初二数学轴对称知识点总结及练习题详解
- 格式:doc
- 大小:497.21 KB
- 文档页数:12
第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
2024年初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。
轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。
轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。
以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。
2. 轴线:轴线是指对称图形相对出现的那根线。
3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。
- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。
- 对称轴的两侧的点与对称轴上的一点对称关系。
二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。
如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。
2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。
3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。
三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。
2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。
3. 三阶图形:五角星、六边形等。
四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。
2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。
有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。
五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。
轴对称(复习一讲义)课前预习1.剪纸艺术源远流长,是中华民族智慧的结晶,为我们的生活添加了别样的色彩.请欣赏以下美丽的剪纸图片,你发现它们有什么共同的特点?2.做一做,想一想在纸上画一条线段AB,并将线段对折,思考:(1)折痕两边的线段________(填“相等”或“不相等”);(2)折痕与线段AB____________(填“垂直”或“不垂直”);(3)在折痕上任找一点P,并连接AP,BP,沿着折痕对折,可发现AP_____BP(填“>”,“<”或“=”).3.如图,OP平分∠AOB,PM⊥OA于点M,PN⊥OB于点N,若PM=4 cm,则PN=______cm.PNMBOA知识点睛1.如果把一个图形沿一条直线折叠后能够与另一个图形完全重合,则称这两个图形__________,这条直线叫做_________.2.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做__________,这条直线叫做_______.3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴___________,对应线段________,对应角________.4.垂直平分线性质定理:___________________________________________________.5.角平分线性质定理:___________________________________________________.精讲精练1. 如图,在10×10的正方形网格中作图:作出△ABC 关于直线l 的对称图形△A 1B 1C 1.lC BA2.3. 下列四个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4. 如图是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB 的对应线段是_________,EF 的对应线段是_________,∠A 的对应角是______.连接CE 交l 于点O ,则_____⊥_____,且________=________.lB D F HGE OCA A EB D C第4题图 第5题图5. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使点D 落在BC 边上的点F处.若∠BAF =60°,则∠AEF =_____.6. 如图,先将正方形纸片ABCD 对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样得到的△ADH 中( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠=D .AD DH AH ≠≠HN M ED CAA EBDC第6题图 第7题图7. 已知:如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于点D ,连接AD .若AC =4 cm ,BC =8 cm ,则△ADC 的周长为__________.8. 