2017年河南省许昌市中考数学二模试卷(解析版)
- 格式:doc
- 大小:529.56 KB
- 文档页数:32
许昌市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)一个数的相反数是-3,则这个数是()A . 3B . -3C . 2D . 02. (2分)为迎接建党九十周年,某区在改善环境绿化方面,将投入资金由计划的1 500 000元提高到2 000 000元. 其中2 000 000用科学记数法表示为A . 0.2×107B . 2×107C . 2×106D . 20×1053. (2分)下列化简正确的是()A . 3a-2a=1B . 3a2+5a2=8a4C . a2b-2ab2=-ab2D . 3a+2a=5a4. (2分)在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A .B .C .D .5. (2分)已知点M(m﹣1, 2m﹣1)关于y轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A . 极差是20B . 中位数是91C . 众数是98D . 平均数是917. (2分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A . 2πB . πC . 4πD . 8π8. (2分)(2017·无棣模拟) 若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是的概率为()α30°45°60°sinαcosαtanαA .B .C .D .9. (2分)扇形的圆心角是,则扇形的面积是所在圆面积的()A .B .C .D .10. (2分)下列命题中是假命题的是()A . 同旁内角互补,两直线平行B . 直线a⊥b,则a与b的夹角为直角C . 如果两个角互补,那么这两个角一个是锐角,一个是钝角D . 若a∥b,a⊥c,那么b⊥c11. (2分) (2019八下·安庆期中) 已知,如图,长方形 ABCD 中,AB=5cm , AD=25cm ,将此长方形折叠,使点 D 与点 B 重合,折痕为 EF ,则△ABE 的面积为()A . 35cm2B . 30cm2C . 60cm2D . 75cm212. (2分) (2017九上·东丽期末) 函数中,当时,函数值的取值范围是()A .B .C .D .二、填空题 (共8题;共9分)13. (1分) (2017八下·重庆期中) 计算: =________.14. (1分)化简:________15. (1分)(2017·丰县模拟) 某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是________.甲乙丙丁(环)8.48.68.67.6S20.740.560.94 1.9216. (1分) (2017八上·东城期末) 如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于________ cm.17. (2分) (2019九上·椒江期末) 如图,在平面直角坐标系中,已知点A(-4,0)、B(0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(2)个三角形的直角顶点的坐标是________,第(2018)个三角形的直角顶点的坐标是________.18. (1分)如图,AB=BC=CD,∠BAD=80°,∠AED=________.19. (1分)(2011·徐州) 若直角三角形的一个锐角为20°,则另一个锐角等于________.20. (1分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1,点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0).设点M转过的路程为m(0<m<1),随着点M的转动,当m从变化到时,点N相应移动的路经长为________.三、解答题 (共6题;共58分)21. (10分)已知y是x的反比例函数,下表给了一些x与y的一些值:x﹣3﹣2______y______6﹣3(1)填写表中空格,并求该反比例函数的解析式;(2)若点P(a,y)在该函数图象上,当y<2时,求a的取值范围.22. (10分) (2016九上·北京期中) 如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.23. (5分) (2018七上·台州期中) 点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为。
河南省许昌市2017届九年级数学下学期第二次模拟试题xcs 2017年九年级第二次模拟考试数学参考答案及评分标准一、 选择题二、 填空题 11. 21-,12. 答案不唯一,如:2x y =等,13. 41 ,14. 2-π ,15. 33315+或33315- 三、解答题ba b a b b a +--=-⋅)(2)(2……………………………………4分 由题意得⎩⎨⎧=-=-02,02a b a ,解得⎩⎨⎧==4,2b a ,……………………………………6分当4,2==b a 时,原式=3242)42(2=+-⨯-……………………………………8分17. 解:(1)100. ……………..………………………………..………….2分 (2)100-10-38-24-8=20;补充图如下: ………………………………………………..…………..4分360×10020=72答:扇形图中“6—9吨”部分的圆心角的度数为72°. ………....6分(3)1000×100382010++=680答:该社区约有680户家庭的用水全部享受基本价格……9分18. 解:(1)四边形DEFG 是平行四边形. ∵点D 、E 、F 、G 分别是CA 、OA 、OB 、CB 的中点, ∴D G //21AB ,EF //21AB , ∴DG //EF ,∴四边形DEFG 是平行四边形. . ……….... ……....5分 (2)①23;. . ……….... ……....7分 ②75°或15°. . . ……….... ……....9分19. 解:如图,记河南岸为BE ,延长CA 交B E 于点D ,则CD ⊥BE. 由题意知,∠DAB = 45°,∠DCB = 33°,………………………2分 设AD = x 米,则BD = x 米,CD =(20 + x )米, 在Rt △CDB 中,DCB CDDB∠=tan , ∴65.020≈+xx,………………………7分解得37≈x答:这段河的宽约为37米..………………………9分 20. 解:(1)∵直线b x y +-=过点 B (4,1),∴b +-=41,解得5=b ;∵反比例函数xk y =的图象过点 B (4,1),∴4=k ;.………………………4分(2)41<<x ;.………………………6分(3)将直线5+-=x y 向下平移m 个单位后解析式为m x y -+-=5, ∵直线m x y -+-=5与双曲线xy 4=只有一个交点, 令xm x 45=-+-,整理得04)5(2=+-+x m x , ∴016)5(2=--=∆m ,解得:19或=m ..………………………9分21. 解:(1)50…………………… 3分(2)①设这种化工原料的进价为a 元/千克,当销售价为46元/千克时,当天的销量为48)4660(220=-⨯+千克, 则(46-a )×48 =108+90×2,解得a = 40,即这种化工原料的进价为40元/千克………………………………… 6分②设公司某天的销售单价为x 元/千克,则当天销量为)60(220x -+千克,若每天的收入为y 元,则[]450)55(2)60(220)40(2+--=-+-=x x x y , ∴当x=55时, 公司每天的收入最多,最多收入450元;………………………8分 设公司需要t 天还清借款,则10000)290108450(≥⨯--t ,解得815961≥t ∵t 为整数,∴t = 62.即公司至少需62天才能还清借款.. ………………10分22. 解:(1)①相等;②垂直. ………………………2分(2)(1)中的结论仍然成立,证明:如图,记直线DE 与BG 的交点为M,DE 与AB 的交点为N.∵四边形ABCD 是正方形,∴AD = AB, ∠BAD = 90°.同理,AE =AG,∠EAG = 90°,∴∠BAG =∠DAE,∴△EAD ≌△GAB, ………………………5分∴DE = BG,∠EDA =∠GBA,∵∠EDA + ∠AND = 90°,∠AND =∠MNB,∴∠GBA +∠MNB = 90°,∴DE ⊥BG. ………………………8分(3)最大值为33+,最小值为33-. ………………………10分23.解:(1)由题意得:⎪⎪⎩⎪⎪⎨⎧=-==+-1240a b c c b a ,解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=43834c b a . ∴抛物线的解析式为438342++-=x x y .…………………………………3分(2)∵抛物线的图象与x 轴交于点B (-1,0),对称轴为1=x ,∴点A 的坐标为(3, 0).∵直线AC 经过点A (3, 0),点C (0,4),∴直线AC 的解析式为434+-=x y .…………………………………5分令对称轴与直线AC 交于点D ,与x 轴交于点E ,则DE ⊥x 轴,点D 的坐标为(1,38).∴ DE =38,AE = 2,AD = 310.① 当P 在∠CAB 的平分线上时,如图①,作PH ⊥AC ,则PH = PE = m ,DP = m -38.∵△DPH ∽△DAE ,∴AE PHDA DP=,即231038mm =-,解得m = 1;…………………………………7分② 当P 在∠CAB 的邻补角平分线上时,如图②,作PG ⊥AC ,则PG = PE = -m ,DP = m -38.∵△DPG ∽△DAE , ∴AE PG DA DP=,即231038mm -=-,解得 m = - 4.∴m 的值为1或-4.…………………………………9分(3)点Q 的坐标为)316,1(或)1255,47(.………………11分。
