行思维训练,培养他们解决问题的能力。
2.学生在进行平移和旋转操作时要注意动作的准确性,确保操作正确。
3.针对不同水平的学生,教师可以提供不同难度的练习,以满足各个学生的学习需求。
以上是本节课的教案内容,希望老师们能够根据实际情况对教案进行调整和完善,以便更好地引导学生学习平移和旋转的知识。