已知:如图,在△ABC 中,DF ,EG 分别是AB ,AC 的垂直平分线,且△ADE 的周长为32 cm ,则BC =__________.A GEDBF CP DNOMCA B第8题图第9题图9. 已知:如图,点P 关于OA ,OB 的对称点分别为C ,D ,连接CD ,交OA 于点M ,交OB 于点N .若△PMN 的周长为8,则CD 的长为_________.10. 如图,MD ,ME 分别为△ABC 的边AB ,BC 的垂直平分线,若MA =3,求MC 的长度.MBC DE11. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =3,则PQ 的最小值是____________.QP MNAOE DC第11题图 第12题图 第13题12. 已知:如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,DE ⊥AB 于E ,若CD =3 cm ,AB =10 cm ,则△ABD 的面积为_________.13. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,AB =3 cm ,AC =2 cm ,则S △ABD :S△ACD=_________.14. 已知:如图,在四边形ABCD 中,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB .求证:MB =MC .ABCD MABCD【参考答案】课前预习1.都是左右两边对称的图形2.(1)相等(2)垂直(3)=3. 4知识点睛1.成轴对称,对称轴2.轴对称图形,对称轴3.垂直平分,相等,相等4.线段垂直平分线上的点到这条线段两个端点的距离相等5.角平分线上的点到这个角的两边的距离相等精讲精练1.作图略2.作图略3. C4.GH,CD,∠GCE,l;OC,OE5.75°6. B7.12cm8.32cm9.810.MC=3提示:连接ME,由垂直平分线定理可得结论11. 312.15cm213.3:214.证明略提示:过点M作ME⊥AD于点E,由角平分线定理可得结论轴对称(复习二习题)例题示范例1:已知:如图,AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ,垂足分别为点F ,G ,DE 是BC 的垂直平分线. 求证:BF =CG .【思路分析】 读题标注:① 从条件出发,看到角平分线考虑“角平分线上的点到角两边的距离相等”,结合题目其他条件,EF ⊥AF ,EG ⊥AC ,可得EF =EG ;② 看到垂直平分线考虑“垂直平分线上的点到线段两端点的距离相等”,因此连接BE ,CE(如图所示),得到BE =CE ;③ 题目所求为BF =CG ,证明△BEF ≌△CEG 即可. 【过程书写】证明:如图,连接BE ,CE ∵AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ∴EF =EG∵DE 是BC 的垂直平分线 ∴BE =CE∵EF ⊥AF ,EG ⊥AC ∴∠BFE =∠CGE =90° 在Rt △BEF 和Rt △CEG 中BE CE EF EG =⎧⎨=⎩(已证)(已证)∴Rt △BEF ≌Rt △CEG (HL ) ∴BF =CG (全等三角形对应边相等)GFDCB A巩固练习1.下列是轴对称图形的是()A.B.C.D.2.一个风筝的设计图如图所示,其主体部分(四边形ABCD)关于线段BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断错误的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD3.已知:如图,在Rt△ABC中,∠C=90°,点E在AC边上,将△ABC沿BE折叠,点C恰好落在AB边上的点D处.若∠A=30°,则∠BED=_______.C EDBODC BA第3题图第4题图4.已知:如图,∠AOB=40°,若CD是OA的垂直平分线,则∠ACB=__________.5.如图,在Rt△ABC中,∠C=90°.BD平分∠ABC,交AC于点D,DE垂直平分AB,垂足为点E.若DE+BD=3cm,则AC=__________cm.EDCBA6.已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交AC于点E,垂足为点D.若BE+CE=12,BC=8,则△ABC的周长为___________.O DBAEDCA7. 作图题:利用网格线,作出△ABC 关于直线DE 对称的图形△A 1B 1C 1.EC BAD8. 已知:如图,P 为∠ABC 内一点,请在AB ,BC 边上各取一点M ,N ,使△PMN 的周长最小.9. 已知:如图,CD 垂直平分线段AB ,E 是CD 上一点,分别连接AC ,BC ,AE ,BE .求证:∠CAE =∠CBE .ED C10. 已知:如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线相交于点O .OD ⊥AB ,OE ⊥AC ,垂足分别为点D ,E . 求证:OD =OE .OE DA11.已知:如图,在锐角三角形ABC中,AD,CE分别是BC,AB边上的高,垂足分别为点D,E,AD与CE相交于点O,连接OB,∠OBC=∠OBA.求证:OA=OC.O E DCBA思考小结1.轴对称的思考层次:①全等变换:对应边__________、对应角__________.