2017年河南省普通高中毕业班高考适应性测试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}(){}2|230|lg 20A x x x B x x =-->=-≤,则()R C A B =A. ()1,12-B. ()2,3C. (]2,3D.[]1,12-2.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式cos sin ix e x i x =+(i 为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,表示的复数i e π-在复平面内位于A. 第一象限B. 第二象限C. 第三象限D.第四象限 3.下列命题中,正确的是 A. 0003,sin cos 2x R x x ∃∈+=B. 0x ∀≥且x R ∈,22xx >C. 已知,a b 为实数,则2,2a b >>是4ab >的充分条件D. 已知,a b 为实数,则0a b +=的充要条件是1ab=- 4.已知圆22:4O x y +=(O 为坐标原点)经过椭圆()2222:10x y C a b a b+=>>的短轴端点和两个焦点,则椭圆C 的标准方程为A. 22142x y +=B. 22184x y +=C.221164x y +=D. 2213216x y += 5.已知等差数列{}n a 满足121,6n n a a a +=-=,则11a 等于A. 31B. 32C. 61D.626.某几何体的三视图如图所示,则该几何体的体积为A.7.已知函数()132221x xx f x +++=+的最大值为M ,最小值为m ,则M m +等于A. 0B. 2C. 4D. 88.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,a b 的值分别为21,28,则输出a 的值为 A. 14 B. 7 C. 1 D. 09.已知函数1ln y x x =++在点()1,2A 处的切线为l ,若l 与二次函数()221y ax a x =+++的图象也相切,则实数a 的取值范围为A. 12B. 8C. 0D.410.已知ABC ∆的三个顶点坐标为()()()0,1,1,0,0,2,A B C O -为坐标原点,动点M 满足1CM = ,则OA OB OM ++的最大值是111111.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,,F F O 为坐标原点,点P是双曲线在第一象限内的点,直线2,PO PF 分别交双曲线C 的左、右支于另一点M,N ,若122PF PF =,且2120MF N ∠= ,则双曲线的离心率为12.定义在R 上的函数()f x ,当[]0,2x ∈时,()()411f x x =--,且对任意实数()122,22,2n n x n N n +*⎡⎤∈--∈≥⎣⎦,都有()1122x f x f ⎛⎫=- ⎪⎝⎭.若()()log a g x f x x =-有且仅有三个零点,则a 的取值范围是A. []2,10B. C. ()2,10 D.[)2,10第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知实数,x y 满足条件2420x x y x y m ≥⎧⎪+≤⎨⎪-++≥⎩,若目标函数2z x y =+的最小值为3,则其最大值为 .14.设二项式6x ⎛- ⎝展开式中的常数项为a ,则20cos 5ax dx π⎰的值为 . 15.已知A,B,C 是球O的球面上三点,且3,AB AC BC D ===为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,则三棱锥D ABC -体积的最大值为 .16.已知函数()212nn n f x a x a x a x =+++ ,且()()11,.n n f n n N *-=-∈设函数(),,2n a n g n n g n ⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩为奇数为偶数,若()24,n n b g n N *=+∈,则数列{}n b 的前()2n n ≥项和n S = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知向量()()2cos ,sin ,cos a x x b x x ==,函数() 1.f x a b =⋅-(1)求函数()f x 的单调递减区间;(2)在锐角ABC ∆中,内角A,B,C 的对边分别为,tan B =对任意满足条件的A,求()f A 的取值范围.18.(本题满分12分)某品牌汽车的4S 店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4,;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件A:“至多有1位采用分6期付款”的概率();P A(2)按分层抽样的方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列和数学期望()E η.19.(本题满分12分)如图所示,已知长方体ABCD 中,2AB AD M ==为DC 的中点.将ADM ∆沿AM 折起,使得.AD BM ⊥ (1)求证:平面ADM ⊥平面ABCM ;(2)是否存在满足()01BE tBD t =<<的点E ,使得二面角E AM D --为大小为4π,?若存在,求出相应的实数t ;若不存在,请说明理由.20.(本题满分12分)设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于A,B 两点,线段AB 的长度为8,AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P,Q 两点,连结QF 并延长交抛物线的准线于点R,当直线PR 恰与抛物线相切时,求直线m 的方程.21.(本题满分12分)已知函数()()()ln 1.1axf x x a R x=+-∈- (1)当1a =时,求函数()f x 的单调区间;(2)若11x -<<时,均有()0f x ≤成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
河南省许昌市中考二模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,最大的数是()A. |﹣3|B. ﹣2C. 0D. 1【答案】A【解析】试题分析:|﹣3|=3,根据有理数比较大小的方法,可得3>1>0>﹣2,所以|﹣3|>1>0>﹣2,所以各数中,最大的数是|﹣3|.故选:A.考点:有理数大小比较.【题文】下列运算正确的是()A.a•a3=a3 B.(ab)3=a3b C.(a3)2=a6 D.a8÷a4=a2【答案】C.【解析】试题分析A、a•a3=a4,故A选项错误;B、(ab)3=a3b3,故B选项错误;C、(a3)2=a6,故C选项正确;D、a8÷a4=a4,故D选项错误.故选:C.考点:①同底数幂的除法;②同底数幂的乘法;③幂的乘方与积的乘方.【题文】如左下图所示的几何体是由一些相同的正方体组合而成的立体图形,则这个几何体的主视图是()A. B. C. D.【答案】A【解析】试题分析:从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.考点:简单组合体的三视图.评卷人得分【题文】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁【答案】D.【解析】试题分析:甲、乙、丙、丁四人射击成绩的平均数均是9.2环,甲的方差是0.58,乙的方差是0.52,丙的方差0.56,丁的方差0.48,其中丁的方差最小,所以成绩最稳定的是丁.故选D.考点:方差.【题文】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B.2π C.3π D.12π【答案】C.【解析】试题分析:根据弧长公式:l==3π,故选:C.考点:弧长的计算.【题文】如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【答案】B.【解析】试题分析:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=÷2=36°,∵l∥BE,∴∠1=36°,故选:B.考点:①平行线的性质;②等腰三角形的性质;③多边形内角与外角.【题文】如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6【答案】D.【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k <0,∴k=﹣6.故选D.考点:反比例函数系数k的几何意义.【题文】如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A. B.C. D.【答案】D.【解析】试题分析:过点O作OD⊥BC,垂足为D,∵OB=5,OD=3,∴BD=4,∵∠A=∠BOC,∴∠A=∠BOD,∴tanA=tan ∠BOD==,故选:D.考点:①垂径定理;②圆周角定理;③解直角三角形.【题文】若二次根式有意义,则x的取值范围是_______________.【答案】x≥﹣1.【解析】试题分析:由题意得:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.考点:二次根式有意义的条件.【题文】从﹣1,0,,π,中随机任取一数,取到无理数的概率是_____________.【答案】.【解析】试题分析:∵﹣1,0,,π,中只有π,是无理数,∴随机任取一数,取到无理数的概率是:.故答案为:.考点:①概率公式;②无理数.【题文】写出一个解集为x>1的一元一次不等式_________.【答案】答案不唯一,如:2x﹣2>0.【解析】试题分析:答案不唯一,如:2x﹣2>0的解集为x>1.故答案为2x﹣2>0.考点:不等式的解集.【题文】如图,平面上直线a,b分别经过线段OK两端点(数据如图),则a,b相交所成的锐角是__________.【答案】30°.【解析】试题分析:由三角形的外角性质得,a,b相交所成的锐角的度数是100°﹣70°=30°.故答案为:30°.考点:三角形的外角性质.【题文】如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA6的长度为___________.【答案】8.【解析】试题分析:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=4.∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA5=OA4=4.∵△OA5A6为等腰直角三角形,∴A5A6=OA5=4,OA6=OA5=8.故答案为:8.考点:等腰直角三角形.【题文】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x 轴的另一个交点为(3,0);④abc>0.