过氧化苯甲酰及偶氮二异丁腈不同温度下的半衰期
- 格式:pdf
- 大小:52.61 KB
- 文档页数:1
实验---偶氮二异丁腈分解速率的测定学校名称:江阴职业技术学院院系名称:化学纺织工程系时间:2017年1月10日1.实验目的1.掌握测定偶氮二异丁腈分解速率的测定的基本原理和方法。
2.了解有关引发剂方面的一些基本知识。
2.实验原理引发剂是一种能在热、光、辐射等作用下分解产生初级自由基,并能引发单体聚合的物质,它在自由基聚合反应中占有十分重要的地位。
引发剂的种类和用量对聚合反应速率以及聚合物的分子量关系极大。
在一定温度下,对某一单体来说,其聚合速率在很大程度上取决于引发剂的分解速率。
因此研究和测定引发剂的分解速率对聚合反应的控制具有实际生产意义。
引发剂的品种繁多,性质各异,但按其化学组成来分,大致可分为过氧化物和偶氮化物两大类。
如按自由基的产生方式来分,又可分为热引发(包括光、热辐射)体系和氧化还原体系,在偶氮化合物中,偶氮二异丁腈是最常见的引发剂之一。
偶氮二异丁腈分解均匀,只形成一种自由基,不发生诱导分解之类的副反应,比较稳定,可以纯粹状态安全储存等优点。
因此动力学研究和工业生产都广泛采用,缺点是,具有一定的毒性,分解效率低,属于低活性引发剂。
引发剂在加热下分解,产生初级自由基,由于化合物分子中各原子间的键能大小是有差别的,故均裂反应往往发生在键能最小的地方,偶氮二异丁腈各原子间的键能(千卡/克分子)如下:在各类键中,C-N 键的键能最小,均裂就在此处发生,产生了异丁腈自由基,并放出氮气。
N CC NCH 3C NC CNCH 3CH 3H H H大多数引发剂的分解反应一般属于一级反应,上式也是如此,其分解速率与引发剂浓度的一次方成正比,即:][][I K dt I d d =式中:K d -引发剂分解速率常数,单位可以是秒-1·分-1·小时-1 [I]-引发剂浓度t -时间 将上式积分得:t K I I Ind =0][][ 或t K d e I I =0][][ 式中:[I]0和[I]分别表示引发剂的起始(t =0)浓度和时间t 的浓度,单位为克分子/升。
选择与填空1、对于可逆平衡缩聚反应,在生产工艺上,到反应后期往往要在(1)下进行,(a、常压,b、高真空,c、加压)目的是为了(2、3)。
2、动力学链长ν的定义是(4),可用下式表示(5);聚合度可定义为(6)。
与ν的关系,当无链转移偶合终止时,ν和的关系是为(7),歧化终止时ν和的关系是(8)。
3、苯乙烯(St)的pKd=40~42,甲基丙烯酸甲酯(MMA)pKd=24,如果以KNH2为引发剂进行(9)聚合,制备St-MMA嵌段共聚物应先引发(10),再引发(11)。
KNH2的引发机理(12),如以金属K作引发剂则其引发机理是(13)。
4、Ziegler-Natta引发剂的主引发剂是(14),共引发剂是(15),要得到全同立构的聚丙烯应选用(16),(a、TiCl4+Al(C2H3)3,b、α-TiCl3+Al(C2H5)3,C、α-TiCl3+Al(C2H5)2Cl),全同聚丙烯的反应机理为(17)。
5、已知单体1(M1)和单体2(M2)的Q1=2.39,e1=-1.05,Q2=0.60,e2=1.20,比较两单体的共轭稳定性是(18)大于(19)。
从电子效应看,M1是具有(20)取代基的单体,M2是具有(21)取代基的单体。
比较两单体的活性(22)大于(23)。
当两单体均聚时的kp 是(24)大于(25)。
6、阳离子聚合的反应温度一般都(26),这是因为(27、28)。
7、苯酚和甲醛进行缩聚反应,苯酚的官能度f=(29),甲醛的官能度f=?0)。
当酚∶醛=5∶6(摩尔比)时,平均官能度=(31),在碱催化下随反应进行将(32),(a、发生凝胶化;b、不会凝胶化)。
如有凝胶化,则Pc=(33)。
当酚∶醛=7∶6(摩尔比),则=(34),以酸作催化剂,反应进行过程中体系(35)。
(a、出现凝胶化;b、不出现凝胶化)8、聚乙烯醇的制备步骤是:①在甲醇中进行(36)的溶液聚合,②(37)。
形成聚乙烯醇的反应称为(38)。
过氧化二苯甲酰(1)化学品及企业标识化学品中文名过氧化二苯甲酰;过氧化苯甲酰;过氧化二苯基乙二醛化学品英文名 benzoyl peroxide;Benzoyl superoxide;Diphenylglyoxal peroxide分子式 C14H10O4 相对分子质量 242.24(2)成分/组成信息√纯品混合物有害物成分浓度 CAS NO.过氧化二苯甲酰 94-36-0(3)危险性概述危险性类别第5.2类有机过氧化物侵入途径吸入、食入健康危害本品对上呼吸道有刺激性。
对皮肤有强烈刺激及致敏作用。
进入眼内可造成损害。
环境危害对环境可能有害。
燃爆危险易燃。
受撞击、摩擦,遇明火或其他点火源极易爆炸。
(4)急救措施皮肤接触立即脱去污染的衣着,用大量流动清水冲洗20~30min。
如有不适感,就医。
眼睛接触立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~ 15min。
如有不适感,就医。
吸入迅速脱离现场至空气新鲜处。
保持呼吸道通畅。
如呼吸困难,给输氧。
呼吸、心跳停止,立即进行心肺复苏术。
就医。
食入漱口,饮足量温水。
就医。
