2011—2017年新课标全国卷1理科数学分类汇编——7.不等式、推理与证明
- 格式:doc
- 大小:467.50 KB
- 文档页数:4
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等9 个省份选择使用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数学卷最后一年使用),大陆其他省区全部使用全国卷.研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考2018 年高考,本人认真研究近7 年新课标高考全国Ⅰ卷理科数学和高考数学考试说明,将2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语 (2)2.函数与导数 (3)3.三角函数、解三角形 (7)4.平面向量 (10)5.数列 (11)6.不等式、推理与证明 (13)7.立体几何 (14)8.解析几何 (18)9.统计、概率分布列、计数原理 (23)10.复数及其运算 (30)11.程序框图 (31)12.坐标系与参数方程 (33)13.不等式选讲 (36)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.102.函数与导数一、选择题【2017,5】函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1 ,则满足-1 ≤f (x - 2) ≤1的x 的取值范围是()A.[-2, 2]B.[-1,1]C.[0, 4] D.[1, 3]【2017,11】设x, y, z 为正数,且2x = 3y = 5z ,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数y =2x2 -e x 在[-2,2] 的图像大致为()A.B.C.D.【2016,8】若a >b >1,0 <c <1,则()A.a c <b c B.ab c <ba c C.a logb c <b logac D.logac <logbc【2015,12】设函数f (x) = e x (2x -1) -ax +a ,其中a <1,若存在唯一的整数x ,使得f (x ) < 0 ,00则a 的取值范围是()A.⎡-3,1⎫B.⎡-3,3 ⎫C.⎡3,3 ⎫D.⎡3,1⎫ ⎣⎢2e⎪ ⎢2e 4 ⎪ ⎢2e 4 ⎪ ⎢2e ⎪⎭⎣ ⎭ ⎣⎭⎣ ⎭【2014,3】设函数f (x) ,g(x) 的定义域都为R,且f (x) 是奇函数,g(x) 是偶函数,则下列结论正确的是()A .f (x) g(x) 是偶函数B .| f (x) | g(x) 是奇函数C .f (x) | g(x) |是奇函数D .| f (x) g(x) |是奇函数【2014,11】已知函数f (x) = ax3 - 3x2 +1 ,若f (x) 存在唯一的零点x ,且x >0,则a 的取值范围为0 0A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)⎧-x2 + 2x,x ≤ 0,【2013,11】已知函数f(x)=⎨⎩ln( x+1),x > 0.若|f(x)|≥ax,则a 的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数f ( x) =1,则y =f (x) 的图像大致为()A.B.D.【2012,12】设点P 在曲线y =1e x 上,点Q 在曲线y = ln(2x) 上,则| PQ |的最小值为()2A.1- ln 2B- ln 2)C.1+ ln 2D+ ln 2)【2011,12】函数y =1x -1的图像与函数y =2s in πx(-2 ≤x ≤ 4) 的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y =x3B.y = x +1C.y =-x2 +1D.y = 2-x【2011,9】由曲线y =,直线y =x - 2 及y 轴所围成的图形的面积为()A.103二、填空题B.4 C.163D.6【2017,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F 为圆O 上的点,△DBC,△ECA,△F AB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△F AB,使得D,E,F 重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【2015,13】若函数f(x)=x ln(x a=【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2 对称,则f(x)的最大值为.三、解答题【2017,12】已知函数f (x)=ae2 x +(a -2)e x -x .(1)讨论f ( x) 的单调性;(2)若f ( x) 有两个零点,求a 的取值范围.【2016,12】已知函数f (x) = (x -2)e x +a(x -1)2 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x1 , x2 是f (x) 的两个零点,证明:x1 +x2 < 2 .【2015,12】已知函数f ( x) =x3 +ax +1,g(x) =-l n x .4(Ⅰ)当a 为何值时,x 轴为曲线y =f (x) 的切线;(Ⅱ)用min{m, n} 表示m, n 中的最小值,设函数h(x) = min{ f (x), g(x)} (x > 0 ),讨论h(x) 零点的个数.【2014,21】设函数f ( x0 =ae x ln x +be x-1,曲线y =f (x) 在点(1,f (1) 处的切线为y =e(x -1) + 2 .(Ⅰ) x求a,b;(Ⅱ)证明:f (x) >1.【2013,21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d 的值;(2)若x≥-2 时,f(x)≤kg(x),求k 的取值范围.【2012,21】已知函数f (x) 满足f (x) =f '(1)e x-1 -f (0)x+1x2 .2(1)求f (x) 的解析式及单调区间;(2)若f (x) ≥1x2 +ax +b ,求(a +1)b 的最大值.2【2011,21】已知函数f (x) =a ln x+b,曲线y =f (x) 在点(1, f (1)) 处的切线方程为x +2y- 3 = 0 .x +1x(Ⅰ)求a 、b 的值;(Ⅱ)如果当x > 0 ,且x ≠1时,f (x) > ln x+k,求k 的取值范围.x -1 x3.三角函数、解三角形一、选择题2π 【2017,9】已知曲线 C 1:y =cos x ,C 2:y =sin (2x +3),则下面结正确的是( )πA .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6得到曲线C 2 个单位长度,πB .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12得到曲线C 2个单位长度,1 C .把 C 1 上各点的横坐标缩短到原来的 2得到曲线C 2π 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,1D .把 C 1 上各点的横坐标缩短到原来的 2π倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C 2【2016,12】已知函数 f ( x ) = sin(ωx + ϕ )(ω > 0, ϕ≤ π , x = - π为 f ( x ) 的零点, x = π 为244y = f (x ) 图像的对称轴,且 f ( x ) 在 ( π 18 , 5π单调,则ω 的最大值为()36A .11B .9C .7D .5【2015,8】函数 f ( x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f ( x ) 的单调递减区间为()A . (k π - 1 , k π + 3), k ∈ ZB . (2k π - 1 , 2k π + 3), k ∈ Z4 4 4 4 C . (k - 1 , k + 3k ∈ ZD . (2k - 1 , 2k + 3), k ∈ Z4 4【2015,2】 sin 20 cos10- cos160 sin10 4 4= ( )A .BC . - 12D . 12【2014,6】如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线OA ,终边为射线 OP ,过点 P 作直线OA 的垂线,垂足为 M ,将点 M 到直线OP 的距离表示为 x 的函数 f ( x ) ,则y= f ( x ) 在[0, π ]上的图像大致为()【2014,8】设α ∈ (0, π ) , β ∈ (0, π) ,且 tan α =1 + sin β,则()2A . 3α - β = π2 2B . 2α - β = π2cos βC . 3α + β = π 2D . 2α + β = π2【2012,9】已知ω > 0 ,函数 f ( x ) = sin(ω x + π ) 在( π,π )上单调递减,则ω 的取值范围是()4 2A .[ 1 , 5 ]B .[ 1 , 3 ]C .(0, 1 ]D .(0,2]2 4 2 4 2【2011,5】已知角θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y = 2x 上,则 cos 2θ =A . - 45B . - 35C . 35D . 45【2011,11】设函数 f ( x ) = sin(ω x + ϕ ) + cos(ω x + ϕ)(ω > 0, ϕ且 f (-x ) = f (x ) ,则( )< π 的最小正周期为π , 2A . f ( x ) 在 ⎛ 0, π ⎫单调递减 B . f ( x ) 在 ⎛ π ,3π ⎫单调递减2 ⎪ 4 4 ⎪⎝ ⎭⎝ ⎭C . f ( x ) 在 ⎛ 0, π ⎫单调递增 D . f ( x ) 在 ⎛ π ,3π ⎫单调递增2 ⎪ 4 4 ⎝ ⎭⎝ ⎭二、填空题【2015,16】在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75 ,BC = 2 ,则 AB 的取值范围是.【2014,16】已知 a , b , c 分别为 ∆ABC 的三个内角 A , B , C 的对边, a =2,且 (2 + b )(sin A - sin B ) = (c - b ) sin C ,则 ∆ABC 面积的最大值为.【2013,15】设当 x =θ 时,函数 f (x )=sin x -2cos x 取得最大值,则 cos θ=.【2011,16】在 ABC 中, B = 60 , AC =AB + 2BC 的最大值为 .三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知△ABC 的面积为 a 23sin A(1)求 sin B sin C ;(2)若 6cos B cos C =1,a =3,求△ABC 的周长【2016,17】∆ABC 的内角A, B,C的对边分别为a,b, c ,已知2c os C(a cos B +b cos A) =c .(Ⅰ)求C ;(Ⅱ)若c = 7 ,∆ABC 的面积为3 3,求∆ABC 的周长.2【2013,17】如图,在△ABC 中,∠ABC=90°,AB=BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=1,求P A;(2)若∠APB=150°,求tan∠PBA.2【2012,17】已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,a cos C +s in C -b -c = 0 .(1)求A;(2)若a = 2 ,△ABC 的面积为 b ,c .⎭⎝ ⎦4.平面向量一、选择题【2015,7】设 D 为 ∆ABC 所在平面内一点 BC = 3CD ,则()A . AD = - 1 AB + 4AC3 3 C . AD =4 AB + 1AC3 3B . AD = 1 AB - 4AC3 3 D . AD =4 AB - 1AC3 3【2011,10】已知 a 与 b 均为单位向量,其夹角为θ ,有下列四个命题P : a + b > 1 ⇔ θ ∈ ⎡0, 2π ⎫P : a + b > 1 ⇔ θ ∈ ⎛ 2π ,π ⎤1 ⎢⎣ 3 ⎪⎭ 2 3⎥ ⎝ ⎦⎡ π ⎫⎛ π ⎤P 3 : a - b > 1 ⇔ θ ∈ ⎢⎣0, 3 ⎪P 4 : a - b > 1 ⇔ θ ∈ 3 ,π ⎥其中的真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 4二、填空题【2017,13】已知向量 a ,b 的夹角为 60°,|a |=2, | b |=1,则| a +2 b |=.【2016,13】设向量 a = (m ,1) ,b = (1,2) ,且| a + b |2= | a |2+ | b |2,则 m =.【2014,15】已知 A ,B ,C 是圆 O 上的三点,若 AO = 1( A B + AC ) ,则 AB 与 AC 的夹角为 . 2【2013,13】已知两个单位向量 a ,b 的夹角为 60°,c =t a +(1-t )b .若 b ·c =0,则 t =.【2012,13】已知向量 a , b 夹角为 45°,且| a |= 1,| 2a - b |= 10 ,则| b |=.n 2 15.数列一、选择题【2017,4】记S n 为等差数列{a n } 的前 n 项和.