八年级数学轴对称知识点整理及练习
- 格式:doc
- 大小:406.20 KB
- 文档页数:4
初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。
本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。
1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。
找出图形的对称中心,并标出。
解答:首先,根据给定条件画出图形ABC。
由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。
以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。
连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。
2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。
证明:BO=OC。
解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。
首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。
其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。
同理,NEDK也是一个矩形。
由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。
再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。
又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。
所以BC/2=KN/2,即BC=KN。
由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。
综上所述,BO=OC。
3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。
在边AB和BC上分别取两个等分点D和I,并连接DI。
求证:DI垂直于FG。
解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。
首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。
第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
轴对称例1.如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种),怎样移动才能使所构成的图形具有尽可能多的对称轴?解:不是。
有以下几种移动方法(如图所示),其中,第3个图的对称轴最多。
例2. 如图所示,C是线段AB的垂直平分线上的一点,垂足为D,则下列结论中正确的有()A.AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°A. 2个B. 3个C. 4个D. 5个分析:由垂直平分线的定义可以直接得出①和⑤;由垂直平分线的性质可得出②;由△ADC≌△BDC可得到③和④。
解:D例3. 写出下列各点关于x轴和y轴对称的点的坐标。
(-2,3),(1,-2),(-2,-4),(0,2)。
例4.(2007年烟台)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):例5. 如图所示,已知线段AB,画出线段AB关于直线l的对称图形。
解:(1)画出点A关于直线l的对称点A';(2)画出点B关于直线l的对称点B':(3)连结A'B',则线段A'B'即为所求。
例6.要在河边修建一个水泵站,分别向张村、李庄送水(如图)。
修在河边什么地方,可使所用水管最短?解:设张村为点A,李庄为点B,张村和李庄这一侧的河岸为直线l。
(1)作点B关于直线l的对称点,(2)连结,交直线l于点C,点C就是所求的水泵站的位置。
(如图所示)1. 下列说法错误的是()A. 关于某直线对称的两个图形一定能完全重合B. 全等的两个三角形一定关于某直线对称C. 轴对称图形的对称轴至少有一条D. 线段是轴对称图形2. 轴对称图形的对称轴是()A. 直线B. 线段C. 射线D. 以上都有可能3. 下面各组点关于y轴对称的是()A. (0,10)与(0,-10)B. (-3,-2)与(3,-2)C. (-3,-2)与(3,2)D. (-3,-2)与(-3,2)*4. 下列图形中,不是轴对称图形的是()A. 一条线段B. 两条相交直线C. 有公共端点的两条相等的线段D. 有公共端点的两条不相等的线段5. (2007年河南)如图,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()A. 30°B. 50°C. 90°D. 100°6. (2008年江苏苏州)下列图形中,是轴对称图形的是()*7. (2008年武汉)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF =150°,则∠AFE+∠BCD的大小是()A. 150°B. 300°C. 210°D. 330°**8. (2008年全国数学竞赛浙江预赛)如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。