其中正确的结论是___________(填写序号).【答案】①④.【解析】试题分析:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.考点:二次函数图象与系数的关系.【题文】如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点C,点D的对应点为点G.则△CEF 的面积____________________.【答案】.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA),∴CE=CF,过E点作EP⊥BC于P,如图所示:∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在RT△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得:m=,∴CE=6﹣2m=6﹣2×=,∵△BCE≌△GCF,∴CF=CE=,∴S△CEF=××2=;故答案为:.考点:①平行四边形的性质;②翻折变换(折叠问题).【题文】小明同学在解一元二次方程时,他是这样做的:(1)小明的解法从第________步开始出现错误;此题的正确结果是____________________________.(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).【答案】(1)二,x1=0,x2=;(2)x1=,x2=3.【解析】试题分析:(1)小明的解法是从第二步出现错误,方程两边不应该同时除以x,3x2﹣8x(x﹣2)=0,x(3x﹣8x+16)=0,x(5x﹣16)=0,x1=0,x2=;(2)x(2x﹣1)=3(2x﹣1),(2x﹣1)(x﹣3)=0,2x﹣1=0或x﹣3=0,x1=,x2=3.考点:解一元二次方程-因式分解法.【题文】如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(﹣1,3)和点B(3,n).(1)求这两个函数的解析式;(2)直接写出不等﹣kx﹣b>0式的解集.【答案】(1)y=﹣x+2;(2)﹣1<x<0或x>3.【解析】试题分析:(1)把A(﹣1,3)代入y=得m=﹣1×3=﹣3,所以反比例函数解析式为y=﹣,把B(3,n )代入y=﹣得3n=3,解得n=﹣1,所以B点坐标为(3,﹣1),把A(﹣1,3)、B(3,﹣1)代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2;(2)﹣1<x<0或x>3.考点:反比例函数与一次函数的交点问题.【题文】为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1)将该条形统计图补充完整;(2)求该校平均每班有多少名留守儿童?(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.【答案】(1)见解析;(2)4;(3).【解析】试题分析:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)该校平均每班留守儿童的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(3)由(1)得只有2名留守儿童的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,如图;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为: =.考点:①条形统计图;②扇形统计图;③加权平均数;④列表法与树状图法.【题文】如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.【答案】(1)见解析;(2)见解析.【解析】试题分析:如图所示,四边形AECF的形状为菱形.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵AM平分∠DAC ,∴∠DAM=∠CAM,而∠DAC=∠ABC+∠ACB,∴∠CAM=∠ACB,∴EF垂直平分AC,∴OA=OC,∠AOF=∠COE,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,即AC和EF互相垂直平分,∴四边形AECF的形状为菱形.考点:①作图—复杂作图;②角平分线的性质;③线段垂直平分线的性质.【题文】如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A 处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)【答案】(1)30千米/时;(2)该轮船不改变航向继续航行,不能行至码头MN靠岸.【解析】试题分析:(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中, ==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.考点:解直角三角形的应用-方向角问题.【题文】为了创建全国卫生城,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍;已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟;(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其l(2)解:设单独租用甲车运完此堆垃圾,需运a趟,由题意得:12(+)=1,解得 a=18,经检验a=18是原方程的解,答:单独租用甲车运完此堆垃圾,需运18趟.(3)由题意得: +=1,∴y=36﹣2x,①当x=10时,y=16;当y=10时,x=13,故答案为:16;13;②w=300x+100y=300x+100(36﹣2x),=100x+3600,(0<x<18,且x为正整数),∵100>0,∴w随x的增大而增大,∴当x=1时,w有最小值,w的最小值3700元.考点:①一次函数的应用;②分式方程的应用.【题文】在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.【答案】(1)见解析;(2)①△AOC′∽△BOD′;理由见解析;②AC′=kBD′,∠AMB=α,理由见解析.【解析】试题分析:(1)证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴在△BOD′和△AOC′中,,∴△BOD′≌△AOC′;(2)解:①△AOC′∽△BOD′;理由如下:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC ′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∴△BOD′∽△AOC′;②AC′=kBD′,∠AMB=α;设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α.考点:四边形综合题.【题文】如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(1)y=﹣(x﹣2)2+4;(2)①点P不在直线ME上;②S存在最大值;.【解析】试题分析:(1)设抛物线的解析式为:y=a(x﹣2)2+4,则有0=4a+4,∴a=﹣1,∴抛物线的解析式为:y=﹣(x﹣2)2+4;(2)①∵y=﹣(x﹣2)2+4,∴当y=0时,﹣(x﹣2)2+4=0,∴x1=0,x2=4,∴E(4,0),设直线ME的解析式为:y=kx+b,则,解得:,∴直线ME的解析式为:y=﹣2x+8,∴当t=2时,P(2,2),∴当x=2时,y=4=4,∴当t=2时,点P不在直线ME上.②S存在最大值.理由如下:∵点A在x轴的非负半轴上,且N在抛物线上,∴OA=AP=t.∴点P,N的坐标分别为(t,t)、(t,﹣t2+4t),∴AN=﹣t2+4t(0≤t≤3),∴AN﹣AP=(﹣t2+4t)﹣t=﹣t2+3t=t(3﹣t)≥0,∴PN=﹣t2+3t;(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴S=DC •AD=×3×2=3.(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形,∵PN∥CD,AD⊥CD,∴S=(CD+PN)•AD= [3+(﹣t2+3t)]×2=﹣t2+3t+3=﹣(t﹣)2+,其中(0<t<3),由a=﹣1,0<<3,此时S最大=.综上所述,当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.说明:(ⅱ)中的关系式,当t=0和t=3时也适合.考点:二次函数综合题.。
题型五 几何图形探究题类型一 几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =3; 迁移应用:如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.2.(2017·许昌模拟)在正方形ABCD 中,对角线AC 、BD 交于点O ,动点P 在线段BC 上(不含点B),∠BPE =12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G.(1)当点P 与点C 重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:BF PE=__________,并结合图②证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BF PE的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE.填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为__________.(2) 拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.4.(2017·长春改编)【再现】如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE∥BC,且DE =12BC.(不需要证明) 【探究】如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,对角线AC ,BD 相交于点O.