若 a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们 推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列{a n } 前 9 项的和为 27 , a 10 = 8 ,则 a 100 = ( )A .100B . 99C .98D .97 【2013,7】设等差数列{a n }的前 n 项和为 S n ,若 S m -1=-2,S m =0,S m +1=3,则 m =( ).A .3B .4C .5D .6 【2013,12】设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n =1,2,3,….c + a b + a 若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= nn,c n +1=2nn,则( ).2A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列2 1【2013,14】若数列{a n }的前 n 项和 S n =a n 3+ ,则{a n }的通项公式是 a n = .3 【2012,5】已知{ a n }为等比数列, a4 + a 7 = 2 , a 5a 6 = -8 ,则 a 1 + a 10 = ()A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列{a n } 满足 a 1 + a 3 = 10 , a 2 + a 4 = 5 ,则 a 1a 2a n 的最大值为.【2012,16】数列{ a n }满足 a n +1 + (-1) a n = 2n -1 ,则{ a n }的前 60 项和为 .三、解答题【2015,17】 S n 为数列{a n } 的前 n 项和.已知 a n >0, a+ 2a n = 4S n + 3 . n(Ⅰ)求{a n } 的通项公式;(Ⅱ)设 b n =,求数列{b n } 的前n 项和. a n a n +12【2014,17】已知数列{ a n }的前 n 项和为 S n , a 1 =1, a n ≠ 0 , a n a n +1 = λS n -1,其中 λ 为常数.(Ⅰ)证明: a n +2 - a n = λ ;(Ⅱ)是否存在 λ ,使得{ a n }为等差数列?并说明理由.【2011,17】等比数列{a n } 的各项均为正数,且 2a 1 + 3a 2 = 1, a 3 = 9a 2 a 6 .(Ⅰ)求数列{a n } 的通项公式;(Ⅱ)设 ⎧ 1 ⎫ b n = log 3 a 1 + log 3 a 2 + ...... + log 3 a n , 求数列 ⎨ ⎬ 的前n 项和. ⎩ b n ⎭⎩⎨⎩⎪ ⎨ x ≥ 06.不等式、推理与证明一、选择题⎧ x + y ≥ 1 【2014,9)】不等式组 ⎨⎩ x - 2 y ≤ 4的解集记为D .有下面四个命题: p 1 : ∀(x , y ) ∈ D , x + 2 y ≥ -2 ;p 2 : ∃(x , y ) ∈ D , x + 2 y ≥ 2 ; P 3 : ∀(x , y ) ∈ D , x + 2 y ≤ 3 ; p 4 : ∃(x , y ) ∈ D , x + 2 y ≤ -1 .其中真命题是()A . p 2 , P 3B . p 1 , p 4C . p 1 , p 2D . p 1 , P 3二、填空题⎧ x + 2 y ≤ 1⎪【2017,14】设 x ,y 满足约束条件 ⎨2x + y ≥ -1,则z = 3x - 2 y 的最小值为 .⎪ x - y ≤ 0 【2016,16】某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg , 乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时.生产一件 产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则 在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元.⎧ x -1 ≥ 0【2015,15】若 x ,y 满足约束条件 ⎪x - y ≤ 0 ⎪ x + y - 4 ≤ 0,则 y 的最大值为 .x【2014,14】甲、乙、丙三位同学被问到是否去过 A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.⎧ x - y ≥ -1⎪x + y ≤ 3【2012,14】设 x , y 满足约束条件 ⎪ ⎪⎩ y ≥ 0,则 z = x - 2 y 的取值范围为 .⎧3 ≤ 2x + y ≤ 9,【2011,13】若变量 x , y 满足约束条件 ⎨⎩6 ≤ x - y ≤ 9,则 z = x + 2 y 的最小值为 .7.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .16【2016,11】平面α 过正方体 ABCD - A 1 B 1C 1 D 1 的顶点 A ,α // 平面CB 1 D 1 ,α 平面 ABCD= m ,α 平面 ABB 1 A 1 = n ,则 m , n 所成角的正弦值为3A .B .2 3 1 C .D .2233【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π,则它的表面积是( )3A .17πB .18πC . 20πD . 28π【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思 为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有( )A .14 斛B .22 斛C .36 斛D .66 斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视图中的正视 图和俯视图如图所示. 若该几何体的表面积为16 + 20π ,则 r =()A .1B .2C .4D .8【2015 年,11 题】【2014 年,12 题】 【2013 年,6 题】【2014,12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个 条棱中,最长的棱的长度为()A . 6 2B . 4 2C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一个球放在容器口,再向 容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( )A .500π cm 3B .866π cm 3C .1372π cm 3D .2048π cm 33333【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013 年,8】【2012 年,7】【2011 年,6】【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .15 【2012,11】已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球O 的直径,且 SC =2,则此棱锥的体积为( )A6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB = 6, BC =则棱锥O - ABCD 的体积为.三、解答题【2017,18】如图,在四棱锥 P-ABCD 中,AB//CD ,且 ∠BAP = ∠CDP = 90(1)证明:平面P AB ⊥平面 P AD ;(2)若P A =PD =AB =DC , ∠APD = 90 ,求二面角 A -PB -C 的余弦值.o 【2016,18】如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形,AF = 2FD , ∠AFD = 90︒ ,C且二面角 D - AF - E 与二面角 C - BE - F 都是 60︒ .DEB(Ⅰ)证明:平面 ABEF ⊥ 平面 EFDC ; (Ⅱ)求二面角 E - BC - A 的余弦值.【2015,18】如图,四边形 ABCD 为菱形,∠ABC = 120A,E , F是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面ABCD , BE = 2DF , AE ⊥ EC .(I )证明:平面 AEC ⊥平面 AFC ;(II )求直线 AE 与直线 CF 所成角的余弦值.【2014,19】如图三棱柱 ABC - A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB ⊥ B 1C .(Ⅰ) 证明: AC = AB 1 ;(Ⅱ)若 AC ⊥ AB 1 , ∠CBB 1 = 60 ,AB=BC ,求二面角A - A 1B 1 -C 1 的余弦值.【2013,18】如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.1AA1,D 是棱AA1 的中点,DC1⊥BD.【2012,19】如图,直三棱柱ABC-A1B1C1 中,AC=BC=2(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1 的大小.B1AB【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C 的余弦值.C2 2 2 2 2 22 28.解析几何一、选择题【2017,10】已知F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点,直线 l 2 与C 交于D 、E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10【2016,10】以抛物线 C 的顶点为圆心的圆交 C 于 A , B 两点,交 C 的准线于 D , E 两点,已知 AB = 4 2 ,DE = 2 5 ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程x 2 m 2+ ny 2- 3m 2 - n= 1 表示双曲线,且该双曲线两焦点间的距离为 4 ,则 n 的 取值范围是( )A . (-1,3)B . (-1, 3)C . (0,3)D . (0, 3)x 2 【2015,5】已知 M ( x 0 , y 0 ) 是双曲线 C : 2- y 2= 1上的一点,F 1 , F 2 是 C 的两个焦点,若 MF 1 ⋅ MF 2 < 0 ,则 y 0 的取值范围是()A . (- , )B . (-, )C . (-,D . (-,3 36 63 33 3【2014,4】已知 F 是双曲线 C :x 2 - my 2 = 3m (m > 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为A B .3C .D . 3m【2014,10】已知抛物线 C : y 2= 8x 的焦点为 F ,准线为 l , P 是l 上一点,Q 是直线 PF 与C 的一个 交点,若 FP = 4FQ ,则| QF | =()A . 72B . 5222C .3D .2x y 【2013,4】已知双曲线 C : - a 2 b 2 =1 (a >0,b >0)的离心率为 ,则 C 的渐近线方程为( ).2A .y = ± 1 x 4B .y = ± 1 x 3 2 2C .y = ± 1 x 2D .y =±x x y 【2013,10】已知椭圆E : + a 2 b 2=1 (a >b >0)的右焦点为 F (3,0),过点 F 的直线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为()A . x + y =1B . x + y =1C . x + y =1D . x + y =145 3636 2727 1818 9x 2 y 2 3a【2012,4】设 F 1 、 F 2 是椭圆 E : a 2 + b 2 ( a > b > 0 )的左、右焦点,P 为直线 x = 上一点,2∆F 2 PF 1 是底角为 30°的等腰三角形,则 E 的离心率为()A . 12B . 23C . 34D . 45【2012,8】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2= 16x 的准线交于 A ,B 两点,| AB |=,则 C 的实轴长为( )A B .C .4 D .8【2011,7】设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为C 的实轴长的 2 倍,则 C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线 C : x 2y 2-= 1 (a >0,b >0)的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A a 2 b 2与双曲线 C 的一条渐近线交于 M 、N 两点.若∠MAN =60°,则 C 的离心率为 .x 2 【2015,14】一个圆经过椭圆 y 2+ = 1的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为 .16 4【2011,14】在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F 1 , F 2 在 x 轴上,离心率为 .过2F 1 的直线 L 交 C 于 A , B 两点,且 ABF 2 的周长为 16,那么 C 的方程为.