八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。
轴对称图形具有轴对称轴,也称为镜像轴。
2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。
- 图形的每一对对称点与轴对称轴的距离相等。
- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。
3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。
- 观察图形是否和它自己的镜像一样。
4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。
- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。
5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。
- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。
这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。
角的轴对称性学习目标:1. 通过动手试验掌握角平分线的性质与判定;2. 理解角平分线与对称轴的关系;3. 掌握角平分线的性质及判定。
学习重点:角平分线的性质与判定的理解。
学习难点:运用角平分线性质及判定解决问题。
1.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角平分线上的点到角两边的距离相等.若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD 于点F ,则PE =PF.用符号语言表示角的内部到角两边距离相等的点在角的平分线上.若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB2. 角平分线的画法角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.例题:已知:如图,AB ∥CD ,∠BAC 和∠ACD 的平分线交于点P ,试说明:点P 到AB 、CD 的距离相等.PDC BA【变式】已知:如图,BP 、CP 分别是△ABC 的外角平分线,PM ⊥AB 于点M ,PN ⊥AC 于点N .求证:PA 平分∠MAN .考点训练1. (2020·无锡市期中)如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处2.(2020春•凌海市期末)在正方形网格中,AOB ∠的位置如图所示,则点P 、Q 、M 、N 中在AOB ∠的平分线上是( )A .P 点B .Q 点C .M 点D .N 点3. (2020•南山区模拟)如图,ABC ∆中,5AB =,4AC =,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH AC ⊥于H ,2GH =,则ABG ∆的面积为( )A .4B .5C .9D .104. (2020春•竞秀区期末)如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若两平行线AD 与BC 间的距离为4,则(PE = )A .4B .2C .8D .6【变式】(2020春•锦州期末)如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A .8B .6C .5D .45. (2020•开福区模拟)如图,点O 在ABC ∆内,且到三边的距离相等.若40A ∠=︒,则BOC ∠等于( )A .110︒B .115︒C .125︒D .130︒6. (2019·南京市期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确7. (2020春•南岗区校级期中)如图,在ABC ∆中,AD 为BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC ∆的面积为221cm ,8AB cm =,6AC cm =,则DE 的长为 cm .8 如图,在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,AC =15cm ,且CD ∶AD =2∶3,则点D 到AB 的距离为 .CD BA9. 如图,△ABC 的三边AB 、BC 、CA 长分别为40,50,60,其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .10. (2020春•沙坪坝区期末)如图,OP 平分AOB ∠,PM OA ⊥于M ,点D 在OB 上,DH OP ⊥于H .若4OD =,7OP =,3PM =,则DH 的长为 .11. 如图所示,A 、B 是两个工厂,m 、n 是两条公路,现要在这一地区建一加油站,要求这个加油站到A 、B 两个工厂的路程相等、到两条公路m 、n 的距离也相等,是否存在同时满足这两个要求的地点?怎样找出这个地点?m n B A12. (2020春•岳阳期末)如图,在Rt ABC ∆中,90C ∠=︒,AD 平分CAB ∠交BC 于点D ,DE AB ⊥于点E ,且E 为AB 的中点.(1)求B ∠的度数.(2)若5DE =,求BC 的长.13. 如图所示,OC 平分∠AOB,P 是OC 上一点,D 是OA 是上一点,E 是OB 上一点,且PD =PE ,试说明:∠PDO+∠PEO=180°.PO E D CB A思维拓展如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )A .11B .5.5C .7D .3.5如图,△ABC 中,∠B =90∘,两直角边AB =7,BC =24,三角形内有一点P 到各边的距离相等,PE ⊥AB 、PF ⊥BC 、PD ⊥AC ,垂足分别为E. F. D ,求PD 的长。