②对应点:对应点所连线段被对称轴_________________;对称轴上的点到对应点的距离_____________.③应用:奶站问题等.如图,在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP 最小.BAl【参考答案】巩固练习1. B2. B3.60°4.80°5. 36.327.作图略8.作点P关于BA的对称点O1,作点P关于BC的对称点O2,连接O1O2,分别交BA,BC于点M,N,此时△PMN的周长最小.9.证明略提示:利用线段垂直平分线上的点到这条线段两个端点的距离相等,得出AC=BC,AE=BE,再证明△CAE≌△CBE10.证明略提示:过点O作OF⊥BC于点F,角平分线上的点到角两边的距离相等可得结论11.证明略提示:利用角平分线上的点到这个角的两边的距离相等,得出OD=OE,再证明△COD ≌△AOE思考小结1.①相等、相等②垂直平分;相等④作点A关于街道的对称点A1,连接A1B交街道于点P,则点P即为满足条件的点轴对称(复习三随堂测试)1. 如图,在△ABC 中,AB =AC ,AB 的垂直平分线DE 交AC 于点E ,若△ABC 和△EBC 的周长分别为60 cm 和38 cm ,则△ABC 的腰长为____________,底边长为____________.2. 如图,在△ABC 中,AD 是∠BAC 的平分线,点E ,F 分别在AB ,AC 边上,且∠DEA +∠DF A =180°.求证:DE =DF .【思路分析】(1)读题标注:(2)梳理思路:①从条件出发:看到角平分线考虑角平分线上的点到角两边的距离相等,可作________________,________________,可得②题目所求为DE =DF ,证明____________________【过程书写】 证明:如图,【参考答案】1.22cm,16cm2.思路分析:①DM⊥AB于点M,DN⊥AC于点N,DM=DN过程书写略。
教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。
16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。
数学轴对称的性质知识点总结和重难点精析一、知识梳理1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个关于某直线对称的图形在对应线段或延长线上相交时,交点在对称轴上;(4)对应线段平行(或或在同一直线上)且相等。
3.轴对称的应用:(1)解决与轴对称相关的问题,关键是找到对称轴,然后根据轴对称的性质,找到对称点或对称线段。
(2)确定两个点关于某直线对称的问题,可以以其中一点为对称点,连接对称轴,再找到另一个点的对应点即可。
二、重难点精析1.轴对称的性质是难点,需要灵活运用。
在学习的过程中,可以通过做大量的例题来加深对轴对称性质的理解。
2.解决与轴对称相关的问题时,找到对称轴是关键。
可以通过画图的方式,来找到对称轴,然后根据对称轴的性质解决问题。
3.对于两个点关于某直线对称的问题,可以通过以其中一点为对称点,连接对称轴,再找到另一个点的对应点来解决。
三、例题解析例1:已知A、B两点关于直线m对称,A、B两点间的距离为5cm,AB与直线m的交点为C,AC的长度为2.5cm。
求:(1)B点在A 点的什么位置?(2)B点到直线m的距离为多少?解:(1)因为A、B两点关于直线m对称,所以B点在A点的对称位置,且AB与直线m的交点为C,AC的长度为2.5cm。
因为A、B 两点间的距离为5cm,所以BC的长度也为2.5cm,因此B点在A点的正上方或正下方2.5cm处。
(2)因为B、A两点关于直线m对称,所以BC的长度等于AC的长度,即2.5cm。
因此B点到直线m的距离为2.5cm。
例2:在三角形ABC中,AB=AC=10cm,BC=8cm。
求三角形ABC 的面积。
解:过A点作AD垂直于BC于D点,因为AB=AC=10cm,所以BD=CD=4cm。
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。
专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
第十三章《轴对称》一、知识点归纳(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.2 画轴对称图形一、学习任务1. 能够作一个图形关于一条直线的轴对称图形.体会轴对称和线段垂直平分线的性质.2. 在平面直角坐标系中,会求图形轴对称后的点坐标,能够用轴对称设计简单美观的图案.3. 感受轴对称的美,感受数学的美.二、知识清单轴对称 点的坐标与坐标系三、知识讲解1.轴对称轴对称相关概念如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形(axisymmentric figure ),这条直线就是它的对称轴(axis of symmetry ).把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点(symmetric points ).轴对称的性质① 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;② 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.轴对称作图例题:下列图形成轴对称图形的有( )A. 个B. 个C. 个D. 个解:A.