(5)消防措施危险特性干燥状态下非常易燃,遇热、摩擦、振动或杂质污染均能引起爆炸性分解。
急剧加热时可发生爆炸。
与强酸、强碱、硫化物、还原剂、聚合用助催化剂和促进剂如二甲基苯胺、胺类或金属环烷酸盐接触会发生剧烈反应。
有害燃烧产物一氧化碳灭火方法用水、雾状水、抗溶性泡沫、二氧化碳灭火灭火注意事项及措施消防人员须在有防爆掩蔽处操作。
遇大火切勿轻易接近。
在物料附件失火,需用水保持容器冷却。
禁止用砂土压盖。
(6)泄露应急处理应急行动隔离泄露污染区,限制出入。
消除所有点火源。
建议应急处理人员戴防尘口罩,穿一般作业工作服,戴橡胶手套。
勿使泄漏物与可燃物质(如木材、纸、油等)接触。
用雾状水保持泄漏物湿润。
尽可能切断泄漏源。
小量泄露:用惰性、湿润的不燃材料吸收泄漏物,用洁净的非火花工具收集于一盖子较松的塑料容器中,待处理。
自由基聚合引发剂的研究进展徐诚;唐华东【摘要】Free radical polymerization is an effective method for the polymerization of vinyl monomer, it can synthesis a variety of homo- and copolymers. The initiators of radical polymerization can be divided into azo initiators, peroxide initiators, redox initiators, multifunctionalinitiatior,macroinitiators and photoinitiators. This paper presents the progress of these initiators.%自由基聚合是乙烯基类单体的有效聚合方法,可合成多种均聚物和共聚物。
自由基聚合的引发剂可分为偶氮类引发剂、过氧化物类引发剂、氧化还原引发体系、多官能度引发剂、大分子引发剂和光敏引发剂。
本文主要介绍了这些引发剂的研究进展。
【期刊名称】《浙江化工》【年(卷),期】2015(000)006【总页数】4页(P34-37)【关键词】自由基聚合;引发剂;偶氮引发剂;氧化还原引发剂;光敏引发剂【作者】徐诚;唐华东【作者单位】浙江工业大学,浙江杭州 310014;浙江工业大学,浙江杭州310014【正文语种】中文自由基聚合为乙烯基类单体通过不断增长的自由基引发的聚合反应,可以生产众多均聚物、二元及多元共聚物产品,自上世纪50年代以来,已成为工业上生产高分子产品的重要技术,目前利用自由基聚合生产的烯烃聚合物已占到其总产量的70%左右[1-3]。
自由基聚合的优点为:适用单体广,反应条件要求不高,相关理论研究成熟,反应重现性好,易于操作控制,适于本体、悬浮和乳液聚合等工艺,便于大规模工业化生产[4-5]。
第四版习题答案(第三章)思考题2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。
CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。
CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。
CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。
CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。
CH 2=CHC 6H 5:三种机理均可,共轭体系。
CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。
CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。
3. 下列单体能否进行自由基聚合,并说明原因。
CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。
ClCH=CHCl :不能,对称结构。
CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。
CH 3CH=CHCH 3:不能,结构对称。
CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。
CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。
CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。
实验三、甲基丙烯酸甲酯的本体聚合及有机玻璃板制作一、实验目的1、了解本体聚合的特点,掌握本体聚合的实施方法,并观察整个聚合过程中体系粘度的变化过程。
2、掌握本体浇注聚合的合成方法及有机玻璃的生产工艺。
二、实验原理本体聚合是不加其它介质,只有单体本身在引发剂或光、热等作用下进行的聚合,又称块状聚合。
本体聚合的产物纯度高、工序及后处理简单,但随着聚合的进行,转化率提高,体系粘度增加,聚合热难以散发,系统的散热是关键。
同时由于粘度增加,长链游离基末端被包埋,扩散困难使游离基双基终止速率大大降低,致使聚合速率急剧增加而出现所谓自动加速现象或凝胶效应,这些轻则造成体系局部过热,使聚合物分子量分布变宽,从而影响产品的机械强度;重则体系温度失控,引起爆聚。