教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。
16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。
⼈教版⼋年级上册数学-13《轴对称》知识点及典型例题第⼗三章《轴对称》⼀、知识点归纳(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。
连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。
5.画⼀图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。
(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)所以线段的垂直平分线能够看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹⾓平分线对称点P(x,y)关于第⼀、三象限坐标轴夹⾓平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第⼆、四象限坐标轴夹⾓平分线y=-x对称的点的坐标是(-y,-x)(六)关于平⾏于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三⾓形1、等腰三⾓形性质:性质1:等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)性质2:等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼相互重合。
八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。
专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
图形的轴对称(4种题型)【知识梳理】一.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.二.轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.三.作图-轴对称变换几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.四.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.【考点剖析】一.轴对称的性质例1.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.12【解答】解:∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.【变式】如图,在△ABC中,点P为AB和BC垂直平分线的交点,点Q与点P关于AC对称,连接PC,PQ,CQ.若△PCQ中有一个角是50°,则∠B=度.【解答】解:连接AP、BP,如图:∵点P为AB和BC垂直平分线的交点,∴PA=PB=PC,∴∠PAB=∠PBA,∠PBC=∠PCB,∠PAC=∠PCA,∵点Q与点P关于AC对称,∴PC=QC,∠PCA=∠QCA,∴∠CPQ=∠CQP,①当∠CPQ=∠CQP=50°时,∠PCQ=80°,∴∠PCA=40°,∴∠PAC=40°,∴∠PAB+∠PBA+∠PBC+∠PCB=180°﹣∠PAC﹣∠PCA=100°,∴2∠ABP+2∠PBC=100°,∴∠ABP+∠PBC=50°,即∠ABC=50°,②当∠PCQ=50°时,∠PCA=25°,∴∠PAC=25°,∴∠PAB+∠PBA+∠PBC+∠PCB=180°﹣∠PAC﹣∠PCA=130°,∴2∠ABP+2∠PBC=130°,∴∠ABP+∠PBC=65°,即∠ABC=65°,综上所述,∠ABC为50°或65°,故答案为:50或65.二.轴对称图形例2.如图图案中,成轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意.故选:B.【变式1】如图,在3×3的正方形网格中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种【解答】解:如图,将图中剩余的编号为1至7的小正方形中任意一个涂黑共7种情况,其中涂黑1,3,5,6,7有5种情况可使所得图案是一个轴对称图形,故选:C.【变式2】如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB合并(A 与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.25【解答】解:如图,连接PQ,则可得对角线PQ⊥MN,且PQ与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴MN=AD=20,12PQ⋅MN=12×12012EF×AD=12×120,∴PQ=6,又MN=20,∴MN+PQ=26,故选:B.