若AO =OC ,四边形ABCD 面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值. (1)初步尝试如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,小王同学发现可以过点D 做DG∥BC,交AC 于点G ,先证GH =AH.再证GF =CF ,从而求得AC HF的值为__________; (2)类比探究如图②,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC=30°,且点D ,E 的运动速度之比是3∶1,求AC HF的值; (3)延伸拓展如图③,若在△ABC 中,AB =AC ,∠ADH =∠BAC=36°,记BC AC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出结果,不必写解答过程) .类型二 几何图形动态探究1.(2015·河南)如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D 、E 分别是边BC 、AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =__________;②当α=180°时,AE BD=__________;(2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.2.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC.(1)如图①,已知∠AOB=150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是__________;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2) 猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BF的长.BDC,请直接写出相应的4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB =α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五 第22题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°,∴∠DAB =∠CAE ,在△DAB 和△EAC 中,⎩⎪⎨⎪⎧DA =EA ∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC;,图②)②解:结论:CD =3AD +BD.理由:如解图①,作AH ⊥CD 于H.∵△DAB ≌△EAC ,∴BD =CE , 在Rt △ADH 中,DH =AD·cos 30°=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD =3AD +BD ;拓展延伸:①证明:如解图②,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA =BD =BC ,∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°,∴∠FEC =60°,∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2,∴AH =HE =2.5,FH =4.5,在Rt △BHF 中,∵∠BFH =30°,∴HF BF =cos 30°,∴BF =4.532=3 3. 2.(1)证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,⎩⎪⎨⎪⎧∠GBO =∠EPO OB =OP ∠BOG =∠POE,∴△BOG ≌△POE(ASA );(2)解:猜想BF PE =12. 证明:如解图①,过P 作PM ∥AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°,∠BPN =∠OCB.∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB ,∴NB =NP.∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE ,在△BMN 和△PEN 中,⎩⎪⎨⎪⎧∠MBN =∠NPE NB =NP ∠MNB =∠PNE,∴△BMN ≌△PEN(ASA ),∴BM =PE.∵∠BPE =12∠ACB ,∠BPN =∠ACB ,∴∠BPF =∠MPF. ∵PF ⊥BM ,∴∠BFP =∠MFP =90°.在△BPF 和△MPF 中,⎩⎪⎨⎪⎧∠BPF =∠MPE PF =PF∠PFB =∠PFM,∴△BPF ≌△MPF(ASA ). ∴BF =MF. 即BF =12BM.∴BF =12PE.即BF PE =12;(3)解:如解图②,过P 作PM ∥AC 交BG 于点M ,交BO 于点N , ∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. 由(2)同理可得BF =12BM ,∠MBN =∠EPN ,∴△BMN ∽△PEN ,∴BM PE =BN PN. 在Rt △BNP 中,tan α=BNPN ,∴BM PE =tan α,即2BF PE =tan α,∴BF PE =tan α2. 3.解:(1)∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴∠ADC =∠BEC. ∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME. ∵∠DCE =90°,∴DM =ME =CM , ∴AE =AD +DE =BE +2CM ;(3)点A 到BP 的距离为3-12或3+12.理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上. ∵∠BPD =90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点.①当点P 在如解图①所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交BP 于点E ,∵四边形ABCD 是正方形,∴∠ADB =45°.AB=AD =DC =BC =2,∠BAD =90°.∴BD =2. ∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形. 又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD. ∴3=2AH +1.∴AH =3-12;②当点P 在如解图②所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交PB 的延长线于点E ,同理可得:BP =2AH -PD.∴3=2AH -1.∴AH =3+12.综上所述:点A 到BP 的距离为3-12或3+12.4.解:【探究】平行四边形. 理由:如解图①,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,综上可得:EF ∥HG ,EF =HG ,故四边形EFGH 是平行四边形. 【应用】(1)添加AC =BD ,理由:连接AC ,BD ,同(1)知,EF =12AC ,同【探究】的方法得,FG =12BD ,∵AC =BD ,∴EF =FG ,∵四边形EFGH 是平行四边形,∴▱EFGH 是菱形;(2)如解图②,由【探究】得,四边形EFGH 是平行四边形, ∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴△CFG ∽△CBD ,∴S △CFG S △BCD =14,∴S △BCD =4S△CFG,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54,同理:S △DHG +S △BEF =54,∴S 四边形EFGH =S 四边形ABCD -(S △CFG +S △AEH +S △DHG +S △BEF )=5-52=52,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG =12BD ,∴CM =OM =12OC ,同理:AN =ON =12OA ,∵OA =OC ,∴OM =ON ,易知,四边形ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , ∴S 阴影=12S 四边形EFGH =54.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC ,GD =CE∴△GDF ≌△CEF(AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF , ∴ACHF=2; (2)如解图①,过点D 作DG ∥BC 交AC 于点G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°,∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD·tan 60°=3GD. 由题意可知,AD =3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC CE =GD ,∴△GDF ≌△CEF(AAS ),∴GF =CF.GH +GF =AH +CF ,即HF =AH +CF ,∴HF =12AC ,即ACHF =2;(3)AC HF =m +1m.理由如下: 如解图②,过点D 作DG ∥BC 交AC 于点G , 易得AD =AG ,AD =EC ,∠AGD =∠ACB. 在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴GH DH =BCAC =m ,∴GH =mDH =mAH.由△ADG ∽△ABC 可得DG AD =BC AB =BCAC =m.∵DG ∥BC ,∴FG FC =GDEC=m.∴FG =mFC.∴GH +FG =m(AH +FC)=m(AC -HF),即HF =m(AC -HF).∴ACHF =m +1m.类型二 几何图形动态探究 1.解:(1)①当α=0°时, ∵Rt △ABC 中,∠B =90°,∴AC =AB 2+BC 2=(8÷2)2+82=45,∵点D 、E 分别是边BC 、AC 的中点,∴AE =45÷2=25,BD =8÷2=4,∴AE BD =254=52.