一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形,所以成轴对称图形有 个.54325如图,某小区花坛的形状是左右对称的六边形 ,若 ,则 的度数为( )A. B. C. D. 解:B.根据四边形内角和 ,可得 ,再根据轴对称的性质,.ABCDEF ∠AF C +∠BCF =150∘∠E +∠D 200∘210∘230∘250∘360∘∠A +∠B =−=360∘150∘210∘∠E +∠D =∠A +∠B =210∘作图题:(写出做法,保留作图痕迹)、 为 为 、 上的两个顶点,请你在 边上找一点 ,使 周长最小?分析:由于 的周长 ,而 是定值,故只需在 上找一点,使 最小.如果设 关于 的对称点为 ,所以只要使 最小即可.作法:① 作 关于 的对称点 ;② 连接 交 于 点;③ 连接 ,则 周长最小, 为所求.M N △ABC AB AC BC P P MN △P MN =P M +P N +MN MN BC P P M +P N M BC M ′P +P N M ′M BC M ′N M ′BC P MP △PMN P描述:2.点的坐标与坐标系有序数对有顺序的两个数 与 组成数对,叫做有序数对(ordered pair ),记作 .当 时, 和 是不同的两个有序实数对.平面直角坐标系在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinatesystem ).水平的数轴称为 轴或横轴,习惯取向右为正方向,竖直的数轴称为 轴或纵轴,习惯取向上为正方向,两坐标轴的交点为平面直角坐标系的原点. 轴和 轴把坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限(quadrant ),按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.点的坐标对于平面内任意一点 ,过点 向 轴、 轴作垂线,垂足在 轴、 轴上对应的数 ,分别叫做点 的横坐标和纵坐标,有序数对 叫做点 的坐标,记作 .坐标轴上的点不属于任何象限.点到坐标轴的距离点 到 轴的距离是点的纵坐标的绝对值,即 ;点 到 轴的距离是点的横坐标的绝对值,即 .各象限的点的坐标点 在第一象限 ,;点 在第二象限 ,;点 在第三象限 ,;点 在第四象限 ,.坐标轴上点的坐标点 在 轴上, 为任意实数;点 在 轴上, 为任意实数;点 既在 轴上,又在 轴上,,即点 的坐标为 .象限角平分线上的点当点在第一、三象限夹角平分线上时,则点的横纵坐标相等;当点在第二、四象限夹角平分线上时,则点的横纵坐标互为相反数.a b (a ,b )a ≠b(a ,b )(b ,a )x y x y P P x y x y a b P (a ,b )P P (a ,b )P (a ,b )x |b |P (a ,b )y |a |P (x ,y )⇔x >0y >0P (x ,y )⇔x <0y >0P (x ,y )⇔x <0y <0P (x ,y )⇔x >0y <0P (x ,y )x ⇔y =0x P (x ,y )y ⇔x =0y P (x ,y )x y ⇔x =0y =0P (0,0)例题:平行于坐标轴的直线上的点平行于 轴直线上的两点,其纵坐标相等,横坐标不相等;平行于 轴直线上的两点,其横坐标相等,纵坐标不相等.关于 轴、 轴、原点对称的点① 两点关于 轴对称 两点坐标横坐标相同,纵坐标互为相反数;② 两点关于 轴对称 两点坐标横坐标互为相反数,纵坐标相同;③ 两点关于原点对称 两点坐标横坐标互为相反数,纵坐标互为相反数.点的平移平移口诀:在横坐标上左减右加,在纵坐标上上加下减.x yx yx⇔y⇔⇔如果将一张“ 排 号”的电影票简记为 ,那么 表示的电影票是___排___号.解:,.68(6,8)(15,20)1520如图,写出 、、、 各点的坐标.解:,,,.A B C DA(1,1)B(3,−2)C(−4,4)D(−2,−3)若点 在第二象限,则:(1) 点 在第___象限;(2) 点 在第___象限;(3) 点 在第___象限;(4) 点 在第___象限.解:(1)三;(2)一;(3)四;(4)四.先根据第二象限点的横、纵坐标的特点,判断 , 的符号,再判断其余点所在的象限.P(a,b)(a,−b)P1(−a,b)P2(−a,−b)P3(b,a)P4a b点 到 轴的距离为____,到 轴的距离为_____.解:;.到 轴的距离就是该点纵坐标的绝对值,到 轴的距离就是该点横坐标的绝对值.P(5,−6)x y65x y已知:点 、,若 轴,则 _____;若 轴,则 _____.解: ;.过 、 两点的直线平行于 轴,显然两点的纵坐标相同,所以 .同理,当 轴时,可知 .E(a,1)F(−3,b)EF∥x b=EF∥y a= 1−3E F x b=1EF∥ya=−3在平面直角坐标系,点 关于 轴对称的点的坐标为_____,关于 轴对称的点的坐标为_____,关于原点对称的点的坐标为_____.解:;;.A(2,3)x y(2,−3)(−2,3)(−2,−3)在平面直角坐标系,点 向上平移 个单位长度,向右平移 个单位长度后的坐标是_______.P(−1,2)13四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:.在横坐标上左减右加,在纵坐标上上加下减.(2,3)答案:1. 如图,有一矩形纸片 ,将纸片折叠,使 边落在 边上,折痕为 ,再将 以 为折痕向右折叠, 与 交于点 ,则 的面积为.A .B .C .D .C ABCD ,AB =10,AD =6AD AB AE △AED DE AE BC F △CEF ()46810答案:2. 如图,在坐标平面上, 为直角三角形, , 垂直 轴, 为 的外心.若点坐标为 , 点坐标为 ,则 点坐标为 .A .B .C .D .B △ABC ∠B =90∘AB x M △ABC A (3,4)M (−1,1)B ()(3,−1)(3,−2)(3,−3)(3,−4)答案:3. 下列图形中,轴对称图形的个数是 .A .B .C .D .B ()12344. 如图,正方形地砖的图案是轴对称图形,该图形的对称轴有 .()高考不提分,赔付1万元,关注快乐学了解详情。