三.作图-轴对称变换例3.如图,在△ABC中,点A(﹣3,1),B(﹣1,0).(1)根据上述信息在图中画平面直角坐标系,并求出△ABC的面积;(2)在平面直角坐标系中,作出△ABC关于y轴对称图形△A1B1C1.【解答】解:(1)如图所示,△ABC的面积=2×3﹣×2×2﹣×1×2=3;(2)如图所示,△A1B1C1即为所求.【变式1】如图都是3×3的正方形网格,点A、B、C均在格点上.在给定的网格中,按下列要求画图:(1)在图①中,画一条线段MN,使MN与AB关于某条直线对称,且M、N为格点.(2)在图②中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D、E、F为格点,并写出符合条件的三角形共有个.【解答】解:(1)如图①所示,线段MN即为所求(答案不唯一);(2)如图②所示,△DEF即为所求(答案不唯一),符合条件的三角形共有4个,故答案为:4.【变式2】如图,在平面直角坐标系中,△ABC的顶点在网格的格点上.(1)写出点A,B的坐标:A,B..(2)在图中作△ABC关于y轴对称的图形△A1B1C1.(3)求△ABC的面积.【解答】解:(1)由图知A(﹣1,1)、B(﹣3,3),故答案为:(﹣1,1)、(﹣3,3);(2)如图所示,△A1B1C1即为所求.(3)△ABC的面积为3×5﹣×1×5﹣×2×2﹣×3×3=6.【变式3】如图,△ABC的顶点分别为A(1,3),B(4,5),C(1,5),先将△ABC以第一象限的角平分线所在直线为对称轴通过轴对称得到△A′B′C′,再将△A′B′C′以x轴为对称轴通过轴对称得到△A″B″C″.(1)画出△A″B″C″;(2)写出A″,B″,C″三点的坐标;(3)一般地,某一点P(x,y)经过这样的两次轴对称变换后得到的点P″的坐标为.【解答】解:(1)如图,△A″B″C″即为所求;(2)A″(3,﹣1),B″(5,﹣4),C″(5,﹣1);(3)点P″的坐标为(y,﹣x).故答案为:(y,﹣x).【变式4】在平面直角坐标系中,已知△ABC的位置如图所示,(1)请画出△ABC关于y轴对称的△A′B′C′(其中点A′,B′,C′分别是点A,B,C的对应点,不㝍画法);(2)写出点A′,B′,C′的坐标.【解答】解:(1)如图,△A′B′C′即为所求;(2)A′(﹣1.3),B′(﹣3,0C′(﹣4,4).四.轴对称-最短路线问题例4.如图所示,点P为∠O内一定点,点A,B分别在∠O的两边上,若△PAB的周长最小,则∠O与∠APB 的关系为()A.2∠O=∠APB B.∠O=2∠APBC.∠O+∠APB=180°D.2∠O+∠APB=180°【解答】解:如图,作点P关于OM的对称点P',点P关于ON的对称点P'',连接OP',OP'',P'P'',其中P'P''交OM于A,交ON于B,此时△PAB的周长最小值等于P'P''的长,由轴对称性质可知:OP=OP',OP=OP'',∠AOP=∠AOP',∠BOP=∠BOP'',∴∠P'OP''=2∠AOB,∴∠P'=∠P''==,∴∠APB=∠P'+∠P''=180°﹣2∠AOB,即2∠O+∠APB=180°,故选:D.(1)求AP PB+;(2)若点M是直线l上异于点(3)如图2,在l上求作一点【详解】(1)点A'与A关于直线l对称,AP A P '∴=,AP PB A P PB A B ''∴+=+=,A B a '=,AP PB a ∴+=;(2)连接A M ',点A '与A 关于直线l 对称,AM A M '∴=,AP A P '=,AM MB A M MB '∴+=+,AP PB A P PB A B ''+=+=,A MB '△中A M MB A B ''+>,AM MB AP PB ∴+>+;(3)作点A 关于直线l 对称点A 'A B '交直线l 于点M ,如下图所示.【过关检测】一、单选题 1.(2021秋·浙江宁波·八年级浙江省余姚市实验学校校考期中)环保理念深入人心,垃圾分类的标识中,是轴对称图形的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的概念即可解决本题.【详解】由轴对称图形概念,平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形,能够判断出A为轴对称图形.故答案为A.【点睛】本题考查了轴对称图形的概念,难度系数不高,解题的关键在于正确理解轴对称图形的概念.2.(2023·浙江·八年级假期作业)小明以四种不同的方式连接正六边形ABCDEF的两条不同的对角线,那么连接后的四个图形,不是轴对称图形的是()....【答案】D【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、C选项都是轴对称图形,不符合轴对称图形的只有D选项;故选D.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.3.(2020秋·浙江温州·八年级校考期中)将一张长方形纸对折,然后用笔尖在纸上扎出“B”,再把纸铺平,可以看到的是()A.B.C.D.【答案】C【分析】轴对称图形的定义是,在一个平面内,平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.根据定义即可得到正确答案【详解】解:A、不是轴对称图形,答案错误;B、不是轴对称图形,答案错误;C、是轴对称图形,答案正确;D、不是轴对称图形,答案错误.