八年级上沪科版数学一次函数.doc
- 格式:doc
- 大小:265.50 KB
- 文档页数:9
沪科版八年级上册数学一次函数 一次函数图像及性质要点提示知识点一:一次函数的定义 一般地,形如(,是常数,)的函数,叫做一次函数,当时,即,为正比例函数.⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当,时,仍是一次函数. ⑶当,时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 知识点二:一次函数的图象及其画法⑴一次函数(,,为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取,两点;②如果这个函数是一般的一次函数(),通常取,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式的点在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做k b 0k ≠0b =y kx =y k x b =+0b =0k ≠y kx =0b =0k =y k x b =+0k ≠k b ()00,()1k ,0b ≠()0b ,0bk⎛⎫- ⎪⎝⎭,y k x b =+()x y ,()x y ,y kx b =+y k x b =+y k x b =+直线:,有时直接称为直线. 知识点三:一次函数的性质⑴当时,一次函数的图象从左到右上升,随的增大而增大; ⑵当时,一次函数的图象从左到右下降,随的增大而减小.知识点四:一次函数的图象、性质与、的符号. 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴图像的平移:b >0时,将直线y =kx 的图象向上平移b 个单位,对应解析式为:y =kx +bb <0时,将直线y =kx 的图象向下平移个单位,对应解析式为:y =kx -b 口诀:“上+下-”将直线y =kx 的图象向左平移m 个单位,对应解析式为:y =k (x +m ) 将直线y =kx 的图象向右平移m 个单位,对应解析式为:y =k (x -m )y k x b =+y k x b =+0k >y k x b =+yx0k <y k x b =+yxy k x b =+k b b口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.典例分析1.下列关于x 的函数中,是一次函数的是( )2.如果直线y=kx+b 经过一、二、四象限,那么有()A .k >0,b >0B .k >0,b <0C .k < 0,b <0D .k <0,b >0x y ,22221A .3(1) B .y =x +x 1C .y =-x D .y =(x +3)-xxy x =-3.两个一次函数y1=mx+n.y2=nx+n,它们在同一坐标系中的图象可能是下图中的()4.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是。
八年级数学上册第12章一次函数知识点总结新版沪科版第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。
4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。
(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义.)二、一次函数1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x (k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质3、确定一次函数图像与坐标轴的交点(1)与x 轴交点:)0,(kb,求法:令y=0,求x ;(2)与y 轴交点:(0,b ),求法:令x=04、确定一次函数解析式—-—待定系数法确定一次函数解析式,只需x 和y 的两对对应值即可求解。
具体求法为:(1)设函数关系式为:y=k x +b ;(2)代入x 和y 的两对对应值,得关于k 、b 的方程组; (3)解方程组,求出k 和b.5、k 和b 的意义(1)∣k ∣决定直线的“平陡”。
∣k ∣越大,直线越陡(或越靠近y 轴);∣k ∣越小,直线越平(或越远离y 轴);(2)b 表示在y 轴上的截距。
(截距与正负之分)6、由一次函数图像确定k 、b 的符号 (1)直线上升,k>0;直线下降,k 〈0;(2)直线与y 轴正半轴相交,b 〉0;直线与y 轴负半轴相交,b<07、两条直线的位置关系222111b x k y l b x k y l +=+=:和直线:直线{{有无数交点)与重合(与)(没有交点)与平行(与)(有且只有一个交点)与相交(与)(2121212121212121212121321l l l l l l l l l l l l k k k k b b k k b b ⇔⇔⇔≠===≠8、x=a 和y=b 的图象x=a 的图象是经过点(a,0)且垂直于x 轴的一条直线; y=b 的图象是经过点(0 ,b )且垂直于y 轴的一条直线。
沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、将直线y= -3x+5向上平移2个单位后得到的直线表达式是()A.y= -3x+2B.y= -3x-2C.y= -3x+7D.y= -3x-72、同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣23、y=kx+(k-3)的图象不可能是()A. B. C. D.4、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-25、若正比例函数的图象经过点(-1,2),则这个图象必经过点()A. B. C. D.6、已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:则不等式kx+b<bx+k的解集为()A. x>1B. x<1C. x>0D. x<07、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.8、港口依次在同一条直线上,甲、乙两艘船同时分别从两港出发,匀速驶向港,甲、乙两船与港的距离(海里)与行驶时间(小时)之间的函数关系如图所示,则下列说法正确的有()① 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达港时,乙船还需要一个小时才到达港⑤点的坐标为A.1个B.2个C.3个D.4个9、已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-1B.0C.2D.任意实数10、在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直11、若直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A. B. C. 或 D.12、已知点A(1,y1),B(-3,y2)都在直线上,则()A.y1< y2B.y1=y2C.y1>y2D.不能比较13、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-214、如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A. B. C. D.15、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移________个单位长度得到的.17、直线与两坐标轴围成的三角形的面积为4,则b的值为________.18、已知一次函数y=kx-2的图象上有两个点P(x1, y1),Q(x2, y2)如果x1>x2, y1<y2,则k________0.19、若函数y= 有意义,则自变量x的取值范围是________.20、函数y=中自变量x的取值范围是________ .21、如图图像反映的过程是:小明从家跑到体育馆,在那里锻炼了﹣阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是________分钟.22、如图,直线与轴交于点,以为斜边在轴上方作等腰直角,将沿轴向右平移,当点中点落在直线上时,则平移的距离是________.23、直线与平行,且经过(2,1),则+=________。
第12章一次函数12.2一次函数第2课时一次函数的图象及其性质教学反思教学目标1.会用两点法画一次函数图象.2.利用数形结合的思想,分析一次函数与正比例函数的联系及一次函数的性质.教学重难点重点:分析一次函数与正比例函数解析式和图象之间的联系难点:画一次函数图象,掌握一次函数的图象及其性质教学过程知识回顾提问:1.什么是一次函数?一般地,形如y=kx+b ( k,b为常数,且k≠0)的函数叫做一次函数.2.什么是正比例函数?形如y=kx(k为常数,且k≠0) 的函数,叫做正比例函数.3.正比例函数与一次函数有什么关系?正比例函数是一次函数一般式b=0时的特殊情形 .即:正比例函数一定是一次函数,而一次函数不一定是正比例函数.4.正比例函数y=kx ( k为常数,且k≠0 ) 的图象有什么性质?对于正比例函数y=kx,当k>0时,y=kx的图象在一、三象限,且y随x的增大而增大;当k<0时,y=kx的图象在二、四象限,且y随x的增大而减小.新课导入正比例函数y=kx(k为常数,且k≠0) 的函数图象是一条经过原点的直线,对于一次函数y=kx+b (k,b为常数,且k≠0),当b≠0时,它的图象又是什么呢?下面,我们一起来研究一次函数的图象及其性质.探究新知一、正比例函数图象与一次函数图象之间的联系典型例题例1在同一坐标系中画出y=2x和y=2x+3的图象.解:列表思考:(1)通过填表你发现这两个函数之间有什么关系?学生思考回答,教师引导得出结论:从表中可以看出,对于自变量x的同一个值,一次函数y=2x+3 的函数值要比函数y=2x的函数值大3个单位.(2)现在我们通过描点、连线画出它们的函数图象,看看它们的图象有什教学反思么关系.学生独立画出函数图象(如图),观察思考,在教师引导下得出结论:对于相同的横坐标,一次函数y=2x+3的图象上点的纵坐标要比正比例函数y=2x图象上点的纵坐标大3.因此,把直线y=2x向上平移3个单位,就得到一次函数y=2x+3 的图象.教师讲解:由此可见,一次函数y=2x+3的图象,是平行于直线y=2x的一条直线.拓展探究:1.在右图中,把直线y=2x向下平移3个单位,这时直线应是哪个函数解析式的图象?2.观察右图中,三个函数的解析式有什么共同点呢?3.观察右图中,三个函数的图象,你发现了什么?4.观察三个函数的图象和解析式,你能得到什么结论?学生独立完成,小组交流讨论,并展示成果.1.y=2x-3;2.