三、解答题【2017,20】已知椭圆 C : x 2 y 2 + =1(a >b >0),四点 P (1,1),P (0,1),P (–1 ),P (1, ) a 2 b 2 1 2 3 42 2中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线 P 2A 与直线 P 2B 的斜率 的和为–1,证明:l 过定点.【2016,20】设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1,0) 且与x 轴不重合,l 交圆A 于C, D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EA +EB 为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C1 ,直线l 交C1 于M , N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ 面积的取值范围.x2【2015,20】在直角坐标系xOy 中,曲线C :y =与直线l :y =kx +a (a > 0 )交于M , N 两点.4(Ⅰ)当k = 0 时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.x 2 y 2 【2014,20】已知点 A (0,-2),椭圆 E : + a 2 b 2直线 AF 的斜率为, O 为坐标原点.3= 1(a > b > 0) 的离心率为, F 是椭圆的焦点,(Ⅰ)求 E 的方程;(Ⅱ)设过点 A 的直线l 与 E 相交于 P , Q 两点,当 ∆OPQ 的面积最大时,求l 的方程.【2013,20】已知圆 M :(x +1)2+y 2=1,圆 N :(x -1)2+y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆 心 P 的轨迹为曲线 C .(1)求 C 的方程;(2)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径 最长时,求|AB |.【2012,20】设抛物线C:x2 =2py(p > 0 )的焦点为F,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4 2 ,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3 上,M 点满足MB / /OA ,MA⋅AB =MB ⋅BA ,M 点的轨迹为曲线C.(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.59.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部 分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1 π 1 π A .B .C .D .4824【2017,6】(1 + 1+ x )6 展开式中 x 2 的系数为( ) x 2A .15B .20C .30D .35【2016,4】某公司的班车在 7 : 30 ,8 : 00 ,8 : 30 发车,小明在 7 : 50 至8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过 10 分钟的概率是( )A .1 B .1C .2 D .3 3234【2015,10】 (x 2 + x + y )5 的展开式中, x 5 y 2 的系数为()A .10B .20C .30D .60【2015,4】投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6, 且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活 动的概率( )A . 18 B . 38 C . 58 D . 78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事 先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在 下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设 m 为正整数, ( x + y )2m 展开式的二项式系数的最大值为 a , (x + y )2m +1展开式的二项式系 数的最大值为 b .若 13a =7b ,则 m =( )A .5B .6C .7D .8 【2012,2】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )A .12 种B .10 种C .9 种D .8 种【2011,8】 ⎛ x + a ⎫ ⎛2x - 1 ⎫的展开式中各项系数的和为 2,则该展开式中常数项为( ) x ⎪ x ⎪ ⎝ ⎭ ⎝⎭ A . -40B . -20C .20D .40【2011,4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A . 13二、填空题B . 12C . 23D . 34【2016,14】 (2x +x )5 的展开式中, x 3 的系数是 .(用数字填写答案)【2014,13】 (x - y )(x + y )8 的展开式中 x 2 y 7 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服从正态分布 N (1000,502),且各个元件元件1元件2元件3 能否正常工作相互独立,那么该部件的使用寿命超过 1000 小时的概率为 . 三、解答题【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件, 并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从 正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:1 16经计算得 x = ∑ x i = 9.97 ,s ==≈ 0.212 ,其中 x i 为抽取 16 i =1的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为 μ 的估计值 μˆ ,用样本标准差 s 作为 σ 的估计值σˆ ,利用估计值判断是否需对当 天的生产过程进行检查?剔除(μˆ - 3σˆ , μˆ + 3σˆ ) 之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01). 附:若随机变量Z 服从正态分布 N (μ,σ2),则 P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592≈ 0.09 .【2016,19】某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求P( X ≤n) ≥ 0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n = 19 与n = 20 之中选其一,应选用哪个?8【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售 量 y (单位:t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x i 和年销售量 y i (i = 1, 2, , 8 )数据作了初步处理,得到下面的散点图及一些统计量的值.1 8表中 w i =, w =∑ wii =1(Ⅰ)根据散点图判断, y = a + bx 与 y = c + y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立 y 关于 x 的回归方程;(III )已知这种产品的年利润 z 与 x , y 的关系为 z = 0.2 y - x ,根据(Ⅱ)的结果回答下列问题:(i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 , v 1 ), (u 2 , v 2 ), , (u n , v n ) ,其回归直线 v = α + β u 的斜率和截距的最小二乘估计n∑ (ui- u )(v i - v )分别为 β = i =1n,α = v - β u .∑i =1(u i- u )2【2014,18)】从某企业的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500 件产品质量指标值的样本平均数x 和样本方差s 2 (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,δ2 ) ,其中μ近似为样本平均数x ,δ2 近似为样本方差s 2 .(i)利用该正态分布,求P(187.8 <Z < 212.2) ;(ii)某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N(μ,δ2 ) ,则P(μ-δ<Z <μ+δ) =0.6826,P(μ- 2δ<Z <μ+ 2δ) =0.9544.【2013,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质2品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100 元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【2012,18】某花店每天以每枝5 元的价格从农场购进若干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16 枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N )的函数解析式;(2)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:以100 天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16 枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16 枝或17 枝玫瑰花,你认为应购进16 枝还是17 枝?请说明理由.⎨ ⎩ 【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或 等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产 品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;⎧-2, t < 94(Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为y = ⎪2, 94 ≤ t < 102 ⎪4, t ≥ 102从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)10.复数及其运算一、选择题【2017,3】设有下面四个命题1p 1 : 若复数 z 满足 ∈ R ,则 z ∈ R ; p 2 : 若复数 z 满足 z 2 ∈ R ,则z ∈ R ; z p 3 : 若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 : 若复数 z ∈ R ,则 z ∈R . 其中的真命题为( )A . p 1 , p 3B . p 1 , p 4C . p 2 , p 3D . p 2 , p 4【2016,2】设 (1 + i )x = 1 + yi ,其中 x , y 是实数,则 x + yi = ( )A .1B . 2C . 3D . 2【2015,1】设复数 z 满足1 + z= i ,则| z | =( ) 1 - zA .1B C .D .2(1 + i )3【2014,2】(1 - i )2=( )A .1 + iB .1 - iC . -1+ iD .-1- i 【2013,2】若复数 z 满足(3-4i)z =|4+3i|,则 z 的虚部为().A .-4B . - 45C .4D . 45【2012,3】下面是关于复数 z = 22 -1 + i的四个命题:p 1 :| z |= 2 ; p 2 : z = 2i ; p 3 : z 的共轭复数为1 + i ; p 4 : z 的虚部为 -1.其中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【2011,1】复数2 + i的共轭复数是( ) 1 - 2iA . - 3 i5B . 3 iC . -i5D .i11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足3n - 2n >1000 的最小偶数n,那么在两个空白框中,可以分别填入A.A+1 B.A>1000 和n=n+2C.A ≤1000 和n=n+1 D.A ≤1000 和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的x = 0 ,y =1,n =1,则输出x, y 的值满足()A.y =2x B.y =3x C.y =4x D.y =5x【2015,9】执行右面的程序框图,如果输入的t =0.01,则输出的n =()A.5 B.6 C.7 D.8【2014,7】执行下图的程序框图,若输入的a,b, k 分别为1,2,3,则输出的M =()A .203B .165C .72D .158【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (N ≥ 2 )和实数a1 ,a2 ,…,a N ,输出A,B,则()A.A +B 为a1 ,a2 ,…,a N 的和B.A +B为a ,a ,…,a 的算术平均数2 1 2 NC.A 和B 分别是a1 ,a2 ,…,a N 中最大的数和最小的数D.A 和B 分别是a1 ,a2 ,…,a N 中最小的数和最大的数【2013,5】【2012,6】【2011,3】【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120 B.720 C.1440 D.5040⎩12.坐标系与参数方程一、解答题⎧ x = 3cos θ ,【2017,22】(选修 4-4,坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(θ ⎩ y = sin θ ,⎧ x = a + 4t ,为参数),直线 l 的参数方程为 ⎨ y = 1 - t , ( t 为参数).(1)若 a = -1 ,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为a .⎧x = a cos t ,【2016,23】(选修 4-4:坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎨⎩ y = 1 + a sin t ,(t 为参数, a > 0) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ = 4 c os θ .(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为θ = α 0 ,其中α 0 满足 tan α 0 = 2 ,若曲线 C 1 与 C 2 的公共点都在C 3 上, 求 a .。