故选:C【点睛】本题考查轴对称图形的定义,根据定义解题是关键.八年级假期作业)如图,将ABC折叠,使A.2cm B.2.5cm C.3cm D.3.5cm【答案】C∠的角平分线,根据垂线段最短即可解答.【分析】由折叠可得:PA为BAC【详解】解:∵将ABC折叠,使AC边落在AB边上,∠的角平分线,∴PA为BAC∵点Q为AC上任意一点,∴PQ的最小值等于点P到AB的距离3cm.故选C.【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.5.(2023·浙江·八年级假期作业)如图,将一个长方形纸条折成如图所示的形状,若253∠=︒,则1∠的度数是( )A .86︒B .74︒C .106︒D .126︒【答案】C 【分析】如图,记AD 的延长线为DC ,则由折叠的性质可得3253∠=∠=︒,得到106CDE ∠=︒,再根据平行线的性质即可得出答案.【详解】解:如图,记AD 的延长线为DC ,则由折叠的性质可得:3253∠=∠=︒,∴106CDE ∠=︒,∵BE AC ∥,∴1106CDE ∠=∠=︒;故选:C.【点睛】本题考查了折叠的性质和平行线的性质,正确添加辅助线,得出106CDE ∠=︒是解题的关键.6.(2023·浙江·八年级假期作业)如图,弹性小球从点P 出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q ,第2次碰到矩形的边时的点为M ,….第2022次碰到矩形的边时的点为图中的( )A .点PB .点QC .点MD .点N【答案】A【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2022除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,经过6次反弹后动点回到出发点P,∵2022÷6=337,∴当点P第2022次碰到矩形的边时为第337个循环组的最后一次反弹,∴第2022次碰到矩形的边时的点为图中的点P,故选:A.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【分析】利用轴对称画图可得答案.【详解】解:如图所示,球最后落入的球袋是2号袋,故选:B.【点睛】此题主要考查了生活中的轴对称现象,关键是正确画出图形. 8.(2022秋·浙江·八年级专题练习)如图,点A 在直线l 上,△ABC 与AB C ''关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是( )A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='【答案】D 【分析】利用轴对称的性质和全等三角形的性质逐项判断即可.【详解】解:ABC 与AB C ''关于直线l 对称,ABC AB C ∴≅'',BB l '⊥,CC l '⊥,AB AB =',AC AC =',BAC B AC ∴∠=∠'',CC BB '',即选项A 、B 正确;由轴对称的性质得:,OD OD OB OB ='=',OB OD OB OD ∴−='−',即BD B D ='',选项C 正确;由轴对称的性质得:AD AD =',但AD 不一定等于'DD ,即选项D 不一定正确;故选:D .【点睛】本题考查了轴对称的性质、全等三角形的性质,熟练掌握轴对称的性质是解题关键. 9.(2023·浙江·八年级假期作业)如图,小雨要用一个长方形纸片ABCD 折叠一个小兔子,第一步沿OG 折叠,使点B 落到CD 边上的点B '处,若35GB C ''∠=︒,则BOG ∠=( )A .65︒B .62.5︒C .55︒D .52.5︒【答案】B 【分析】根据折叠得出90OB C B ''∠=∠=︒,求出55OB G '∠=︒,根据平行线的性质得出18055125B OB '∠=︒−︒=︒.根据折叠得出162.52BOG B OB '∠=∠=︒.【详解】解:根据折叠可知,90OB C B ''∠=∠=︒,∵35GB C ''∠=︒,∴55OB G '∠=︒,∵AB CD ∥,∴18055125B OB '∠=︒−︒=︒.由折叠可知,162.52BOG B OB '∠=∠=︒,故B 正确.故选:B .【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.A .152B .【答案】D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC EF +的最小值即为点C 到AB 的垂线段长度.【详解】解:在AB 上取一点G ,使AG AF =,如图,CAD BAD ∠=∠,AE AE =,(SAS)AEF AEG ∴≌,FE EG ∴=,CE EF CE EG ∴+=+,则最小值是CG 垂直AB 时,CG 的长度, ∵1122AB CG AC BC ⨯=⨯,125CG ∴=.故选:D .【点睛】本题考查了轴对称−最短路线问题,解题的关键是根据角平分线构造全等以及线段和差极值问题.二、填空题 11.(2023·浙江·八年级假期作业)将长方形纸片按如图方式折叠,EF FG ,为折痕,则EFG ∠的度数为 .【答案】90︒/90度【分析】根据折叠的性质得到1112BFE B FE BFB ∠=∠=∠,1112CFG C FG CFC ∠=∠=∠,然后根据平角为180︒求解即可. 