2011年春季学期《信息与计算科学专业》数值分析课程考试试卷(A卷)答案及评分标准
- 格式:doc
- 大小:302.50 KB
- 文档页数:3
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。
则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。
2.设向量T n x )2,1,0( =,则=∞x 。
3.用牛顿法求方程0)(=x f 的根的公式为 。
4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。
三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
中南林业科技大学课程考试卷一、单项选择题(每小题4分,共20分)1. 用3.1415作为π的近似值时具有( B )位有效数字。
(A) 3 (B) 4 (C) 5 (D) 62. 下列条件中,不是分段线性插值函数 P(x)必须满足的条件为( )。
(A) P(x) 在各节点处可导 (B) P(x) 在 [a ,b] 上连续 (C) P(x) 在各子区间上是线性函数 (D) P(x k )=y k ,(k=0,1, … ,n)3. n 阶差商递推定义为:01102110],,[],,[],,[x x x x x f x x x f x x x f n n n n --=- ,设差商表如下:那么差商f [1,3,4]=( )。
A. (15-0)/(4-1)=5B. (13-1)/(4-3)=12C. 4D. -5/4 4. 分别改写方程042=-+x x 为42+-=x x 和2ln /)4ln(x x -=的形式,对两者相应迭代公式求所给方程在[1,2]内的实根,下列描述正确的是:( )(A) 前者收敛,后者发散 (B) 前者发散,后者收敛 (C) 两者均收敛发散 (D) 两者均发散5. 区间[a ,b]上的三次样条插值函数是( )。
A. 在[a ,b]上2阶可导,节点的函数值已知,子区间上为3次的多项式B. 在区间[a ,b]上连续的函数C. 在区间[a ,b]上每点可微的函数D. 在每个子区间上可微的多项式二、填空题(每小题4分,共20分)1. 欧拉法的局部截断误差的阶为 ;改进欧拉法的局部截断误差的阶为 ;2. 求解非线性方程01=-x xe 的牛顿迭代公式是 ;3. 已知数据对),(k k y x (k =1,2,…,n),用直线y =a +bx 拟合这n 个点,则参数a 、b 满足的法方程组是 ;4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20302a a a a A 给出使追赶法数值稳定地求解方程组3,R b b Ax ∈=的a 的取值范围(最大取值区间)是 ; 5. 求积公式)43(32)21(31)41(32)(10f f f dx x f +-≈⎰具有 次代数精度。
线封密三峡大学试卷班级姓名学号2012年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1.设T x )3,4,2(-=,则 2x 29= (1分) ∞x4= (1分).2. 为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确(2分).3.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ(2分).4. 设()1537++=x x x f ,则差商0]2,,2,2,2[821= f (2分).5. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分) .6.矩阵范数),2,1(||||∞=p A p 与谱半径)(A ρ有一个不等式关系,表现为p A A ||||)(≤ρ(2分).7.将⎪⎪⎭⎫ ⎝⎛=231264A 进行LU 分解(即Doolittle 分解),则 ⎪⎪⎭⎫⎝⎛=1301L (2分);⎪⎪⎭⎫ ⎝⎛=5064U (2分).二、(10分)用最小二乘法解下列超定线性方程组:⎪⎪⎩⎪⎪⎨⎧=+=+=-=+7262353114221212121x x x x x x x x 解: +-+=221)1142(),(x x y x Q 221)353(--x x+-++221)62(x x 221)72(-+x x要使总残差达到最小,必有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0021x Q x Q⇒⎩⎨⎧-=-=-48463513182121x x x x⇒⎪⎪⎩⎪⎪⎨⎧==9111327383021x x 或⎩⎨⎧≈≈24.104.321x x (10分)三、(10分)给定函数表84.087.090.092.094.096.097.098.099.011/sin 19.08.07.06.05.04.03.02.01.00x x x 利用所有数据,用复合辛普森(Simpson )公式计算dxx xI ⎰=10sin 的近似值. 解: 用复合辛甫生Simpson 公式,小区间数5=n , 步长2.0)00.1(51=-⨯=h)90.094.097.099.0(21[62.05+++⨯+=≈S I]84.0)87.092.096.098.01(4++++++ 9453.0= (10分)线封密三峡大学试卷班级姓名学号四、(12分)设nn ij Ra A ⨯∈=)(对称,顺序主子式),,2,1(0n i i =≠∆则T LDL A =分解存在,其中L 为单位下三角形矩阵,D 为对角阵, 试写出求方程组b Ax =解的计算步骤(用矩阵表示), 此法称为改进平方根法. 试用它求解方程组:⎩⎨⎧=+=+635310121022121x x x x 解: 由T LDL A =可得b Ax =的方程为b x LDL T=,令y x DL T =,则b Ly =.