绝密★启用前2017年普通高等学校招生全国统一考试本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
x1.已知集合A={x|x<1} , B={X|3::1},则A . ADB ={x|x :::0} B . AUB = RC. AljB 二{x|x 1}D. ARB2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是1A.-41C .—23.设有下面四个命题1P1 :若复数z满足一,R,则z R ;z2P2 :若复数z满足z R,则R ;P3:若复数乙,z2满足z^ R,则乙=Z2 ;p4:若复数z R,则z R .其中的真命题为3n -2n >1000的最小偶数n ,那么在和=两个空白框中,可以分别填入(开鮒J/输心0 / J卫=3“一严J/输出"/ t (结來]A . A>1 000 和 n=n+1B . A>1 000 和 n=n+2C . A 空1 000 和 n=n+1D . A _1 000 和 n=n+2A • P l ,PB • P l , P 4C . P 2,PD .P 2, P 44•记S n 为等差数列{a n }的前n 项和•若a 4 a^ 24 , & =48,则{a n }的公差为 A . 1B . 25•函数f (X)在(」:,•::)单调递减,且为奇函数 是 A • [-2,2]B . [-1,1]16 26 . (12)(1 x)6展开式中X 2的系数为xA . 15B . 20若 f(1) = - 1,则满足-1 -f (x - 2) _ 1的x 的取值范围C . [0,4]D . [1,3]C . 30D . 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . 10B . 12C . 14D . 168 .右面程序框图是为了求出满足9.已知曲线C 1: y=cos x , C 2:y=s in (2x+), 则下面结论正确的是C . 4D . 8A .把C1上各点的横坐标伸长到原来的n2倍,纵坐标不变,再把得到的曲线向右平移丄个单位长度,得6得到曲线C 210.已知F 为抛物线C : y=4x 的焦点,过F 作两条互相垂直的直线l i , I 2,直线l i 与C 交于A 、B 两点,直线12与C 交于D 、E 两点,则|AB|+|DE|的最小值为学题获取软件激活码”的活动•这款软件的激活码为下面数学问题的答案:已知数列 i , i , 2, i , 2, 4,i , 2, 4, 8, i , 2, 4, 8, i6,…,其中第一项是2°,接下来的两项是 20, 2i ,再接下来的三项是 20, 2i , 22,依此类推.求满足如下条件的学科网&最小整数N : N>i00且该数列的前N 项和为2的整数幕•那么 该款软件的激活码是 A . 440B . 330C . 220、填空题:本题共 4小题,每小题5分,共20分。
2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑一、选择题(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2016·2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}(2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 42011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑(逐题解析)(2017·2)C 【解析】∵ {}1AB =,∴ 1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=,故{}1,3B =,选C.(2016·2)C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C .(2015·1)A 解析:由已知得{}21B x x =-<<,故,故选A.(2014·1)D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.(2013·1)A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩N ={0, 1, 2},故选A.(2012·1)D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·10)A解析:由||1+==>a b 得1cos 2θ>-2[0,)3πθ⇒∈.由||1-=a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数一、选择题 (2017·1)31ii+=+( ) A .12i + B .12i - C .2i + D .2i -(2016·1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -(2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i ,P 3: z 的共轭复数为1+i ,P 4: z 的虚部为-1 . A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4(2011·1)复数212ii +-的共轭复数是( ) A .35i - B .35i C .i -D .i2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数(逐题解析)(2017·1)D 【解析】()()()()3134221112i i i ii i i i +-+-===-++-. (2016·1)A 解析:∴30m +>,10m -<,∴31m -<<,故选A .(2015·2)B 解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.(2014·2)A 解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.(2013·2)A 解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i . (2012·3)C 解析:经计算2221,||2(1)21z i z z i i i==--∴==---+ =,,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确. (2011·1)C 解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .5开始,x n输入00k s ==,a输入s s x a=⋅+1k k =+k n>s输出结束否是结束输出S 1M =,3S =开始输入x ,t1k =k t ≤M M x k=S M S =+1k k =+是否(2017·8) (2016·8) (2015·8) (2014·7)(2016·8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( ) A .7B .12C .17D .34(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( ) A .0B .2C .4D .14(2014·7)执行右面程序框图,如果输入的x ,t 均为2,则输出的S = ( )A .4B .5C .6D .7(2013·6)(2012·6)(2011·3)(2013·6)执行右面的程序框图,如果输入的10N=,那么输出的S=()A.11112310++++B.11112!3!10!++++C.11112311++++D.11112!3!11!++++(2012·6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输入A、B,则()A. A+B为a1,a2,…,a N的和B.2BA+为a1,a2,…,a N的算术平均数C. A和B分别是a1,a2,…,a N中最大的数和最小的数D. A和B分别是a1,a2,…,a N中最小的数和最大的数(2011·3)执行右面的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50402011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)【解析】解法一:常规解法∵ 00S =,01K =,01a =-,S S a K =+⋅,a a =-,∴ 执行第一次循环:11S =-﹑11a =﹑ 12K =;执行第二次循环:21S =﹑21a =-﹑23K =;执行第三次循环:32S =-﹑31a =﹑ 34K =;执行第四次循环:42S =﹑41a =-﹑45K =;执行第五次循环:53S =-﹑51a =﹑ 56K =;执行第五次循环:63S =﹑61a =﹑67K =;当676K =>时,终止循环,输出63S =,故输出值为3. 解法二:数列法()11nn n S S n -=+-⋅,1n K n =+,裂项相消可得()121nin i S S i =-=-⋅∑;执行第一次循环:11S =-﹑11a =﹑12K =,当6n K >时,6n =即可终止,61234564S +=-+-+=,即63S =,故输出值为3.(2016·8)C 解析:第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=,第三次运算:62517s =⨯+=,故选C .(2015·8)B 解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .(2014·7)D 解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =.(2013·6)B 解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;… … … … ; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++,k 增加1变为11,满足k >N ,输出S ,故选B .(2012·6)C 解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数.(2011·3)B 解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.【题目7】(2017·新课标全国Ⅱ卷理7)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 【命题意图】本题考查推理与证明的有关知识,考查考生推理论证能力. 【解析】解法一:假设法甲看乙﹑丙成绩,甲不知道自己的成绩,那么乙﹑丙成绩中有一人为优,一人为良;乙已经知道 自己的成绩要么良,要么优,丙同样也是,当乙看到丙的成绩,一定知道自己的成绩,但是丙一 定不知道自己的成绩;而丁同学也知道自己的成绩要么良,要么优,只有看到甲的成绩,才能判 断自己的成绩,丁同学也一定知道自己的成绩,故只有乙﹑丁两位同学知道自己的成绩. 解法二:选项代入法当我们不知道如何下手,则从选项入手,一一假定成立,来验证我们的假设是否成立,略2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量一、选择题(2017·12)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- (2016·3)已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( )A .-8B .-6C .6D .8(2014·3)设向量a ,b 满足10|a b |+=,6|a b |-=,则a b ⋅=( )A .1B .2C .3D .5二、填空题(2015·13)设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________. (2013·13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=_______.