八年级数学多边形的内角和
- 格式:ppt
- 大小:540.50 KB
- 文档页数:12
八年级上册数学多边形的内角和
多边形的内角和是指多边形内部的所有角度的和。
对于任意一个n边形(n≥3),它的内角和可以通过公式计算得到。
公式如下:
内角和 = (n - 2) × 180°
其中,n代表多边形的边数。
举例来说,对于一个三角形,由于它有3条边,所以它的内角和为:
内角和 = (3 - 2) × 180°
= 1 × 180°
= 180°
同样地,对于一个四边形(矩形、正方形、菱形等),由于它有4条边,所以它的内角和为:
内角和 = (4 - 2) × 180°
= 2 × 180°
= 360°
通过这个公式,我们可以得出不同边数的多边形的内角和。
需要注意的是,这个公式只适用于普通的多边形,不包括特殊的多边形,如凸多边形、凹多边形、正多边形等。
多边形的内角和是一个重要的数学概念,在解决各种几何问题、证明定理等过程中经常会用到。
掌握了这个公式,我们可以更方便地计算和求解相关问题。
多边形的内角和多边形是指由若干条边和相应连接边的顶点组成的图形,它是几何学中一个重要的概念。
在数学中,我们经常研究多边形的性质和特征,其中一个关键的概念就是多边形的内角和。
一、多边形的定义和性质多边形是由若干条边和对应连接边的顶点所围成的封闭图形。
它的性质如下:1. 多边形的边是线段,且相邻两边之间不相交。
2. 多边形的顶点是两条边的交点。
3. 多边形的边数等于顶点数,也等于内角数。
4. 多边形的内角数等于外角数,它们的和为360度。
二、多边形的内角和公式对于任意n边形(n≥3),它的内角和S可以通过以下公式计算:S = (n - 2) × 180度该公式的推导可以通过以下步骤实现:1. 将多边形分成n个三角形,每个三角形的一个顶点为多边形的一个顶点,另外两个顶点分别为相邻的两条边的交点。
2. 由于三角形的内角和为180度,所以n个三角形的内角和为n ×180度。
3. 由于多边形的内角数等于外角数,而多边形的外角和为360度,所以n个三角形的外角和为n × 360度。
4. 由于多边形的内角和和外角和之和等于180°,所以n个三角形的内角和和外角和之和为n × 360° + n × 180°。
5. 由于多边形是由n个三角形组成的,所以n个三角形的内角和和外角和之和也等于多边形的内角和和外角和之和,即n × 180° + n × 360°= S + 360°。
6. 将该等式化简可得 S = (n - 2) × 180°。
三、实例分析我们以正五边形为例,来计算其内角和。
正五边形的定义是指五边形的五个内角相等且五条边相等。
根据内角和公式,我们可以得出正五边形的内角和如下:S = (5 - 2) × 180度 = 3 × 180度 = 540度由此可见,正五边形的内角和为540度。
第2讲多边形及其内角和知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习多边形及其内角和,首先要学会判断凸多边形和凹多边形,然后要学会计算多边形的内角和和外角和,能够处理多边形的一些基础题目。
知识梳理讲解用时:20分钟凸多边形、凹多边形1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、凸多边形:如果把一个多边形的所有边中,有一条边向两方无限延长成为一直线时,其他各边不都在此直线的同旁,那么这个多边形就叫做凹多边形,其内角中至少有一个钝角。
3、凹多边形:如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是钝角,任意两个顶点间的线段位于多边形的内部或边上。
目前我们研究的都是凸多边形1、多边形的内角:多边形相邻两边组成的角叫做它的内角。
2、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
4、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
从同一个顶点引出对角线的条数:0 1 2 3 n-3 (n≥3)分割出三角形的个数:0 2 3 4 n-2 (n≥3)多边形内角和:180° 360° 540° 720° (n-2)·180°课堂精讲精练【例题1】设四边形内角和等于,五边形外角和等于,则与之间的关系是( ) A.B.C.D.【答案】B【解析】四边形的内角和是360°,多边形的内角和也是360°.解:多边形边数为,则内角和为,四边形内角和,多边形外角和为, 五边形外角和, 因此. 故正确答案为:.讲解用时:2分钟解题思路:此题比较简单,熟记多边形的内角和和外角和公式做题即可. 教学建议:掌握多边形的内角和和外角和公式,灵活做题.难度: 3 适应场景:当堂例题 例题来源:无 年份:2018【练习1.1】下列图形中,多边形有( )总结:1、多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。
(2)能对多边形的内角和公式进行应用,解决实际问题。
(3)掌握多边形的外角和定理,并能运用。
2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
二、教材分析本节课选自人教版数学七年级册第七章第三节多边形内角和,训练重点是探索多边形内角和公式的得出及利用内角和公式解决一些计算和证明问题。
本节课“多边形的内角和”作为本章的一个重点也是一个难点,是学生在上学期初步认识和感受空间图形之后的延伸,是三角形有关知识的拓展,将会大大提高学生的探究、推理、表达等各方面能力,公式的运用还充分地体现了图形与客观世界的密切联系。
三、学情分析前面,学生已经知道三角形的内角和及外角、正方形的内角和、长方形的内角和,并了解了多边形的有关概念,这些都为学生学习本节知识作了知识准备。
学生已经初步具备小组合作能力、独立学习能力,探究的能力,以及归纳、分析能力,能通过合作、交流来完成学习任务。
四、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。
难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
五、教法:启发式、探索式六、学法:自主探索、合作交流七、创新点、德育点、空白点创新点:(1)将多边形内角和公式的推导,由学生小组合作或独立思考完成,最后由特殊到一般归纳内角和公式。
专题03 多边形的内角和一、单选题1.(2020·重庆市第二十九中学校八年级月考)某多边形的内角和是其外角和的4倍,则此多边形的边数是( )A.10B.9C.8D.7【答案】A【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式与外角和定理,利用方程法求边数.2.(2021·四川七年级期末)某校新建的科技馆准备用正多边形地砖铺设地面,下列组合中能铺满地面的是( )A.正方形和正六边形B.正三角形和正六边形C.正五边形和正八边形D.正方形和正十边形【答案】B【分析】正多边形的组合能否铺满地面,看位于同一顶点处的几个角之和能否为360°进行判定即可.【详解】解:A、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;B、正三角形和正六边形内角分别为60°、120°,显然能构成360°的周角,故能铺满;C、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.D、正方形和正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满.故选B.【点睛】本题主要考查了平面几何图形镶嵌,解题的关键是明确围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.(2021·全国八年级课前预习)下列叙述正确的是()A .每条边都相等的多边形是正多边形;B .如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凹多边形;C .每个角都相等的多边形叫正多边形;D .每条边、每个角都相等的多边形叫正多边形【答案】D【详解】由题意可知,A 、B 、Cj 均不正确,只有D 是正确的。
多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线.2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。
解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。
答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。
答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。
解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程。
答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法.例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A。
人教版初中数学八年级上册《多边形的内角和》优秀说课稿《多边形的内角和》说课稿我说课的内容是人教版八年级(上)册第11章第三节《多边形及其内角和》的第二课时。
我将在新课程理念的指导下从以下七个方面进行说课。
一、教材分析多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。
二、学情分析1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。
大部分学生学习习惯和学习方式较好。
2、本节课让学生通过实验探索多边形内角和公式。
在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。
估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。
三、教学目标分析新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。
【知识与技能】掌握多边形的内角和公式,并能熟练运用。
【数学思考】(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
【解决问题】通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
【情感态度】1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。
2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。
并在探索过程中激发、培养学生的爱国主义热情。