计算步骤: (1) 将A 直接分解TLDL A =,求出 D L , (2) 求解方程b Ly =(3) 求解方程y D x L T 1-= (4分)⎢⎣⎡102 ⎥⎦⎤5310⎥⎦⎤⎢⎣⎡=10121l ⎥⎦⎤⎢⎣⎡2100d d ⎥⎦⎤⎢⎣⎡10121l 比较矩阵两边的元素,可得: ,521=l ,21=d .32=d由b Ly =可得 ⎥⎦⎤⎢⎣⎡1501⎥⎦⎤⎢⎣⎡21y y ⎥⎦⎤⎢⎣⎡=6312 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒31221y y 由y D x L T1-=得 ⎥⎦⎤⎢⎣⎡1051⎥⎦⎤⎢⎣⎡21x x ⎥⎦⎤⎢⎣⎡=16 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒1112x x (12分)五、(12分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为 ()x L 110100101y x x x x y x x x x --+--=1101101-⨯--+⨯--=e x x x e x 11-+-=. (8分) ())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()1)0(max 2110--≤≤≤x x x 令 ),1()(-=x x x h 由0)(='x h ,求得一个驻点得211=x于是 =≤≤|)(|max 10x h x 41)}1(),(),0({max 110=≤≤h x h h x 所以有())()(11x L x y x R -=)(max 2110x h x ≤≤≤81= (12分)六、(10分) 在区间[0,2]上利用压缩映像原理验证迭代格式1012.k x k +==,,,的敛散性. 解:(1) 记x x +=2)(ϕ,则xx +='221)(ϕ.当]2,0[∈x 时,];2,0[]2,2[)]2(),0([)(⊂=∈ϕϕϕx (5分) (2) .1221)0(|)(|<='≤'ϕϕx 因此,对]2,0[0∈∀x ,迭代格式1012.k x k +==,,, 产生的序列∞=0}{k k x 收敛. (10分)线封密三峡大学试卷班级姓名学号七、(12分)已知方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛121212212321x x x a a a (1)写出解此方程组的雅可比(Jacobi)迭代法公式; (2)证明当4>a 时,雅可比(Jacobi)迭代法收敛; (3)取5=a ,T x)101,51,101()0(=,求出)2(x . 解:(1)对.,3,2,1 =i 从第i 个方程解出i x ,得雅可比法迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--=--=+++ ,1,0,)21(1)222(1)21(1)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1n x x a x x x a x x x a x n n n n n n n n n (5分) (2)当4>a 时,A 为严格对角占优矩阵,所以雅可比迭代法收敛. (10分)(3)取5=a ,Tx )101,51,101()0(= 由迭代公式计算得 101)1(1=x , 258)1(2=x , 101)1(3=x . 25013)2(1=x , 258)2(2=x , 25013)2(3=x . (12分)八、(10分)设初值问题:⎩⎨⎧=≤≤++='0)0(10,122y x y x y , (1) 写出用Euler 方法、取步长1.0=h 解上述初值问题数值解的公式; (2) 写出用改进Euler 方法、取步长1.0=h 解上述初值问题数值解的公式. 解: (1)取步长1.0=h 解上述初值问题数值解的Euler 公式为;9,,1,0),1(1.0),(0221==++⨯+=+=+y n y x y y x hf y y n n n n n n n (5分)(2)取步长1.0=h 解上述初值问题数值解的改进Euler 公式为:)2(21.0)1(1.002121221221=⎪⎩⎪⎨⎧+++++=++⨯+=++++y y x y x y y y x y y n n n n n n n n n n (10分)九、(8分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.解: 答案略.。
上海海事大学2011---2012学年第 2 学期 研究生 数值分析 课程考试试卷A (答案)学生姓名: 学号: 专业:一.填空题(每小格2分共30分)1. 利用Jacobi 迭代法求解Ax=b 时,其迭代矩阵是)(1U L D B J +=-;当系数矩阵A 满足 严格对角占优 时,Jacobi 迭代法收敛 。
x 0 1 2 42. 已知函数)(x f 有数据f 1 9 23 3 则其3次Lagrange插值多式的基函数)(0x l 为147878123+-+-x x x 插值余项为 )4)(2)(1(!4)()4(---x x x x f ξ3. 求解常微分方程初值问题⎩⎨⎧=≤≤=η)(),,('a y bx a y x f y的Euler 公式为),(1i i i i y x hf y y +=+, 它是1 阶方法。
4. 设,1457)(348++-=x x x x f 则差商=]5,...,5,5[810f 7 =]2,...2,2[910f 05. 对于求解Ax=b ,如果右端有b δ的扰动存在而引起解的误差为x δ,则相对误差≤xxδ bbA C o n d δ)(6. Gauss 型数值求积公式)()(0i bani ix f Adx x f ⎰∑=≈的代数精度具有2n+1___次,求积系数的表达式为i A =⎰bai dx x l )(2,且=∑=ni iAb-a7. 幂法是求矩阵 按模最大 特征值和特征向量的计算方法.Jacobi 法是计算 实对称矩阵的所有 特征值和特征向量的计算方法8. 对于给定的正数k ,Newton 法解二次方程02=-k x 的迭代公式为)(21)()(1nn n n n n x kx x f x f x x +='-=+ 二.设函数42)(x x f =,已知188)(244+-=x x x T ,试利用切比雪夫多项式最小零偏差的性质,求函数)(x f 在区间[-1,1]上的次数低于4的最佳一致逼近。
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
线
封
密三峡大学试卷
班级
姓名
学号
2011年春季学期
《数值分析》课程考试试卷( A 卷)答案及评分标准
注意:1、本试卷共3页;
2、考试时间:120 分钟;
3、姓名、学号必须写在指定地方;
一、(16分)填空题
1. 已知1125A ⎡⎤
=⎢
⎥⎣⎦
,则1A 6= (1分),∞A 7= . (1分) 2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足
1|)(|<'x ϕ. (2分)
3. 设),,2,1,0(,,53)(2 ==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .
(2分)
4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是
.2,1,0,)
(1)
(1 ='---
=+k x f x f x x x k k k k k (2分)
5. 用二分法求方程01)(3
=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)
6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -
+1改写为
x
x ++11以保证计算结果比较精确.(2分)
7. 将2111A ⎛⎫
= ⎪⎝⎭作Doolittle 分解(即LU 分解),
则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫
= ⎪⎝⎭
(2分)
二、(10分)用最小二乘法解下列超定线性方程组:
⎪⎩⎪
⎨⎧=-=+=+2
724
2
12121x x x x x x 解:2
3
222121,e e e x x ++=)(ϕ 221221221)2()72()4(--+-++-+=x x x x x x
由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212
211
x x x x x x ϕϕ
(8分)
得法方程组 ⎩⎨⎧=+=+1662132321
21x x x x 7231=⇒x , 711
2=x
所以最小二乘解为: 7231=x 7
112=x . (10分)
三、(10分)已知)(x f 的函数值如下表
2
5.15.001)(1
5.005.01---x f x
用复合梯形公式和复合Simpson 公式求
dx x f ⎰
-1
1
)(的近似值.
解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[4
1
=--⨯=
h )]1())5.0()0()5.0((2)1([2
4f f f f f h
T +++-+-=
.
线
封
密三峡大学试卷
班级
姓名
学号
25.1]2)5.15.00(21[2
5
.0=++++-=
(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[2
1
=--⨯=h
)]1())5.0()5.0((4)0(2)1([62f f f f f h
S ++-+⨯+-=
33.16
8
]2)5.10(45.021[61≈=+++⨯+-= (10分)
四、(12分)初值问题 ⎩⎨⎧=>+='0
)0(0
,y x b ax y
有精确解 bx ax x y +=
2
2
1)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为
n n n n ahx y x y 2
1
)(=
-=ε 证: Euler 公式为:),(111---+=n n n n y x hf y y
代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:
bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……
)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)
因nh x n =,于是 )]1(21[2
-++++=n ah bx y n n 2
)1(2
n
n ah bx n -+=
=n n n bx x x a
+-12
∴n n n y x y -=)(ε)2(2112n n n n n bx x x a
bx ax +-+=-
=n n n x x x a )(21--=n hx a 2 =2
2
1anh (12分)
五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插
值多项式),(1x L 并估计插值误差.
解: 建立Lagrange 公式为
()=x L 110
10
0101y x x x x y x x x x --+--=
10101101-⨯--+⨯--=
e x x x e x 11-+-=.(8分) ())1)(0(!
2)
()()(11--''=-=x x y x L x y x R ξ )10(<<ξ
()8
1
1)0(max 2110≤--≤
≤≤x x x (10分)
六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式
,1,0,4ln 1==+k x x k k 的敛散性.
解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .
因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1
|
|)(|<='x
x ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式
),1,0(,4ln 1 ==+k x x k k (10分)
线
封
密三峡大学试卷
班级
姓名
学号
七、(10分)试构造方程组
⎩⎨
⎧=+=+4
233
22121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:
⎩⎨
⎧=+=+324
2321
21x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和
GS 迭代格式一定收敛.
收敛的J 迭代格式为:
⎪⎪⎩
⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)
收敛的GS 迭代格式为:
⎪⎪⎩
⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)
(2)1(1k k k k x x x x .,1,0 =k (10分)
八、(12分)已知4
3
,21,41210===
x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;
2)指明求积公式所具有的代数精度.
解:1)过这3个点的插值多项式
)()
)(())(()())(()
)(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=
+
)()
)(()
)((2021201x f x x x x x x x x ----
⎰⎰=∑=≈∴)()()(2
210
10k k k x f A dx x p dx x f ,
其中: ⎰⎰=----=----=3
2)4341)(2141()
43
)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=3
1)4
321)(4121()
43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=3
22143)(4143()
21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]4
3(2)21()41(2[31)(10
f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将
43,)(x x x f =代入上述求积公式,有:
⎰+-==]43(2)21(41(2[31413333
10dx x ⎰+-≠=])4
3(2)21()41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)
九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。