(2012·13)已知向量a ,b 夹角为45º,且1=||a ,102=-||b a ,则=||b .2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量(逐题解析版)一、选择题(2017·12)【解析】解法一:建系法,连接OP ,()0,3OA =,()1,0OB =-,()1,0OC =. 2PC PB PO +=,∴()(),,3PO PA x y x y⋅=--⋅-- ,∴22223334PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭∴34PO PA ⋅≥-,∴ ()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-解法二:均值法:∵2PC PB PO +=,∴ ()2PA PC PB PO PA ⋅+=⋅ 由上图可知:OA PA PO =-;两边平方可得()()2232PA PO PA PO =+-⋅∵ ()()222PA PO PA PO +≥-⋅,∴ 322PO PA ⋅≥-,∴ ()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-.(2016·3)D 【解析】(42)a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--=,解得8m =,选D .(2014·3)A解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=. 二、填空题(2015·13)12解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k k λ=⎧⎨=⎩,所以12λ=. (2013·13)2解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE =(1,2),BD =(-2, 2),所以=2AE BD ⋅. (2012·13)32解析:由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+ 24|||10b b =-+=,解得||32b =.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编5.线性规划一、选择题(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2二、填空题(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编5.线性规划一、选择题(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =.(2014·9)B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.(2013·9)B 解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部l 0l 1 3x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CA BA (1, -2a )lAy = -32x +3y -3=02x -3y +3=0xOyCB分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B. 二、填空题 (2015·14)32解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.(2014·14)[3,3]-解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.(2011·13)-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编6.二项式定理一、选择题(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .40二、填空题(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. (2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编6.二项式定理(逐题解析)一、选择题(2013·5)D 解析:因为(1+x )5的二项展开式的通项为5C r rx (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D.(2011·8)D 解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D .二、填空题(2015·15)3解析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.(2014·13)12解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数一、填空题(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3(2014·12)设函数()3x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞ B .(,4)(4,+)-∞-∞C .(,2)(2,+)-∞-∞D .(,1)(4,+)-∞-∞(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )1 1y xo 1 1y x o 11y x o 1 1y x oA. B. C. D.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2-C. 2ln 1+D.)2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.(2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2016·21)(Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数(解析版)(2017·11)A 【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦, ∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为()11f =-.故选A(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m mmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m mmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2015·5)C解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +=2x π=时,PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x -,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . (2015·12)A 解析:记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A . (2014·8)D 解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =.(2014·12)C 解析:∵()xf x mπ'=,令()0xf x mπ'==得1(),2x m k k Z =+∈,∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(= 的极值为3±, ∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<, 2234∴m m <+, 即:24m >,故:2m <-或2m >. (2013·8)D 解析:根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a . 故选D. (2013·10)C 解析:∵f ´(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f (x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.(2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B.(2012·12)B 解析:因为12x y e =与ln(2)y x =互为反函数,所以曲线12x y e =与曲线ln(2)y x =关于直线y =x 对称,故要求|PQ |的最小值转化为求与直线y =x 平行且与曲线相切的直线间的距离,设切点为A ,则A 点到直线y =x 距离的最小值的2倍就是|PQ |的最小值. 则11()122xxy e e ''===,2x e ∴=,即ln 2x =,故切点A 的坐标为(ln 2,1),因此,切点A 点到直线y =x 距离为d ==,所以||2ln 2)PQ d ==-.(2011·2)B 解析:由各函数的图像知,故选B.(2011·9)C 】解析:用定积分求解342420021162)(2)|323S x dx x x x =+=-+=⎰,故选C.(2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D .二、填空题(2014·15)(1,3)- 解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<< (2016·16)1ln2-解析:ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.(2017·21)解析:(1)法一:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥, 即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立.令()1ln g x x x =--,()11'1x g x x x-=-=, 当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤;当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-. 所以,1a ≥. 综上,1a =.法二:洛必达法则:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ ,所以:()1ln 0a x x --≥.即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-; 当1x =时,()1ln 0a x x --≥成立.令()ln 1x g x x =-,()()()()22111ln 1ln '11x x x x x g x x x ----==--. 令()11ln h x x x =--,()22111'xh x x x x-=-=. 当()0,1x ∈时,()'0h x >,()h x 递增,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→>===--,所以:1a ≤; 当()1,x ∈+∞时,()'0h x <,()h x 递减,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→<===--,所以:1a ≥. 故1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x x ϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1,且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e -≠得()()120f x f e e -->=所以220()2ef x --<<.(2016·21)(Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax a g x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. (2016·21)证明:⑴()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. ⑵ ()()()24e2e xxa x x ax a g x x ----'=()4e 2e 2xxx x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. (2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.(2015·21)解析:(Ⅰ)()(1)2mxf x m e x '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mx e -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mx e -<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①. 设函数()1tg t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1me m e -+>-,综上,m 的取值范围是[-1,1].