【详解】∵将长方形纸片按如图方式折叠,EF FG ,为折痕, ∴1112BFE B FE BFB ∠=∠=∠,1112CFG C FG CFC ∠=∠=∠, ∴111111190222EFG B FE C FG BFB CFC BFC ∠=∠+∠=∠+∠=⨯∠=︒. 故答案为:90︒.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等.也考查了平角的定义. 12.(2023·浙江·八年级假期作业)如图,在ABC 中,90ACB ∠=︒,D 在AB 上,将ABC 沿CD 折叠,点B 落在AC 边上的点B '处,若35A ∠=︒,则ADB ∠'的度数为 ︒.【答案】20【分析】根据题意,可得ABC 是直角三角形,B ∠的度数,根据折叠可知,CB D B '∠=∠,再根据CB D '∠是AB D 'V 的外角,由外角的性质即可求解.【详解】解:在ABC 中,90ACB ∠=︒,35A ∠=︒,∴ABC 是直角三角形,且903555B ∠=︒−︒=︒,根据折叠,55CB D B '∠=∠=︒,∵CB D '∠是AB D 'V 的外角,即CB D A ADB ''∠=∠+∠,∴553520ADB CB D A '∠'=∠−∠=︒−︒=︒,故答案为:20.【点睛】本题主要考查直角三角形,三角形的外角知识的综合,掌握直角三角形的性质,折叠的性质,三角形外角的性质的知识是解题的关键.13.(2022秋·浙江·八年级专题练习)已知:如图,P 是AOB ∠内的一点,12,P P 分别是点P 关于OAOB 、的对称点,12PP 交于点OA 于点M ,交OB 于点N ,若125cm PP =,则PMN △的周长是 cm .【答案】5【分析】根据轴对称的性质进行等量代换,便可知12PP与PMN △的周长是相等的,即可求解. 【详解】解:∵12PP ,分别是点P 关于OA OB 、的对称点, ∴12PM MPPN NP =,=, ∴2121++=++==5P M MN NP PM MN PN PPcm , ∴PMN △的周长为5cm.故答案为:5.【点睛】本题考查轴对称的性质,难度一般,关键是熟练掌握轴对称的性质特点,并能灵活运用.【答案】40°/40度【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=−∠−∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40°.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键. 15.(2022秋·浙江·八年级专题练习)如图,在△ABC 中,点P 为AB 和BC 垂直平分线的交点,点Q 与点P 关于AC 对称,连接PC ,PQ ,CQ .若△PCQ 中有一个角是50°,则∠B = 度.【答案】50或65【分析】连接AP 、BP ,由点P 为AB 和BC 垂直平分线的交点,得PA =PB =PC ,知∠PAB =∠PBA ,∠PBC =∠PCB ,∠PAC =∠PCA ,又点Q 与点P 关于AC 对称,可得PC =QC ,∠PCA =∠QCA ,∠CPQ =∠CQP ,分两种情况:①当∠CPQ =∠CQP =50°时,∠PCQ =80°,可得∠PCA =40°,∠PAC =40°,即得2∠ABP+2∠PBC =100°,∠ABC =50°,②当∠PCQ =50°时,同理可得∠ABC =65°.【详解】解:连接AP 、BP∵点P 为AB 和BC 垂直平分线的交点,∴PA =PB =PC ,∴∠PAB =∠PBA ,∠PBC =∠PCB ,∠PAC =∠PCA ,∵点Q 与点P 关于AC 对称,∴PC =QC ,∠PCA =∠QCA ,∴∠CPQ =∠CQP ,①当∠CPQ =∠CQP =50°时,∠PCQ =80°,∴∠PCA =40°,∴∠PAC =40°,∴∠PAB+∠PBA+∠PBC+∠PCB =180°﹣∠PAC ﹣∠PCA =100°,∴2∠ABP+2∠PBC =100°,∴∠ABP+∠PBC =50°,即∠ABC =50°,②当∠PCQ =50°时,∠PCA =25°,∴∠PAC =25°,∴∠PAB+∠PBA+∠PBC+∠PCB =180°﹣∠PAC ﹣∠PCA =130°,∴2∠ABP+2∠PBC =130°,∴∠ABP+∠PBC =65°,即∠ABC =65°,综上所述,∠ABC 为50°或65°,故答案为:50或65.【点睛】本题考查轴对称的性质,解题的关键是掌握三角形内角和定理的应用及轴对称的性质.【答案】都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.17.(2022秋·浙江金华·八年级校考阶段练习)如图,在锐角ABC 中,8AB =,16ABC S =V ,BD 平分ABC ∠,M 、N 分别是 BD 、BC 上的动点,则CM MN +的最小值是 .【答案】4【分析】过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于N ,则CE 为CM MN +的最小值,根据三角形的面积公式求出CE 的长,即为CM MN +的最小值.【详解】解:过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于N ,∵BD 平分ABC ∠,ME AB ⊥于点E ,MN BC ⊥于N ,∴MN ME =,∴CE CM ME CM MN =+=+,即CE 为CM MN +的最小值,∵ABC 的面积为16,8AB =,∴12816CE ⨯⨯=,∴4CE =,即CM MN +的最小值为4.故答案为:4.