为克服这一缺点,现一般采用两段聚合:第一阶段保持较低转化率,这一阶段体系粘度较低,散热尚无困难,可在较大的反应器中进行;第二阶段转化率和粘度较大,可进行薄层聚合或在特殊设计的反应器内聚合。
本实验是以甲基丙烯酯甲酯(MMA)进行本体聚合,生产有机玻璃平板。
聚甲基丙烯酸甲酯(PMMA)由于有庞大的侧基存在,为无定形固体,具有高度透明性,比重小,有一定的耐冲击强度与良好的低温性能,是航空工业与光学仪器制造工业的重要原料。
以MMA 进行本体聚合时为了解决散热,避免自动加速作用而引起的爆聚现象,以及单体转化为聚合物时由于比重不同而引起的体积收缩问题,工业上采用高温预聚合,预聚至约10% 转化率的粘稠浆液,然后浇模,分段升温聚合,在低温下进一步聚合,安全渡过危险期,最后脱模制得有机玻璃平板。
如果直接做甲基丙烯酸甲酯(MMA)的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。
如果选用其它聚合方法(如:悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。
为此,工业上或实验室目前多采用浇注聚合的方法。
即:将本体聚合迅速进行到某种程度(转化率10%左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到93~95%,最后在100℃下高温聚合至反应完全。
材料科学:橡胶工艺学测考试题 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。
1、填空题 开炼机混炼时应最后添加的配合剂是( )。
本题答案: 2、名词解释 防焦剂 本题答案: 3、名词解释 氟橡胶(FPM ) 本题答案: 4、问答题 橡胶制品中加入纤维材料的目的。
本题答案: 5、问答题 列出一般橡胶加工工艺过程。
本题答案: 6、名词解释 硫载体 本题答案: 7、问答题 简述塑炼原理。
本题答案:姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------8、问答题将下列各种橡胶的机械强度进行比较:NR、IR、CR、IIR、NBR、SBR、BR。
本题答案:9、问答题试说明NR中不同硫磺用量和促进剂用量对硫化体系类型、交联结构及硫化胶性能的影响。
本题答案:10、名词解释标距本题答案:11、填空题橡胶硫化的历程可分为四个阶段:()阶段、()阶段、()阶段、()阶段。
本题答案:12、名词解释氧指数本题答案:13、名词解释硫化机理本题答案:14、问答题短纤维补强的特点。
本题答案:15、填空题碳链橡胶中,不饱和橡胶有()、()、()、();饱和橡胶有()、()、()、()、();杂链橡胶有()PU、()T;元素有机橡胶包括()MVQ等。
本题答案:16、问答题橡胶的硫化过程可分为哪几个阶段?试以硫化历程来加以说明。
本题答案:17、名词解释动态杨氏模量本题答案:18、名词解释吸留橡胶本题答案:19、名词解释定伸应力伸长率本题答案:20、名词解释硫化历程本题答案:21、问答题下列常用生胶的塑炼特性:NR、SBR、BR、CR、IIR、NBR。
高分子化学部分一、名词解释1、诱导分解:自由基向引发剂的转移反应。
原来的链自由基或简单自由基在生成稳定分子的同时,只生成一个新的自由基。
由于无偿的消耗了一个引发剂分子,故使实际引发效率下降。
2、稳态假设:自由基聚合过程中,由于自由基极活泼、寿命极短、浓度又很低,所以假设反应体系中的自由基浓度不随时间增长而变化,即链引发速率等于链终止速率。
3、立构规整度:立构规整聚合物所占总聚合物的分数。
4、扩链反应:端基为异氰酸酯的结构预聚物与双官能团活性氢化合物反应可形成更长链的聚合物,这样的反应称为扩链反应。
5、活性聚合:在适当的条件下,只要体系内存在单体,活性增长链将始终进行单体的加成反应,即使单体转化率达100%,增值链仍以具有反应活性的自由离子或离子对的形式存在。
二、问答题1、下列哪些单体只能进行自由基聚合,哪些单体只能进行离子聚合,哪些单体既能进行自由基聚合,又能进行离子聚合?解释原因。
(1)CF2=CF2;(2)CH2=CHC6H5;(3)CH2=CHNO2;(4)CH2=CCH3COOCH3;(5)CH3CH=CHCOOCH3答:(1)适合自由基聚合。
虽然结构对称,极化程度低,但是F原子体积小。
(2)可进行自由基聚合、阴离子聚合和阳离子聚合。
因为共轭体系π电子的容易极化和流动。
(3)只可进行阴离子聚合。
因为NO2是很强的吸电子基团。
(4)适合自由基聚合和阴离子聚合。
1,1双取代基,甲基体积小,COOCH3为吸电子基,甲基为供电子基,均有共轭效应。
(5)一遍不易均聚。
因为结构对称,极化度低,还有位阻效应。
2、在自由基聚合中,何为引发剂效率?为什么引发剂效率一般小于1?答:引发剂效率指由引发剂分解产生的初级自由基引发单体聚合的百分率。
因为不是全部初级自由基打开单体双键而引发,有一部分初级自由基发生其它反应而被消耗。
一是引发剂的诱导分解,自由基向引发剂的转移反应,使得自由基失活;二是初级自由基的副反应,在未扩散前发生偶合终止或形成了稳定的自由基。