三个函数解析式k值相等,b值不同;3.三个函数图象都是直线,且互相平行;4.当两个一次函数的k值相等,b值不同时,这两个一次函数的图象是互相平行的.教师讲解:一般地,一次函数y=kx+b(k,b为常数,且k≠0) 的图象是平行于直线y =kx的一条直线,因此,我们以后把一次函数y=kx+b (k,b为常数,且k≠0) 的图象叫做直线y=kx+b.拓展:(1)所有一次函数y=kx+b的图象都是直线.(2)直线y=kx+b与直线y=kx相互平行.(3)直线y=kx+b可以看作由直线y=kx平移得到:当b>0时,向上平移b个单位长度;当b<0时,向下平移b个单位长度.典型例题例2已知直线y=kx+b (k≠0) 平行于直线y=-2x+1,且过点(-2,4),分别求出k和b.解:因为直线y=kx+b (k≠0) 与直线y=-2x+1平行,所以k=-2.又因为直线y=kx+b (k≠0) 经过点(-2,4),所以4=-2×(-2)+b,解得b=0.综上所述,k=-2,b=0.二、两点法画一次函数图象探究:完成下列填空,思考怎样快速作出一个一次函数的图象?直线y=2x+3与y轴的交点坐标是,与x轴的交点坐标是.直线y=2x-3与y轴的交点坐标是,与x轴的交点坐标是.(3)y=kx+b与y轴的交点坐标是,与x轴的交点坐标是.教师讲解:画一次函数y=kx+b (k≠0)的图象,若b≠0,通常取该直线与y轴的交点(0,教学反思b )和与x 轴的交点,0b k ⎛⎫- ⎪⎝⎭,由两点确定一条直线得一次函数的图象.直线 y =kx +b 与y 轴相交于点(0,b ),b 叫做直线y =kx +b 在y 轴上的截距,简称截距.注意:截距不同于距离,截距可正可负,也可以为零.截距不同,图象与y 轴的交点就不同.典型例题例3 画出直线 y =23x -2,并求它的截距. 解:列表:过点(0,-2)和点(3,0)画一线, 就得直线y =23x -2. 它的截距是-2.三、一次函数的性质探究1:在同一平面直角坐标系中,画下列函数的图象: y =3x +1,y =2x -3,y =21x +4. (1)学生独立完成,画出函数图象.(2)观察函数图象,分析这三个函数解析式有什么共同的特点? (3)结合正比例函数的性质,想一想一次函数的图象有什么特征? 学生独立完成,并展示探究成果,教师引导纠正,得出正确答案.(1)教学反思(2)这三个解析式k>0,b不相同.(3)当k>0时,y=kx+b的图象经过的象限中必有一、三象限,且y随x的增大而增大(图象是自左向右上升的).探究2:观察右图中的三个函数的解析式和图象,你能得到什么结论?学生独立思考,回答问题,教师引导得出正确结论:当k<0时,y=kx+b的图象经过的象限中必有二、四象限,且y随x的增大而减小(图象是自左向右下降的).思考:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k,b的正负对函数图象及性质有什么影响?观察下列图象分析k、b的取值.学生独立思考,小组讨论,回答问题.教师讲解:(1)当k >0时,直线y =kx +b 由左到右逐渐上升,y 随x 的增大而增大. ① b >0时,直线经过第一、二、三象限; ② b <0时,直线经过第一、三、四象限.(2)当k <0时,直线y =kx +b 由左到右逐渐下降,y 随x 的增大而减小. ① b >0时,直线经过第 一、二、四象限;② b <0时,直线经过第二、三、四象限. 典型例题例4 已知一次函数 y =(1-2m )x +m -1,求满足下列条件的m 的值: (1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限.解:(1)由题意得1-2m >0,解得m <21.(2)由题意得1-2m ≠0且m -1<0,即m <1且m ≠21.(3)由题意得1-2m <0且m -1<0,解得21<m <1. 课堂练习1.在平面直角坐标系中,函数y =-2x +3的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限2.一次函数 y =x -2 的大致图象为( )A B C D3.一次函数y =(m 2+1)x +a +1(m ,a 为常数)的图象不可能经过的象限为( )A .一、二、三B .一、三C .一、二、四D .一、三、四4.若一次函数y =kx +1(k 为常数,k ≠0)的图象经过第一、二、三象限,则k 的取值范围是_______ .5.直线y =2x -3 与x 轴交点的坐标为_______;与y 轴交点的坐标为______;图象经过第 象限, y 随x 的增大而________.6.若直线y =kx +2与y =3x -1平行,则k = .7.点A (-1,y 1),B (3,y 2)是直线y =kx +b (k <0)上的两点,则y 1-y 2 0(填教学反思“>”或“<”).参考答案1.D2.C3.C4.k >05.(1.5,0) (0,-3) 一、三、四 增大6.k =37.>课堂小结布置作业教材38页练习1,2,3题; 教材39页练习1,2,3,4,5题.板书设计第2课时 一次函数的图象及其性质(1)当k >0,b >0时,直线经过第一、二、三象限; (2)当k >0,b <0时,直线经过第一、三、四象限; (3)当k <0,b >0时,直线经过第一、二、四象限; (4)当k <0,b <0时,直线经过第二、三、四象限.例 已知一次函数 y =(1-2m )x +m -1 , 求满足下列条件的m 的值: (1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限. 解:(1)由题意得1-2m >0,解得m <21. (2)由题意得1-2m ≠0且m -1<0,即m <1且m ≠21教学反思(3)由题意得1-2m <0且m -1<0,解得21<m <1.。