②如解图①,当α=180°时,可得AB ∥DE , ∵AC AE =BC BD ,∴AE BD =AC BC =458=52;(2)当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB , 又∵EC DC =AC BC =52,∴△ECA ∽△DCB ,∴AE BD =EC DC =52;(3)①当D 在AE 上时,如解图②,∵AC =45,CD =4,CD ⊥AD , ∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵AD =BC ,AB =DC ,∠B =90°, ∴四边形ABCD 是矩形,∴BD =AC =45;②当D 在AE 延长线上时,如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,∵AC =45,CD =4,CD ⊥AD ,∴AD =AC 2-CD 2=(45)2-42=80-16=8,∵原图中点D 、E 分别是边BC 、AC 的中点,∴DE =12AB =12×(8÷2)=12×4=2,∴AE =AD -DE =8-2=6,由(2)可得AE BD =52,∴BD =652=1255.综上所述,BD 的长为45或1255.2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°; ②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2.如解图①,连接OD.∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°. 在Rt △ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2, ∴OA 2+OB 2=OC 2;(2)①当α=β=120°时,OA +OB +OC 有最小值.作图如解图②,将△AOC 绕点C 按顺时针方向旋转60°得△A′O′C,连接OO′. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA′=60°.∴O′C=OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角形.∴OC =O′C=OO′,∠COO ′=∠CO′O=60°. ∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C=120°. ∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为1时,OA +OB +OC 的最小值为A′B=3.3.解:(1)①∵△DEC 绕点C 旋转使点D 恰好落在AB 边上,∴AC =CD ,∵∠BAC =90°-∠B =90°-30°=60°, ∴△ACD 是等边三角形,∴∠ACD =60°, 又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;②∵∠B =30°,∠C =90°,∴CD =AC =12AB ,∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边AC 、AD 上的高相等, ∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°, ∴∠ACN =∠DCM ,∵在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN =∠DCM ∠CMD =∠N =90°AC =DC ,∴△ACN ≌△DCM(AAS ),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如解图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, ∴BE =DF 1,且BE 、DF 1上的高相等,此时S △DCF 1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°, ∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点, ∴∠DBC =∠DCB =12×60°=30°,∴∠CDF 1=180°-∠BCD =180°-30°=150°, ∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD ,∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD =12×60°=30°, 又∵BD =4,∴BE =ED =12×4÷cos 30°=2÷32=433, ∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833, 故BF 的长为433或833. 4.解:(1)当α=60°时,△ABC 、△DCE 是等边三角形, ∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE ,在△BDC 和△AEC 中,⎩⎪⎨⎪⎧EC =DC ∠BCD =∠ACE AC =BC,∴△BDC ≌△AEC(SAS ),∴BD =AE ;(2)BD =2AE ;理由如下:如解图①,过点D 作DF ∥AC ,交BC 于F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α=45°,∴∠ABC =∠ACB =∠DFB =45°.∴△DFB 是等腰直角三角形∴BD =DF =22BF. ∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD.∴△ADE ∽△FCD.∴AE FD =AD FC. ∵DF ∥AC ,∴BD BF =AD CF .∴AE BD =BD BF =22.∴BD =2AE. (3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α,∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,∵∠ABC =∠EAC =α,∴△BDC ∽△AEC ,∴BD AE =BC AC, 又∵BC AC=2cos α,∴BD =2cosα·AE.5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°,∵∠DCF =60°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②相等;理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°-30°=30°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°,∵∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =45°,AF =BD , ∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2;理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°-45°=45°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ,在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.。
2017年河南省许昌市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的倒数是()A.2 B.C.﹣2 D.﹣2.已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球体 D.正方体3.下列运算中,结果正确的是()A.(a3)2=a6B.(ab)3=a3b C.a•a3=a3D.a8÷a4=a24.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30° B.35° C.40° D.50°5.估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2017年河南省许昌市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
许昌市中考数学线上大模考二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()A . |a+b|=a+bB . |a+b|=a﹣bC . |b+1|=b+1D . |a+1|=a+12. (3分)如图,△ABC中,CD垂直AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠A,②∠B+∠2=90°,③BC:AC:AB=3:4:5,④AC•CD=BC•AD.A . 1B . 2C . 3D . 43. (3分)(2017·丰南模拟) 如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A .B .C .D .4. (3分)(2017·深圳模拟) 下列运算正确的是()A . 3ab-2ab=1B . x4·x2=x6C . (x2)3=x5D . 3x2÷x=2x5. (3分) (2016八下·洪洞期末) 对于数据:80,88,85,85,83,83,84.下列说法中错误的有()A、这组数据的平均数是84;B、这组数据的众数是85;C、这组数据的中位数是84;D、这组数据的方差是36.A . 1个B . 2个C . 3个D . 4个6. (3分) (2018七上·郑州期末) 2018年10月19日,国家统计局网站发布消息称,初步核算,2018年前三季度国内生产总值650899亿元,同比增长6.7%数据650899亿元用科学记数法表示为()A . 6.50899×105元B . 6.50899×106元C . 6.50899×1013元D . 6.50899×1014元7. (3分)(2017·长安模拟) 计算:(﹣)÷ =()A .B .C . bD . ﹣8. (3分)(2020·山西模拟) 为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点O)到达点A ,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是()A . 方程思想B . 从特殊到一般C . 数形结合思想D . 分类思想9. (3分) (2018九上·吴兴期末) 已知二次函数的与的部分对应值如下表:…013……131…则下列判断中正确的是()A . 