(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001). (2014·21)解析:(Ⅰ)1()2()2=220.x x x x x x f x e e x x R f x e e e e --'=--∈∴=+-+-≥=,, ∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增. (Ⅱ)22()(2)4()44(2),x x x x g x f x bf x e e x b e e x --=-=-----∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++- 2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2. (Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-, 当b =2时,36ln 202g =->,3ln 20.692812>>;当14b =+时,ln(1b -=32)ln 202g =--<,18ln 20.693428+<<,所以ln2的近似值为0.693.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. (2013·21)解析:(Ⅰ)f ′(x )=1xe x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11xe x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12xe x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0xe =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=012x ++x 0=20012x x (+)+>0. 综上,当m ≤2时,f (x )>0.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. (2012·21)解析:(Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令x =1得,f (x )=1,再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得(1)f e '=. 所以)(x f 的解析式为21()2x f x e x x =-+,∴()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00f x x '>⇔>,()00f x x '<⇔<,所以函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立,即21()()(1)02x h x f x x ax b e a x b =---=-+-≥恒成立,()(1)x h x e a '=-+.(1)当10a +<时,()0h x '>恒成立,()h x 为R 上的增函数,且当x →-∞时,()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立,则0b ≤,(1)0a b +=;(3)当10a +>时,()(1)xh x e a '=-+为增函数,由()0h x '=得ln(1)x a =+,故()0ln(1)f x x a '>⇔>+,()0ln(1)f x x a '<⇔<+,当ln(1)x a =+时,()h x 取最小值(ln(1))1(1)ln(1)h a a a a b +=+-++-. 依题意有(ln(1))1(1)ln(1)0h a a a a b +=+-++-≥,即1(1)ln(1)b a a a ≤+-++,10a +>,22(1)(1)(1)ln(1)a b a a a ∴+≤+-++,令22()ln 0u x x x x x =-> (),则()22ln (12ln )u x x x x x x x '=--=-,()00()0u x x u x ''>⇔<<x ⇔>x =()u x取最大值2eu =.故当1a b +==(1)a b +取最大值2e. 综上,若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e .(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解析:(Ⅰ)221(ln )()(1)x x b x f x x x α+-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)()2ln k x h x x x --=+(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)设0k ≤,由222(1)(1)()k x x h x x +--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x >-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x>-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x kf x x x >+-. (ii )设0<k <1. 由于当x ∈(1,k-11)时,(k -1)(x 2 +1)+2x >0,故h ´(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x- h (x )<0,与题设矛盾.(iii )设k ≥1. 此时h ´(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得211x -h (x )<0,与题设矛盾.综上可得,k 的取值范围为(-∞,0].2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.函数及其性质一、填空题(2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=(2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A. B. C. D.(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.xxxx2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.函数及其性质(逐题解析版)(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m miiiii i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022mmmi iiii i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2015·5)C解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +=2x π=时,PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x -,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . (2013·8)D 解析:根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a . 故选D. (2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B. (2011·2)B 解析:由各函数的图像知,故选B. (2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D . 二、填空题。
2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x <1},B={x|3x <1},则( ) A .A ∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A ∩B=?2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.(5分)(2017?新课标Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2C .4D .85.(5分)(2017?新课标Ⅰ)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]6.(5分)(2017?新课标Ⅰ)(1+)(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .357.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.168.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)(2017?新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程](2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,22.(10分)(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.(2017?新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .【考点】CF :几何概型.【专题】35 :转化思想;4O :定义法;5I :概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积S=,则对应概率P==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【考点】2K :命题的真假判断与应用;A1:虚数单位i 、复数;A5:复数的运算. 【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足∈R ,则z ∈R ,故命题p 1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z?R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)(2017?新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x ﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(2017?新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35 :转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0), 则直线l 2的方程为y=x ﹣1, 联立方程组,则y 2﹣4y ﹣4=0,∴y 1+y 2=4,y 1y 2=﹣4,∴|DE|=?|y 1﹣y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A .【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)(2017?新课标Ⅰ)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【考点】8E :数列的求和.【专题】35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n 项和S n =2n+1﹣2﹣n ,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得N 的值. 【解答】解:设该数列为{an },设b n =+…+=2n+1﹣1,(n ∈N +),则=a i ,由题意可设数列{a n }的前N 项和为S N ,数列{b n }的前n 项和为T n ,则T n =21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2, 可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14, A 项,由=435,440=435+5,可知S 440=T 29+b 5=230﹣29﹣2+25﹣1=230,故A 项符合题意. B 项,仿上可知=325,可知S 330=T 25+b 5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】31 :数形结合;4O:定义法;5A :平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4?+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则=3,BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABCV==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B (),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos <>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x为抽取的第i个零件的尺寸,i=1,2, (16)i用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由=9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个 零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02, 因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008, 因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题. 20.(12分)(2017?新课标Ⅰ)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【考点】KI :圆锥曲线的综合;K3:椭圆的标准方程.【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y=kx+t ,(t ≠1),联立,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1). 【解答】解:(1)根据椭圆的对称性,P 3(﹣1,),P 4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,得:,解得a 2=4,b 2=1,∴椭圆C 的方程为=1.证明:(2)①当斜率不存在时,设l :x=m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴===﹣1,解得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y=kx+t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立,整理,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,,x 1x 2=,则==。