辅导讲义
一次函数图像的平移与图像和坐标轴围成的三角形的面积
一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)个单位得到一次函数y=kx+b±m;一次函数y=kx+b沿着x轴向左(“+”)、右(“-”)平移n(n>0)个单位得到一次函数y=k(x ±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示
罢了;直线y=kx+b与x轴交点为(-b
k
,0),与y轴交点为(0,b),且这两个交点与坐标原点构
成的三角形面积为S
△=
1
2
·│-
b
k
│·│b│.
例题讲解:
函数图像
1、如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)图像的是( ).
2、一次函数y=kx+(k-3)的函数图象不可能是()
3、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程s千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确
的是()
第二课时
待定系数法求一次函数解析式
4、.如图,一次函数y=kx+b的图象经过A、B两点,与x轴相交于C点.求:
(1)直线AC的函数解析式;(2)设点(a,-2)在这个函数图象上,求a的值;
5、如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
6、已知y与x-2成正比,且当x=4时,y=6。
(1)求y与x之间的函数关系式
(2)若点(a,6)在这个函数图象上,求a。
123456
y
x
O
A
B
C
(2,4)
2
3
4
5
1
函数图像中的计算问题:
11、为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机
公司筹集到资金130万元,用于一次性购进A 、B 两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:
A 型收割机
B 型收割机
进价(万元/台) 5.3 3.6 售价(万元/台) 6 4
设公司计划购进A 型收割机x 台,收割机全部销售后公司获得的利润为y 万元. (1)试写出y 与x 的函数关系式;
(2)市农机公司有哪几种购进收割机的方案可供选择? (3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这
30台收割机的所有农户获得的政府补贴总额W 为多少万元?
一次函数与二元一次方程组的关系:
12、已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A.20y -<<
B.40y -<< C.2y <- D.4y <-
13、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2
D .3
一次函数中的三角形问题:
x
y
O
3
2y x a =+
1y kx b =+
第13题
教学主管意见:
家长签字: ___________
家庭作业:
1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( ) A 、y=3x -2 B 、y=(k+1)x C 、y=(|k|+1)x D 、y= x 2
2、甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地
所走的路程S (km)随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( ) A.4个 B.3个 C.2个 D.1个
3、若函数y=(3-m)x m -9
是正比例函数,则m= 。
4、一次函数y=-2x+4的图象经过第 象限,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .
5、将函数y =-6x 的图象1l 向上平移5个单位得直线2l ,则直线2l 与坐标轴围成的三角形面积为 .
6、已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....
: . 7、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.
(1)求函数y =43
-x +3的坐标三角形的三条边长;
(2)若函数y =4
3
-x +b (b 为常数)的坐标三角形周长为16,求此三角形面积.
A y O B
x
1、Genius only means hard-working all one's life . (Mendeleyer, Russian Chemist) 天才只意味着终身不懈的努力。
20.8.208.20.202011:4811:48:59Aug-2011:48
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。
二〇二〇年八月二十日2020年8月20日星期四。