抛物线开口向上B . 抛物线与轴交于负半轴C . 当=4时,>0D . 方程的正根在3与4之间10. (3分)(2017·重庆) 如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A . 4﹣2πB . 8﹣C . 8﹣2πD . 8﹣4π二、填空题(共5小题,每小题3分,满分15分) (共5题;共15分)11. (3分) (2019八下·丰润期中) 计算:× =________.12. (3分) (2017七上·黄陂期中) 笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需________元13. (3分)线段的垂直平分线是________的点的集合.14. (3分) (2017八下·泰兴期末) 如图,点G是△ABC的重心,连结AG并延长交BC于点D ,过点G作EF∥AB交BC与E ,交AC与F ,若EF=8,那么AB=________.15. (3分)一张三角形纸片ABC,AB=AC=5,折叠该纸片使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为________三、解答题(共8小题,满分75分) (共8题;共24分)16. (3分) (2017八下·宁城期末) 计算:17. (3分) (2020八上·徐州期末) 如图,∠ABC=∠ADC=90°,∠BAD=45°,E、F分别是AC、BD的中点.若AC=2,求EF的长.18. (3分)(2014·百色) 学习委员统计全班50位同学对语文、数学、英语、体育、音乐五个科目最喜欢情况,所得数据用表格与条形图描述如下:科目语文数学英语体育音乐人数10a1532(1)表格中a的值为________;(2)补全条形图;(3)小李是最喜欢体育之一,小张是最喜欢音乐之一,计划从最喜欢体育、音乐的人中,每科目各选1人参加学校训练,用列表或树形图表示所有结果,并求小李、小张至少有1人被选上的概率是多少?19. (3.0分) (2017七下·宁城期末) 对于实数x,规定表示不小于x的最小整数,例如,,,则(1)填空:① ________;②若,则x的取值范围是________.(2)已知x为正整数,且,求的值.20. (3.0分) (2020九上·建湖月考) 如图,是的中线,,,.求:(1)的长;(2)的正弦值.21. (3分)(2014·无锡)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证: = .(这个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)22. (3.0分) (2017八下·南江期末) 如图,将口ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF.(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.23. (3分)(2019·婺城模拟) 如图1,在平面直角坐标系中,抛物线y=﹣ +2与x轴交于B、C 两点,与y轴交于点A,抛物线的顶点为D.连接AB,点E是第二象限内的抛物线上的一动点,过点E作EP⊥BC于点P,交线段AB于点F.(1)连接EA、EB,取线段AC的中点Q,当△EAB面积最大时,在x轴上找一点R使得|RE一RQ|值最大,请求出R点的坐标及|RE﹣RQ|的最大值;(2)如图2,在(1)的条件下,将△PED绕E点旋转得△ED′P′,当△AP′P是以AP为直角边的直角三角形时,求点P′的坐标.参考答案一、选择题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共5小题,每小题3分,满分15分) (共5题;共15分) 11-1、12-1、13-1、14-1、15-1、三、解答题(共8小题,满分75分) (共8题;共24分)16-1、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-2、。
河南省许昌市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2020·无锡模拟) -4的倒数是()A .B .C .D .2. (2分)(2019·邹平模拟) 在,,,,,,这6个数中,无理数共有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2020九上·博罗期末) 如图图形中,是中心对称图形的是()A .B .C .D .4. (2分)如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是()A . 三视图都一致B . 主视图C . 俯视图D . 左视图5. (2分)(2016·龙华模拟) 已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A .B .C .D .6. (2分)如图,AA′,BB′分别是∠EAB,∠DBC的平分线.若AA′= BB′=AB,则∠BAC的度数为()。
A . 25ºB . 30ºC . 12ºD . 18º二、填空题 (共10题;共13分)7. (3分)﹣5的绝对值是________,﹣的倒数是________,6的相反数是________.8. (1分)(2017·钦州模拟) 当x=________时,分式的值为零.9. (1分)(2018·武昌模拟) 已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则=________10. (1分) (2011·宜宾) 某城市在“五一”期间举行了“让城市更美好”大型书画、摄影展览活动.据统计,星期一至星期日参观的人数分别是:2030、3150、1320、1460、1090、3150、4120,则这组数据的中位数和众数分别是________.11. (1分) (2020八下·越秀期中) 在▱ABCD中,AB:BC=4:3,周长为28cm,则AD=________cm.12. (1分) (2015八下·伊宁期中) 一直角三角形的两直角边长为12和16,则斜边上中线长为________13. (1分)写出一个平面直角坐标系中第三象限内点的坐标:(________ ).14. (2分)(2020·衡水模拟) 等边△ABC的边长为2,等边△DEF的边长为1,把△DEF放在△ABC中,使∠D 与∠A重合,点E在AB边上,如图所示,此时点E是AB的中点,在△ABC内部将△DEF按照下列的方式旋转:绕点E顺时针旋转,使点F与点B重合,完成一次操作,此时点D是BC的中点,△DEF旋转了________°;再绕点D顺时针旋转,使点E与点C重合,完成第二次操作;…每次绕△DEF的某个顶点连续旋转下去,第11次操作完成时,CD=________.15. (1分)如图,边长为a的正六边形内有两个三角形(数据如图),则=________ .16. (1分)如图所示,阴影部分的面积是,AE=ED,,则的面积是________cm2 .三、解答题 (共11题;共109分)17. (5分)(2017·石狮模拟) 计算:﹣|﹣ |+()﹣1 .18. (10分) (2019九上·孝昌期末) 已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1 , x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1 , x2满足,求k的值.19. (5分) (2015七下·威远期中) 阅读理解题:阅读:解不等式(x+1)(x﹣3)>0解:根据两数相乘,同号得正,原不等式可以转化为:或解不等式组得:x>3解不等式组得:x<﹣1所以原不等式的解集为:x>3或x<﹣1问题解决:根据以上阅读材料,解不等式(x﹣2)(x+3)<0.20. (10分)(2017·蒙自模拟) 有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.21. (9分)(2016·海南) 在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个)频数(株)频率25≤x<3560.135≤x<45120.245≤x<55a0.2555≤x<6518b65≤x<7590.15请结合图表中的信息解答下列问题:(1)统计表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为________°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有________株.22. (15分) (2019七下·江门期末) 如图,在直角坐标系中,点是第一象限内的点,直线与轴交于点,过点作轴,垂足为,过点的直线与轴交于点,已知直线上的点的坐标是方程的解,直线上的点的坐标是方程的解(1)求点的坐标(2)证明:(要求写出每一步的推理依据);(3)求点的坐标,并求三角形的面积23. (10分) (2020九下·台州月考) 如图1是某小区入口实景图,图2是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙上的O点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据: 1.73)24. (10分) (2019八下·乐清期末) 如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且(1)求的长:(2)若,求k的值.25. (10分)(2018·武汉) 如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB 于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.26. (15分) (2017九上·黄冈期中) 在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C( ,0),如图所示:抛物线经过点B。
河南省许昌市2017年高考数学二模试卷(文科)(解析版)一、选择题:本大题共13小题,每小题5分,共60分。