轴对称(复习一讲义)课前预习1.剪纸艺术源远流长,是中华民族智慧的结晶,为我们的生活添加了别样的色彩.请欣赏以下美丽的剪纸图片,你发现它们有什么共同的特点?2.做一做,想一想在纸上画一条线段AB,并将线段对折,思考:(1)折痕两边的线段________(填“相等”或“不相等”);(2)折痕与线段AB____________(填“垂直”或“不垂直”);(3)在折痕上任找一点P,并连接AP,BP,沿着折痕对折,可发现AP_____BP(填“>”,“<”或“=”).3.如图,OP平分∠AOB,PM⊥OA于点M,PN⊥OB于点N,若PM=4 cm,则PN=______cm.PNMBOA知识点睛1.如果把一个图形沿一条直线折叠后能够与另一个图形完全重合,则称这两个图形__________,这条直线叫做_________.2.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做__________,这条直线叫做_______.3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴___________,对应线段________,对应角________.4.垂直平分线性质定理:___________________________________________________.5.角平分线性质定理:___________________________________________________.精讲精练1. 如图,在10×10的正方形网格中作图:作出△ABC 关于直线l 的对称图形△A 1B 1C 1.lC BA2.3. 下列四个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4. 如图是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB 的对应线段是_________,EF 的对应线段是_________,∠A 的对应角是______.连接CE 交l 于点O ,则_____⊥_____,且________=________.lB D F HGE OCA A EB D C第4题图 第5题图5. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使点D 落在BC 边上的点F处.若∠BAF =60°,则∠AEF =_____.6. 如图,先将正方形纸片ABCD 对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样得到的△ADH 中( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠=D .AD DH AH ≠≠HN M ED CAA EBDC第6题图 第7题图7. 已知:如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于点D ,连接AD .若AC =4 cm ,BC =8 cm ,则△ADC 的周长为__________.8. 已知:如图,在△ABC 中,DF ,EG 分别是AB ,AC 的垂直平分线,且△ADE 的周长为32 cm ,则BC =__________.A GEDBF CP DNOMCA B第8题图第9题图9. 已知:如图,点P 关于OA ,OB 的对称点分别为C ,D ,连接CD ,交OA 于点M ,交OB 于点N .若△PMN 的周长为8,则CD 的长为_________.10. 如图,MD ,ME 分别为△ABC 的边AB ,BC 的垂直平分线,若MA =3,求MC 的长度.MBC DE11. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =3,则PQ 的最小值是____________.QP MNAOE DC第11题图 第12题图 第13题12. 已知:如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,DE ⊥AB 于E ,若CD =3 cm ,AB =10 cm ,则△ABD 的面积为_________.13. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,AB =3 cm ,AC =2 cm ,则S △ABD :S△ACD=_________.14. 已知:如图,在四边形ABCD 中,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB .求证:MB =MC .ABCD MABCD【参考答案】课前预习1.都是左右两边对称的图形2.(1)相等(2)垂直(3)=3. 4知识点睛1.成轴对称,对称轴2.轴对称图形,对称轴3.垂直平分,相等,相等4.线段垂直平分线上的点到这条线段两个端点的距离相等5.角平分线上的点到这个角的两边的距离相等精讲精练1.作图略2.