2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为. 16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=-2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式-1≤f(x-2)≤1化为-1≤x-2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=-1,则f(-1)=1,又∵函数f(x)在(-∞,+∞)单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x-2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x-2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C 1:y =cosx,C 2:y =sin(2x +),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y =cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y =cos2(x +)=cos(2x +)=sin(2x+)的图象,即曲线C 2, 故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【分析】方法一:根据题意可判断当A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0),则直线l 2的方程为y =x -1,联立方程组,则y 2-4y -4=0,∴y 1+y 2=4,y 1y 2=-4, ∴|DE|=•|y 1-y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5分)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.可得3y =,2x =,5z =.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.【解答】解:设该数列为{an },设bn=+…+=2n+1-1,(n∈N+),则=ai ,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=-n=2n+1-2-n,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,则①1+2+(-2-n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(-2-n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(-2-n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有+5=440,满足N>100, ∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为-5 .【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(-1,1).∴z=3x-2y的最小值为-3×1-2×1=-5.故答案为:-5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:-=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=3,V==,令=5-x,三棱锥的高h=,求出S△ABCf(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,=3,则V===,令f(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,令f′(x)≥0,即x4-2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC-sinBsinC=-=-,∴cos(B+C)=-,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2-2bccosA,∴b2+c2-bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB ⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A-PB-C为钝角,∴二面角A-PB-C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中x为i抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【分析】(1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(-3+3)=(9.334,10.606),进而需剔除(-3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为P(X=0)=×(1-0.9974)0×0.997416≈0.9592,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(-3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(-3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(-3+3)之外,因此需对当天的生产过程进行检查.剔除(-3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97-9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(-3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P 2(0,1),P3(-1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2-4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,-1).【解答】解:(1)根据椭圆的对称性,P3(-1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(-1,)代入椭圆C,得:,解得a2=4,b2=1, ∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,-yA),∵直线P2A与直线P2B的斜率的和为-1,∴===-1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2-4=0,,x1x2=,则=====-1,又t≠1,∴t=-2k-1,此时△=-64k,存在k,使得△>0成立,∴直线l的方程为y=kx-2k-1,当x=2时,y=-1,∴l过定点(2,-1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;<(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min=g(e-2)=e-2lne-2+e-2-1=--1,g(1)=0, 0,g(a)=alna+a-1,a>0,求导,由g(a)min即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(-∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a-2)e x-x,当x→-∞时,e2x→0,e x→0,∴当x→-∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a-2)×-ln<0,min∴1--ln<0,即ln+-1>0,设t=,则g(t)=lnt+t-1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=-lna,当f′(x)>0,解得:x>-lna,当f′(x)<0,解得:x<-lna,∴x∈(-∞,-lna)时,f(x)单调递减,x∈(-lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,-lna)是减函数,在(-lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,=f(-lna)=1--ln, ②当a>0时,由(1)可知:当x=-lna时,f(x)取得最小值,f(x)min当a=1,时,f(-lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1--ln>0,即f(-lna)>0,故f(x)没有零点,当a∈(0,1)时,1--ln<0,f(-lna)<0,由f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-lna)有一个零点,假设存在正整数n0,满足n>ln(-1),则f(n)=(a+a-2)-n>-n>-n>0,由ln(-1)>-lna,因此在(-lna,+∞)有一个零点.∴a的取值范围(0,1).【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【分析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:。
2011年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.B.C.﹣i D.i2.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|3.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50404.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.5.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.6.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.7.(5分)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C 交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.38.(5分)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.409.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.610.(5分)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P411.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增12.(5分)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.14.(5分)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.15.(5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.16.(5分)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.