【点睛】本题考查的是轴对称—最短路线问题,解题的关键是学会利用垂线段最短解决最值问题,属于中考常考题型.18.(2022秋·浙江杭州·八年级杭州绿城育华学校校考期中)如图,在ABC 中,DE 是AC 的垂直平分线,4,7AB BC ==,则ABD △的周长为 .【答案】11【分析】根据垂直平分线的性质,可知AD CD =,进而可知B C B D C D B D A D =+=+,即可求出ABD △的周长.【详解】解:DE 是AC 的垂直平分线,AD CD ∴=,B C B D C D B D A D \=+=+,ABD ∴的周长4711A B B D A D A B B C =++=+=+=,故答案为:11.【点睛】本题考查了线段垂直平分线的性质:线段的垂直平分线上的点到线段两端的距离相等,熟练掌握垂直平分线的性质是解题关键.三、解答题19.(2023·浙江·八年级假期作业)如图,ABC 和ADE V 关于直线l 对称,已知15AB =,10DE =,70D ∠=︒.求B ∠的度数及BC 、AD 的长度.【答案】70B ∠=︒,10BC =、15AD =【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】解:ABC 和ADE 关于直线l 对称,AB AD ∴=,BC DE =,B D ∠=∠,又15AB =,10DE =,70D ∠=︒.70B ∴∠=︒,10BC =,15AD =,【点睛】本题考查轴对称的性质,两个图象关于某直线对称,对应边相等,对应角相等. 20.(2022秋·浙江·八年级专题练习)如图,△ABC 与△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.若ED =4cm ,FC =1cm ,∠BAC =76°,∠EAC =58°.(1)求出BF 的长度;(2)求∠CAD 的度数;(3)连接EC ,线段EC 与直线MN 有什么关系?【答案】(1)BF =3cm(2)∠CAD =18°(3)直线MN 垂直平分线段EC【分析】(1)先根据轴对称的性质得出BC =ED =4cm ,再根据FC =1cm ,求出BF 的长度即可;(2)根据轴对称的性质得出∠EAD =∠BAC =76°,再根据∠EAC =58°求出结果即可;(3)直接根据轴对称的性质即可得出答案.【详解】(1)解:∵△ABC 与△ADE 关于直线MN 对称,ED =4cm ,FC =1cm ,∴BC =ED =4cm ,∴BF =BC ﹣FC =3cm .(2)解:∵△ABC 与△ADE 关于直线MN 对称,∠BAC =76°,∠EAC =58°,∴∠EAD =∠BAC =76°,∴∠CAD =∠EAD ﹣∠EAC =76°﹣58°=18°.(3)解:直线MN 垂直平分线段EC .理由如下:如图,∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.【点睛】本题主要考查轴对称的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(2022秋·浙江宁波·八年级校考期中)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使涂黑部分图形是一个轴对称图形(最少三种不同方法).【答案】见解析【分析】根据轴对称图形的定义,结合题意,补充图形即可【详解】如图:有5种方法:【点睛】本题考查了轴对称图形的概念,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,掌握轴对称图形的定义是解题的关键.22.(2022秋·八年级单元测试)如图,ABC的顶点A,B,C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC BC ,的距离相等.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)如图所示,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11AC、11B C 即可;(2)连接1A B 交直线l 于P ,利用两点之间线段最短可判断P 点满足条件;(3)根据角平分线上的点到角两边的距离相等进行作图即可.【详解】(1)解:如图, 111A B C △为所作;(2)解:根据(1)的结论,点A 、点1A 关于直线l 成轴对称,∴1PA PA =∴1PA PB PA PB +=+,如下图,连接1A B∴当点P 在直线l 和1A B的交点处时,11PA PB A B +=为最小值, ∴当点P 在直线l 和1A B 的交点处时,PA PB +取最小值,即点P 到点A 、点B 的距离之和最短;(3)解:如图所示,连接1CC ,根据题意的:11ACC BCC ∠=∠∴点Q 在直线l 和1CC 的交点处时,点Q 到边AC BC ,的距离相等.【点睛】本题主要考查了画轴对称图形,轴对称最短路径问题,角平分线的性质等等,熟知相关知识是解题的关键. 23.(2023·浙江·八年级假期作业)如图所示,牧马人从A 地出发,到一条直的河流l 边的C 处饮马,然后到达B 地.牧马人到河边的什么地点饮马,可以使所走的路程最短?请用尺规作图,在图中找出路程最短的饮马点C ,并用轴对称的性质说明理由.【答案】牧马人到河边的点C 处饮马,可以使所走的路程最短,见解析【分析】过点B 作直线l 的对称点B ',连接AB ',与直线l 的交点即为点C ,此时所走的路程最短,取直线l 上另一点C ',根据三角形三边关系证明得到牧马人到河边的点C 处饮马,可以使所走的路程最短.