作图略3. C4.GH,CD,∠GCE,l;OC,OE5.75°6. B7.12cm8.32cm9.810.MC=3提示:连接ME,由垂直平分线定理可得结论11. 312.15cm213.3:214.证明略提示:过点M作ME⊥AD于点E,由角平分线定理可得结论轴对称(复习二习题)例题示范例1:已知:如图,AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ,垂足分别为点F ,G ,DE 是BC 的垂直平分线. 求证:BF =CG .【思路分析】 读题标注:① 从条件出发,看到角平分线考虑“角平分线上的点到角两边的距离相等”,结合题目其他条件,EF ⊥AF ,EG ⊥AC ,可得EF =EG ;② 看到垂直平分线考虑“垂直平分线上的点到线段两端点的距离相等”,因此连接BE ,CE(如图所示),得到BE =CE ;③ 题目所求为BF =CG ,证明△BEF ≌△CEG 即可. 【过程书写】证明:如图,连接BE ,CE ∵AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ∴EF =EG∵DE 是BC 的垂直平分线 ∴BE =CE∵EF ⊥AF ,EG ⊥AC ∴∠BFE =∠CGE =90° 在Rt △BEF 和Rt △CEG 中BE CE EF EG =⎧⎨=⎩(已证)(已证)∴Rt △BEF ≌Rt △CEG (HL ) ∴BF =CG (全等三角形对应边相等)GFDCB A巩固练习1.下列是轴对称图形的是()A.B.C.D.2.一个风筝的设计图如图所示,其主体部分(四边形ABCD)关于线段BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断错误的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD3.已知:如图,在Rt△ABC中,∠C=90°,点E在AC边上,将△ABC沿BE折叠,点C恰好落在AB边上的点D处.若∠A=30°,则∠BED=_______.C EDBODC BA第3题图第4题图4.已知:如图,∠AOB=40°,若CD是OA的垂直平分线,则∠ACB=__________.5.如图,在Rt△ABC中,∠C=90°.BD平分∠ABC,交AC于点D,DE垂直平分AB,垂足为点E.若DE+BD=3cm,则AC=__________cm.EDCBA6.已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交AC于点E,垂足为点D.若BE+CE=12,BC=8,则△ABC的周长为___________.O DBAEDCA7. 作图题:利用网格线,作出△ABC 关于直线DE 对称的图形△A 1B 1C 1.EC BAD8. 已知:如图,P 为∠ABC 内一点,请在AB ,BC 边上各取一点M ,N ,使△PMN 的周长最小.9. 已知:如图,CD 垂直平分线段AB ,E 是CD 上一点,分别连接AC ,BC ,AE ,BE .求证:∠CAE =∠CBE .ED C10. 已知:如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线相交于点O .OD ⊥AB ,OE ⊥AC ,垂足分别为点D ,E . 求证:OD =OE .OE DA11.已知:如图,在锐角三角形ABC中,AD,CE分别是BC,AB边上的高,垂足分别为点D,E,AD与CE相交于点O,连接OB,∠OBC=∠OBA.求证:OA=OC.O E DCBA思考小结1.轴对称的思考层次:①全等变换:对应边__________、对应角__________.②对应点:对应点所连线段被对称轴_________________;对称轴上的点到对应点的距离_____________.③应用:奶站问题等.如图,在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP 最小.BAl【参考答案】巩固练习1. B2. B3.60°4.80°5. 36.327.作图略8.作点P关于BA的对称点O1,作点P关于BC的对称点O2,连接O1O2,分别交BA,BC于点M,N,此时△PMN的周长最小.9.证明略提示:利用线段垂直平分线上的点到这条线段两个端点的距离相等,得出AC=BC,AE=BE,再证明△CAE≌△CBE10.证明略提示:过点O作OF⊥BC于点F,角平分线上的点到角两边的距离相等可得结论11.证明略提示:利用角平分线上的点到这个角的两边的距离相等,得出OD=OE,再证明△COD ≌△AOE思考小结1.①相等、相等②垂直平分;相等④作点A关于街道的对称点A1,连接A1B交街道于点P,则点P即为满足条件的点轴对称(复习三随堂测试)1. 如图,在△ABC 中,AB =AC ,AB 的垂直平分线DE 交AC 于点E ,若△ABC 和△EBC 的周长分别为60 cm 和38 cm ,则△ABC 的腰长为____________,底边长为____________.2. 如图,在△ABC 中,AD 是∠BAC 的平分线,点E ,F 分别在AB ,AC 边上,且∠DEA +∠DF A =180°.求证:DE =DF .【思路分析】(1)读题标注:(2)梳理思路:①从条件出发:看到角平分线考虑角平分线上的点到角两边的距离相等,可作________________,________________,可得②题目所求为DE =DF ,证明____________________【过程书写】 证明:如图,【参考答案】1.22cm,16cm2.思路分析:①DM⊥AB于点M,DN⊥AC于点N,DM=DN过程书写略。