三、解答题(共8小题,满分70分)17.(12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2011年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)复数的共轭复数是()A.B.C.﹣i D.i【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.【解答】解:复数===i,它的共轭复数为:﹣i.故选C2.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.3.(5分)(2011•新课标)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【分析】执行程序框图,写出每次循环p,k的值,当k<N不成立时输出p的值即可.【解答】解:执行程序框图,有N=6,k=1,p=1P=1,k<N成立,有k=2P=2,k<N成立,有k=3P=6,k<N成立,有k=4P=24,k<N成立,有k=5P=120,k<N成立,有k=6P=720,k<N不成立,输出p的值为720.故选:B.4.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.5.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.6.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.7.(5分)(2011•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.8.(5分)(2011•新课标)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40【分析】给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.【解答】解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和=(﹣1)r25﹣r C5r x5﹣2r∵展开式的通项为T r+1令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D9.(5分)(2011•新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.10.(5分)(2011•新课标)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P4【分析】利用向量长度与向量数量积之间的关系进行转化求解是解决本题的关键,要列出关于夹角的不等式,通过求解不等式得出向量夹角的范围.【解答】解:由,得出2﹣2cosθ>1,即cosθ<,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由|+|>1,得出2+2cosθ>1,即co sθ>﹣,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选A.11.(5分)(2011•新课标)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【分析】利用辅助角公式将函数表达式进行化简,根据周期与ω的关系确定出ω的值,根据函数的偶函数性质确定出φ的值,再对各个选项进行考查筛选.【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=,由于该函数的最小正周期为T=,得出ω=2,又根据f(﹣x)=f(x),得φ+=+kπ(k∈Z),以及|φ|<,得出φ=.因此,f(x)=cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选A.12.(5分)(2011•新课标)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【分析】的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx 的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解答】解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.14.(5分)(2011•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为+=1.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.15.(5分)(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:816.(5分)(2011•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.【分析】设AB=c AC=b BC=a利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.【解答】解:设AB=c AC=b BC=a由余弦定理cosB=所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a=,c=符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有====2,所以AB=2sinC,BC=2sinA.所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA=2(sin120°cosA﹣cos120°sinA)+4sinA=cosA+5sinA=2sin(A+φ),(其中sinφ=,cosφ=)所以AB+2BC的最大值为2.故答案为:2三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【分析】(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.6820.(12分)(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.【分析】(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出a,b值.(II)将不等式变形,构造新函数,求出新函数的导数,对参数k分类讨论,判断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数k的范围.【解答】解:由题意f(1)=1,即切点坐标是(1,1)(Ⅰ)由于直线x+2y﹣3=0的斜率为,且过点(1,1),故即解得a=1,b=1.(Ⅱ)由(Ⅰ)知,所以).考虑函数(x>0),则.(i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h′(x)<0,可得;当x∈(1,+∞)时,h′(x)<0,可得h(x)>0从而当x>0,且x≠1时,f(x)﹣(+)>0,即f(x)>+.(ii)设0<k<1.由于当x∈(1,)时,(k﹣1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾.综合得,k的取值范围为(﹣∞,0].22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x 的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H 点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为523.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A 的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2参与本试卷答题和审题的老师有:qiss;双曲线;w3239003;涨停;sllwyn;zlzhan;wdnah;301137;ywg2058;danbo7801;zhwsd;394782;minqi5(排名不分先后)菁优网2017年2月3日。
7.不等式、推理与证明(含解析)
一、选择题
【2014,9)】不等式组1
24x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;
2p :(,),22x y D x y ∃∈+≥;3P :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.
其中真命题是( )
A .2p ,3P
B .1p ,4p
C .1p ,2p
D .1p ,3P
二、填空题
【2017,14】设x ,y 满足约束条件21
210x y x y x y +≤⎧⎪
+≥-⎨⎪-≤⎩
,则32z x y =-的最小值为 .
【2016,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.
【2015,15】若x ,y 满足约束条件10
040
x x y x y -≥⎧⎪
-≤⎨⎪+-≤⎩
,错误!未找到引用源。
则y x 错误!未找到引用源。
的
最大值为 .
【2014,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,
甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .
【2012,14】设x ,y 满足约束条件1300
x y x y x y -≥-⎧⎪+≤⎪
⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.
【2011,13】若变量,x y 满足约束条件329,
69,
x y x y ≤+≤⎧⎨
≤-≤⎩则2z x y =+的最小值为 .
2x +y +1=0
7.不等式、推理与证明(解析版)
一、选择题
【2014,9)】不等式组1
24
x y x y +≥⎧⎨
-≤⎩的解集记为D .有下面四个命题:
1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.
其中真命题是( )
A .2p ,3P
B .1p ,4p
C .1p ,2p
D .1p ,3P
【解析】作出可行域如图:设2x y z +=,即122
z
y x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C. 二、填空题
【2017,14】设x ,y 满足约束条件21
210x y x y x y +≤⎧⎪
+≥-⎨⎪-≤⎩
,则32z x y =-的最小值为 .
【解析】不等式组21210x y x y x y +≤⎧⎪
+≥-⎨⎪-≤⎩
表示的平面区域如图所示,
由32z x y =-得322z y x =-,求z 的最小值,即求直线322
z
y x =-
的纵截距的最大值,当直线322
z
y x =
-过图中点A 时,纵截距最大, 由21
21x y x y +=-⎧⎨
+=⎩
解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-;
【法二】由线性规划知,32z x y =-在可行域的端点取到,即211
(1,1)211
x y x A x y y +==-⎧⎧⇒⇒-⎨⎨
+=-=⎩⎩,325A z x y =-=-,10113(,)211
333x x y B x y y ⎧=⎪-=⎧⎪⇒⇒⎨
⎨+=-⎩⎪=⎪⎩
,1323B z x y =-=, 21111(,)01
33x y x C x y y +=-=-⎧⎧⇒⇒--⎨⎨
-==⎩⎩,1
323C z x y =-=-,{}min min ,,5A B C z z z z ==-;
【2016,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.
【解析】:设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线
性规则约束为
**1.50.5150
0.390536000
0x y x y x y x y x N y N
⎧+⎪
+⎪⎪+⎪⎪
⎨⎪⎪
⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+; 作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0),
在(60,100)处取得最大值,210060900100216000z =⨯+⨯=
【2015,15】若x ,y 满足约束条件10
040x x y x y -≥⎧⎪
-≤⎨⎪+-≤⎩,错误!未找到引用源。
则
y
x
错误!未找到引用源。
的最大值为 . 解析:根据约束条件画出可行域,如图所示;y
x 的几何意义可以看做
可行域内一点与坐标原点连线的斜率,因此可知在点(1,3)A 处取到最大值,且求得最大值为3.
【2014,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,
甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .
【解析】:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市
∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.
【2012,14】设x ,y 满足约束条件1
300
x y x y x y -≥-⎧⎪+≤⎪
⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.。