在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合U=R,A={x|(x﹣2)(x+1)≤0},B={x|0≤x<3},则∁U(A∪B)=()A.(﹣1,3) B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,﹣1]∪[3,+∞)2.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式e ix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,表示的复数e﹣iπ在复平面内位于()A.第一象限 B.在实数轴上C.第三象限 D.第四象限3.已知向量,且,则实数k的值为()A.﹣2 B.2 C.8 D.﹣84.下列命题正确的是( )A.∃x0∈R,sinx0+cosx0=B.∀x≥0且x∈R,2x>x2C.已知a,b为实数,则a>2,b>2是ab>4的充分条件D.已知a,b为实数,则a+b=0的充要条件是=﹣15.命题“∀x≥0且x∈R,2x>x2"的否定是( )A.∃x0≥0且x0∈R,B.∀x≥0且x∈R,2x≤x2C.∃x0≥0且x0∈R, D.∃x0<0且x0∈R,6.已知蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,称其为“安全飞行”,则蝴蝶“安全飞行”的概率为( )A.B. C.D.7.某几何体的三视图如图所示,则该几何体的体积为()A.3B.C.D.8.已知x,y均为正实数,且,则x+y的最小值为()A.24 B.32 C.20 D.289.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b的值分别是21,28,则输出a的值为()A.14 B.7 C.1 D.010.若函数的图象的对称中心在区间内有且只有一个,则φ的值可以是()A.B.C.D.11.已知函数f(x)=的最大值为M,最小值为m,则M+m 等于()A.0 B.2 C.4 D.812.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )A.B.C.D.13.已知函数的图象与直线x﹣2y=0相切,当函数g(x)=f (f(x))﹣t恰有一个零点时,实数t的取值范围是( )A.{0} B.[0,1] C.[0,1)D.(﹣∞,0)。
2017年河南省许昌市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的倒数是()A.2 B.C.﹣2 D.﹣2.已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.正方体3.下列运算中,结果正确的是()A.(a3)2=a6B.(ab)3=a3b C.a•a3=a3D.a8÷a4=a24.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°5.估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时 D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣=.12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE 折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D 落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C 的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2017年河南省许昌市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的倒数是()A.2 B.C.﹣2 D.﹣【考点】17:倒数.【分析】根据倒数定义求解即可.【解答】解:﹣2的倒数是﹣.故选:D.2.已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.正方体【考点】U3:由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选B.3.下列运算中,结果正确的是()A.(a3)2=a6B.(ab)3=a3b C.a•a3=a3D.a8÷a4=a2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=a3b3,故B错误;(C)原式=a4,故C错误;(D)原式=a4,故D错误4.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°【考点】JA:平行线的性质.【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A 的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.5.估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】2B:估算无理数的大小.【分析】本题需先根据的整数部分是多少,即可求出它的范围.【解答】解:∵≈4.12,∴的值在4和5之间.故选C.6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数【考点】W4:中位数.【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【考点】AB:根与系数的关系.【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得,m=﹣1,故选B.8.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.6【考点】S4:平行线分线段成比例;L5:平行四边形的性质.【分析】根据平行四边形的对边相等可得AD=BC,然后求出AE=AD=BC,再根据平行线分线段成比例定理求出AF、FC的比,然后求解即可.【解答】解:在▱ABCD中,AD=BC,AD∥BC,∵E为AD的三等分点,∴AE=AD=BC,∵AD∥BC,∴==,∵AC=12,∴AF=×12=4.8.故选B.9.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时 D.无法确定【考点】E6:函数的图象.【分析】由往返路程相同结合速度=路程÷时间,即可求出小明返程的速度,此题得解.【解答】解:15×1÷(3.5﹣2)=10(千米/小时),∴小明返程的速度为10千米/小时.故选B.10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A【考点】MC:切线的性质.【分析】连接OC.根据圆的直径的性质、切线的性质、平行线的性质可以判定A、B、D 正确.【解答】解:连接OC.∵AB是直径,∴∠ACB=90°,∴AC⊥BC,故A正确,∵OD∥BC,∴∠EBC=∠BEO,∵OE=OB,∴∠OEB=∠OBE,∴∠EBO=∠EBC,∴BE平分∠ABC,故B正确,∵DC是切线,∴DC⊥CO,∴∠DCO=90°,∴∠D+∠DOC=90°,∵BC⊥AC,OD∥BC,∴OD⊥AC,∵OA=OC,∴∠AOD=∠DOC,∴∠A+∠AOD=90°,∴∠A=∠D,故D正确.无法判断C正确,故选C.二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣=﹣.【考点】2C:实数的运算.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可得到结果.【解答】解:原式=﹣=﹣,故答案为:﹣12.写出一个二次函数解析式,使它的图象的顶点在y轴上:y=x2(答案不唯一).【考点】H3:二次函数的性质.【分析】根据二次函数的图象的顶点在y轴上,则b=0,进而得出答案.【解答】解:由题意可得:y=x2(答案不唯一).故答案为:y=x2(答案不唯一).13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图然后依据树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率.【解答】解:设两个小组分别为A,B,如图所示,共有8种等可能的结果:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB;∵甲、乙、丙三位同学被分在同一小组的有6种情况,∴=,故答案为:.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【考点】MO:扇形面积的计算;KW:等腰直角三角形.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,=×2×2=2,∴S△ABCS扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE 折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D 落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为或.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】设AE=A′E=x,则DE=ED′=15﹣x,只要证明BD′=ED′=15﹣x,在Rt△BA′D′中,根据BD′2=BA′2+A′D′2,列出方程即可解决问题.【解答】解:∵把△ABE沿BE折叠,使点A落在点A′处,∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°,∵把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,设AE=A′E=x,则DE=ED′=15﹣x,∵AD∥BC,∴∠1=∠EBC,∵∠1=∠2,∴∠2=∠EBD′,∴BD′=ED′=15﹣x,∴A′D′=15﹣2x,在Rt△BA′D′中,∵BD′2=BA′2+A′D′2,∴82+(15﹣2x)2=(15﹣x)2,解得x=,∴AE=或.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.【考点】6D:分式的化简求值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据分式的减法和除法可以化简题目中的式子,根据(a﹣2)2+|b﹣2a|=0可以求得a、b的值,然后代入化简后的式子即可解答本题.【解答】解:(﹣)÷====,∵(a﹣2)2+|b﹣2a|=0,∴,得,∴原式=.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是100;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?