【详解】解:如图,过点B 作直线l 的对称点B ',连接AB ',与直线l 的交点即为点C ,此时所走的路程最短,即AC BC AC B C AB ''+=+=,取直线l 上另一点C ',根据轴对称得到AC BC AC B C AB ''''''+=+≥,∴牧马人到河边的点C 处饮马,可以使所走的路程最短..【点睛】此题考查了最短路径问题,轴对称作图,三角形三边关系的应用,正确理解最短路径问题作图方法是解题的关键.24.(2023·浙江·八年级假期作业)如图,P 在AOB ∠内,点M ,N 分别是点P 关于AO BO ,的对称点,MN 分别交OA OB ,于E ,F .(1)若PEF !的周长是10cm ,求MN 的长;(2)若30AOB ∠=︒,试求MON ∠的度数.【答案】(1)10cm(2)60︒【分析】(1)由轴对称的性质可得EM EP FP FN ==,,由三角形周长公式得到10cm PE EF PF ++=,则10cm EM EF FN ++=,即10cm MN =;(2)根据轴对称的性质得到AOM AOP BON BOP ==∠∠,∠∠,进一步推出260MON AOB ∠=∠=︒.【详解】(1)解:∵点M ,N 分别是点P 关于AO BO ,的对称点,∴EM EP FP FN ==,,∵PEF !的周长是10cm ,∴10cm PE EF PF ++=,∴10cm EM EF FN ++=,即10cm MN =;(2)解:如图所示,连接OM ON OP ,,,∵点M ,N 分别是点P 关于AO BO ,的对称点,∴AOM AOP BON BOP ==∠∠,∠∠,∴()2260MON AOM AOP BOP BON AOP BOP AOB =+++=+==︒∠∠∠∠∠∠∠∠ .【点睛】本题主要考查了轴对称图形的性质,正确得到EM EP FP FN ==,,AOM AOP BON BOP ==∠∠,∠∠是解题的关键. 25.(2022秋·浙江·八年级专题练习)如图,△ABC 和△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.(1)图中点C 的对应点是点 ,∠B 的对应角是 ;(2)若DE =5,BF =2,则CF 的长为 ;(3)若∠BAC =108°,∠BAE =30°,求∠EAF 的度数.【答案】(1)E ,∠D(2)3(3)∠EAF =39°【分析】(1)根据△ABC 和△ADE 关于直线MN 对称,得到图中点C 的对应点是点E ,∠B 的对应角是∠D ;(2)根据△ABC 与△ADE 关于直线MN 对称,得到△ABC ≌△ADE ,推出BC =DE =5,根据BF =2,得到CF =BC ﹣BF =3;(3)根据∠BAC =108°和∠BAE =30°,推出∠CAE =108°﹣30°=78°,根据对称性得到∠EAF =∠CAF ,推出∠EAF =CAE 12Ð=39°.【详解】(1)∵△ABC 与△ADE 关于直线MN 对称,∴图中点C 的对应点是点E ,∠B 的对应角是∠D ;故答案为:E ,∠D .(2)∵△ABC 与△ADE 关于直线MN 对称,∴△ABC ≌△ADE ,∴BC =DE =5,∵BF =2,∴CF =BC ﹣BF =3.故答案为:3.(3)∵∠BAC =108°,∠BAE =30°,∴∠CAE =108°﹣30°=78°,根据对称性知,∠EAF =∠CAF ,∴∠EAF =CAE 12Ð=39°.【点睛】本题主要考查了轴对称,解决问题的关键是熟练掌握轴对称的定义,成轴对称的两个图形的全等性. (1)当70PEC ∠=︒时,求DPQ ∠;,将PDQ 沿PQ 【答案】(1)20︒;(2)72︒或120︒;(3)65︒.【分析】(1)结合已知先证AD BC ∥,利用平行线和平角的性质得到90PEC DPQ ∠+∠=︒可求解;(2)当点Q 在边CD 上时,利用(1)中关系可求解,当点Q 在CD 的延长线上时,如图,由(1)可知AD BC ∥,90EPQ ∠=︒可求得90DPE DPQ ∠=︒−∠,结合已知利用同旁内角互补可求解;(3)由翻折和已知可求得50PD E ∠='︒,从而得到DPD '∠,再由翻折可求得DPQ ∠,最后结合(1)中的关系可求解.【详解】(1)90D C ∠=∠=︒180D C ∴∠+∠=︒AD BC ∴∥70APE PEC ∴∠=∠=︒PQ PE ⊥90EPQ ∴∠=︒90APE DPQ ∴∠+∠=︒90PEC DPQ ∴∠+∠=︒90907020DPQ PEC ∠=︒−∠=︒−︒=︒(2)当点Q 在边CD 上时,由(1)有,90PEC DPQ ∠+∠=︒,APE PEC ∠=∠∵4PEC DPQ ∠=∠,∴18DPQ ∠=︒,72PEC ∠=︒,72APE ∴∠=︒;当点Q 在CD 的延长线上时,如图,由(1)可知AD BC ∥,90EPQ ∠=︒90DPE DPQ ∴∠=︒−∠180DPE PEC ∠+∠=︒,APE PEC ∠=∠∵4PEC DPQ ∠=∠,904180DPQ DPQ ∴︒−∠+∠=︒解得:30DPQ ∠=︒4120APE PEC DPQ ∴∠=∠=∠=︒即APE ∠为72︒或120︒.(3)∵90D D '∠=∠=︒,90QD C PD E ∴'+∠='∠︒,∵40QD C '∠=︒,50PD E ∴='∠︒,由(1)可知AD BC ∥,90PEC DPQ ∠+∠=︒50DPD PD E ∴'=∠='∠︒由翻折可知1252DPQ DPD ∴∠=∠='︒9065PEC DPQ ∠=︒−∠=︒故答案为65︒.【点睛】本题考查了平行线的判定和性质,翻折的性质;解题的关键是证明AD BC ∥并灵活应用平行线的性质求解.。