【考点】V8:频数(率)分布直方图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由3~6吨的户数及其百分比可得样本容量;(2)总户数减去其他分组的户数之和求得6~9吨的户数,即可补全直方图,用6~9吨的户数所占比例乘以360度可得圆心角度数;(3)总户数乘以样本中3~12吨的户数所占比例即可得.【解答】解:(1)此次抽样调查的样本容量是10÷10%=100,故答案为:100;(2)6~9吨的户数为100﹣(10+38+24+8)=20(户),补全频数分布直方图如下:扇形图中“6吨﹣﹣9吨”部分的圆心角的度数为360°×=72°;(3)1000×=680,答:该社区约有680户家庭的用水全部享受基本价格.18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为75°或15°时,四边形DEFG是正方形.【考点】MA:三角形的外接圆与外心;LF:正方形的判定;LN:中点四边形.【分析】(1)只要证明DG=EF,DG∥EF即可解决问题;(2)①只要证明四边形DEFG是矩形即可解决问题;②分点C在优弧AB或劣弧AB上两种切线讨论即可;【解答】解:(1)四边形DEFG是平行四边形.∵点D、E、F、G分别是CA、OA、OB、CB的中点,∴DG∥AB,DG=AB,EF∥AB,EF=AB,∴DG∥EF,DG=EF,∴四边形DEFG是平行四边形;(2)①连接OC.∵CA=CB,∴=,∴DG⊥OC,∵AD=DC,AE=EO,∴DE∥OC,DE=OC=1,同理EF=AB=,∴DE⊥DG,∴四边形DEFG是矩形,∴四边形DEFG的面积=.故答案为;②当C是优弧AB的中点时,四边形DEFG是正方形,此时∠CAB=75°,当C是劣弧AB的中点时,四边形DEFG是正方形,此时∠CAB=15°,故答案为75°或15°.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C 的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】记河南岸为BE,延长CA交BE于点D,则CD⊥BE,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中利用三角函数即可列方程求解.【解答】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37.答:这段河的宽约为37米.20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.【考点】G8:反比例函数与一次函数的交点问题;A3:一元二次方程的解;F9:一次函数图象与几何变换.【分析】(1)根据直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点,即可得到b,k的值;(2)运用数形结合思想,根据图象中,直线与双曲线的上下位置关系,即可得到自变量x的取值范围;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣16,当直线与双曲线只有一个交点时,根据△=0,可得m的值.【解答】解:(1)∵直线y=﹣x+b过点B(4,1),∴1=﹣4+b,解得b=5;∵反比例函数y=的图象过点B(4,1),∴k=4;(2)由图可得,在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,1<x<4;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,∵直线y=﹣x+5﹣m与双曲线y=只有一个交点,令﹣x+5﹣m=,整理得x2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣16=0,解得m=9或1.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为50元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?【考点】HE:二次函数的应用.【分析】(1)根据销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克,可以求得某天售出该化工原料40千克,当天的销售单价;(2)①根据该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡,可以列出相应的方程,从而可以求得原料的进价;②根据题意可以求得每天的最大利润,从而可以求得少需多少天才能还清借款.【解答】解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,(60﹣x)×2+20=40,解得,x=50,故答案为:50;(2)①设这种化工原料的进价为a元/千克,当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),则(46﹣a)×48=108+90×2,解得,a=40,即这种化工原料的进价为40元/千克;②设公司某天的销售单价为x元/千克,每天的收入为y元,则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,∴当x=55时,公司每天的收入最多,最多收入450元,设公司需要t天还清借款,则t≥10000,解得,t≥,∵t为整数,∴t=62.即公司至少需62天才能还清借款.22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是DE=BG;②直线DE、BG之间的位置关系是DE⊥BG.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.【考点】LO:四边形综合题.【分析】(1)证明△AED≌△AGB可得出两个结论;(2)①根据正方形的性质得出AE=AG,AD=AB,∠EAG=∠DAB=90°,求出∠EAD=∠GAB,根据SAS推出△EAD≌△GAB即可;②根据全等三角形的性质得出∠GBA=∠EDA,求出∠DHB=90°即可;(3)先确定点P到CD所在直线距离的最大值和最小值的位置,再根据图形求解.【解答】解:(1)发现①线段DE、BG之间的数量关系是:DE=BG,理由是:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BDA=90°,∴∠BAG=∠BAD=90°,∵四边形AEFG是正方形,∴AE=AG,∴△AED≌△AGB,∴DE=BG;②直线DE、BG之间的位置关系是:DE⊥BG,理由是:如图2,延长DE交BG于Q,由△AED≌△AGB得:∠ABG=∠ADE,∵∠AED+∠ADE=90°,∠AED=∠BEQ,∴∠BEQ+∠ABG=90°,∴∠BQE=90°,∴DE⊥BG;故答案为:①DE=BG;②DE⊥BG;(2)探究(1)中的结论仍然成立,理由是:①如图3,∵四边形AEFG和四边形ABCD是正方形,∴AE=AG,AD=AB,∠EAG=∠DAB=90°,∴∠EAD=∠GAB=90°+∠EAB,在△EAD和△GAB中,,∴△EAD≌△GAB(SAS),∴ED=GB;②ED⊥GB,理由是:∵△EAD≌△GAB,∴∠GBA=∠EDA,∵∠AMD+∠ADM=90°,∠BMH=∠AMD,∴∠BMH+∠GBA=90°,∴∠DHB=180°﹣90°=90°,∴ED⊥GB;(3)应用将正方形AEFG绕点A逆时针旋转一周,即点E和G在以A为圆心,以2为半径的圆上,过P作PH⊥CD于H,①当P与F重合时,此时PH最小,如图4,在Rt△AED中,AD=4,AE=2,∴∠ADE=30°,DE==2,∴DF=DE﹣EF=2﹣2,∵AD⊥CD,PH⊥CD,∴AD∥PH,∴∠DPH=∠ADE=30°,cos30°==,∴PH=(2﹣2)=3﹣;②∵DE⊥BG,∠BAD=90°,∴以BD的中点O为圆心,以BD为直径作圆,P、A在圆上,当P在的中点时,如图5,此时PH的值最大,∵AB=AD=4,由勾股定理得:BD=4,则半径OB=OP=2∴PH=2+2.综上所述,点P到CD所在直线距离的最大值是2+2,最小值是3﹣.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)先利用抛物线的对称性得到A(3,0),则可设交点式y=a(x+1)(x﹣3),然后把C点坐标代入求出a即可;(2)先利用待定系数法其出直线AC的解析式为y=﹣x+4;令对称轴与直线AC交于点D,与x轴交于点E,作PH⊥AD于H,如图1,易得D(1,),利用勾股定理计算出AD=,设P(1,m),则PD=﹣m,PH=PE=|m|,证明△DPH∽△DAE,利用相似比得到=,然后解方程可得到m的值;(3)设Q(t,﹣t2+t+4)(0<t<4),讨论:当CM为对角线时,四边形CQMN为菱形,如图2,根据菱形的性质判定点N和Q关于y轴对称,则N(﹣t,﹣t2+t+4),然后把N(﹣t,﹣t2+t+4)代入y=﹣x+4得t的方程,从而解方程求出t得到此时Q点坐标;当CM为菱形的边时,四边形CNQM为菱形,如图3,利用菱形的性质得NQ∥y轴,NQ=NC,则N(t,﹣t+4),所以NQ=﹣t2+4t,再根据两点间的距离公式计算出CN=t,所以﹣t2+4t=t,从而解方程求出t得到此时Q点坐标.【解答】解:(1)∵点A与点B(﹣1,0)关于直线x=1对称,∴A(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,4)代入得a•1•(﹣3)=4,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+4;(2)设直线AC的解析式为y=kx+p,把A(3,0),C(0,4)代入得,解得,∴直线AC的解析式为y=﹣x+4;令对称轴与直线AC交于点D,与x轴交于点E,作PH⊥AD于H,如图1,当x=1时,y=﹣x+4=,则D(1,),∴DE=,在Rt△ADE中,AD==,设P(1,m),则PD=﹣m,PH=PE=|m|,∵∠PDH=∠ADE,∴△DPH∽△DAE,∴=,即=,解得m=1或m=﹣4,即m的值为1或﹣4;(3)设Q(t,﹣t2+t+4)(0<t<4),当CM为对角线时,四边形CQMN为菱形,如图2,则点N和Q关于y轴对称,∴N(﹣t,﹣t2+t+4),把N(﹣t,﹣t2+t+4)代入y=﹣x+4得t+4=﹣t2+t+4,解得t1=0(舍去),t2=1,此时Q点坐标为(1,);当CM为菱形的边时,四边形CNQM为菱形,如图3,则NQ∥y轴,NQ=NC,∴N(t,﹣t+4),∴NQ=﹣t2+t+4﹣(﹣t+4)=﹣t2+4t,而CN2=t2+(﹣t+4﹣4)2=t2,即CN=t,∴﹣t2+4t=t,解得t1=0(舍去),t2=,此时Q点坐标为(,),综上所述,点Q的坐标为(1,)或(,).2017年6月30日。